1
|
Cui H, Xiao S, Cai Y, Peek S, Plummer RE, Kaufman AJ. Sedimentology and chemostratigraphy of the terminal Ediacaran Dengying Formation at the Gaojiashan section, South China. GEOLOGICAL MAGAZINE 2019; n/a:10.1017/S0016756819000293. [PMID: 31631899 PMCID: PMC6800678 DOI: 10.1017/s0016756819000293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The late Ediacaran Dengying Formation (ca. 551.1-538.8 Ma) in South China is one of two successions where Ediacara-type macrofossils are preserved in carbonate facies along with skeletal fossils and bilaterian animal traces. Given the remarkable thickness of carbonate-bearing strata deposited in less than 12.3 million years, the Dengying Formation holds the potential for a relatively continuous chemostratigraphic profile for the terminal Ediacaran stage. In this study, a detailed sedimentological and chemostratigraphic (δ13Ccarb, δ18Ocarb, δ13Corg, δ34Spyrite, and 87Sr/86Sr) investigation was conducted on the Dengying Formation at the Gaojiashan section, Ningqiang County of the southern Shaanxi Province, South China. Sedimentological results reveal an overall shallow marine depositional environment. Carbonate breccia, void-filling botryoidal precipitates, and aragonite crystal fans are common in the Algal Dolomite Member of the Dengying Formation, suggesting that peritidal facies were repeatedly karstified. The timing of karstification was likely early, probably soon after the deposition of the dolomite sediments. The presence of authigenic aragonite cements suggests high alkalinity in the terminal Ediacaran ocean. Geochemical analysis of micro-drilled samples shows that distinct compositions are registered in different carbonate phases, which should be considered when constructing chemostratigraphic profiles representative of true temporal variations in seawater chemistry. Integrated chemostratigraphic data suggest enhanced burial of organic carbon and pyrite, and the occurrence of extensive marine anoxia (at least in the Gaojiashan Member). Rapid basinal subsidence and carbonate accumulation during a time of elevated seawater alkalinity and increased rates of pyrite burial may have facilitated the evolutionary innovation of early biomineralizing metazoans.
Collapse
Affiliation(s)
- Huan Cui
- Research Group of Analytical, Environmental and Geo- Chemistry (AMGC), Division of Earth System Science, Vrije Universiteit Brussel (VUB), Brussels 1050, Belgium
- ET-HOME (Evolution and Tracers of the Habitability of Mars and Earth) Astrobiology Research Consortium, Belgium
- NASA Astrobiology Institute, Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Geology, University of Maryland, College Park, MD 20742, USA
- Author for correspondence: (H. Cui) or (H. Cui), Present address: Research Group of AMGC, Free University of Brussels (VUB), Brussels 1050, Belgium
| | - Shuhai Xiao
- Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Yaoping Cai
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environment, Department of Geology, Northwest University, Xi’an 710069, China
| | - Sara Peek
- Department of Geology, University of Maryland, College Park, MD 20742, USA
- United States Geological Survey, Menlo Park, CA 94025, USA
| | - Rebecca E. Plummer
- Department of Geology, University of Maryland, College Park, MD 20742, USA
- Hydrology and Remote Sensing Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, MD 20705 USA
| | - Alan J. Kaufman
- Department of Geology, University of Maryland, College Park, MD 20742, USA
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
4
|
Sharma M, Shukla Y. The evolution and distribution of life in the Precambrian eon-global perspective and the Indian record. J Biosci 2009; 34:765-76. [PMID: 20009270 DOI: 10.1007/s12038-009-0065-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The discovery of Precambrian microfossils in 1954 opened a new vista of investigations in the field of evolution of life. Although the Precambrian encompasses 87% of the earth's history, the pace of organismal evolution was quite slow. The life forms as categorised today in the three principal domains viz. the Bacteria, the Archaea and the Eucarya evolved during this period. In this paper, we review the advancements made in the Precambrian palaeontology and its contribution in understanding the evolution of life forms on earth. These studies have enriched the data base on the Precambrian life. Most of the direct evidence includes fossil prokaryotes, protists, advanced algal fossils, acritarchs, and the indirect evidence is represented by the stromatolites, trace fossils and geochemical fossils signatures. The Precambrian fossils are preserved in the form of compressions, impressions, and permineralized and biomineralized remains.
Collapse
Affiliation(s)
- M Sharma
- Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow 226 007, India.
| | | |
Collapse
|
5
|
Abstract
The Namibian Kuibis Quartzite fossils of Rangea are preserved three-dimensionally owing to incomplete collapse of the soft tissues under the load of instantaneously deposited sand. The process of fossilization did not reproduce the original external morphology of the organism but rather the inner surface of collapsed organs, presumably a system of sacs connected by a medial canal. The body of Rangea had tetraradial symmetry, a body plan shared also by the White Sea Russian fossil Bomakellia and possibly some other Precambrian frond-like fossils. They all had a complex internal anatomy, smooth surface of the body, and radial membranes, making their alleged colonial nature unlikely. Despite a different style of preservation, the Middle Cambrian Burgess Shale frond-like Thaumaptilon shows several anatomical similarities to Rangea. The body plan of the Burgess Shale ctenophore Fasciculus, with its numerous, pinnately arranged comb organs, is in many respects transitional between Thaumaptilon and the Early Cambrian ctenophore Maotianoascus from the Chengjiang fauna of South China. It is proposed that the irregularly distributed dark spots on the fusiform units of the petaloid of Thaumaptilon represent a kind of macrocilia and that the units are homologous with the ctenophoran comb organs. These superficial structures were underlain by the complex serial organs, well represented in the fossils of Rangea. The Precambrian "sea-pens" were thus probably sedentary ancestors of the ctenophores.
Collapse
Affiliation(s)
- Jerzy Dzik
- Instytut Paleobiologii PAN, 00-818 Warszawa, Poland.
| |
Collapse
|
7
|
Marine plants and their herbivores: coevolutionary myth and precarious mutualisms. Philos Trans R Soc Lond B Biol Sci 1997. [DOI: 10.1098/rstb.1991.0072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Planktonic and benthic algal-herbivore interactions are reviewed. In many cases, generation times of plant and herbivore are similar, yet there is no clear example of a coevolutionary arms race. Mutualisms have evolved, but these are vulnerable to extinction. We suggest that this vulnerability is caused by the loss of evolutionary flexibility accompanying the tightly linked, coadapted gene complexes.
Collapse
|
8
|
Abstract
Molecular phylogenies of eukaryotic organisms imply patterns of biological and environmental history that can be tested against the geological record. As predicted by sequence comparisons, Precambrian rocks show evidence of episodic increases in biological diversity and atmospheric oxygen concentrations. Nonetheless, complete integration of the two records remains elusive and may require that the earliest macroscopic organisms be recognized as extinct experiments in eukaryotic multicellularity.
Collapse
Affiliation(s)
- A H Knoll
- Harvard University, Botanical Museum, Cambridge, MA 02138
| |
Collapse
|
10
|
Kaufman AJ, Hayes JM, Knoll AH, Germs GJ. Isotopic compositions of carbonates and organic carbon from upper Proterozoic successions in Namibia: stratigraphic variation and the effects of diagenesis and metamorphism. PRECAMBRIAN RESEARCH 1991; 49:301-327. [PMID: 11538647 DOI: 10.1016/0301-9268(91)90039-d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The carbon isotope geochemistry of carbonates and organic carbon in the late Proterozoic Damara Supergroup of Namibia, including the Nama, Witvlei, and Gariep groups on the Kalahari Craton and the Mulden and Otavi groups on the Congo Craton, has been investigated as an extension of previous studies of secular variations in the isotopic composition of late Proterozoic seawater. Subsamples of microspar and dolomicrospar were determined, through petrographic and cathodoluminescence examination, to represent the "least-altered" portions of the rock. Carbon-isotopic abundances in these phases are nearly equal to those in total carbonate, suggesting that 13C abundances of late Proterozoic fine-grained carbonates have not been significantly altered by meteoric diagenesis, although 18O abundances often differ significantly. Reduced and variable carbon-isotopic differences between carbonates and organic carbon in these sediments indicate that isotopic compositions of organic carbon have been altered significantly by thermal and deformational processes, likely associated with the Pan-African Orogeny. Distinctive stratigraphic patterns of secular variation, similar to those noted in other, widely separated late Proterozoic basins, are found in carbon-isotopic compositions of carbonates from the Nama and Otavi groups. For example, in Nama Group carbonates delta 13C values rise dramatically from -4 to +5% within a short stratigraphic interval. This excursion suggests correlation with similar excursions noted in Ediacaran-aged successions of Siberia, India, and China. Enrichment of 13C (delta 13C> +5%) in Otavi Group carbonates reflects those in Upper Riphean successions of the Akademikerbreen Group, Svalbard, its correlatives in East Greenland, and the Shaler Group, northwest Canada. The widespread distribution of successions with comparable isotopic signatures supports hypotheses that variations in delta 13C reflect global changes in the isotopic composition of late Proterozoic seawater. Within the Damara basin, carbon-isotopic compositions of carbonates provide a potentially useful tool for the correlation of units between the Kalahari and Congo cratons. Carbonates depleted in 13C were deposited during and immediately following three separate glacial episodes in Namibia. The correspondence between ice ages and negative delta 13C excursions may reflect the effects of lowered sea levels; enhanced circulation of deep, cold, O2-rich seawater; and/or the upwelling of 13C-depleted deep water. Iron-formation is additionally associated with one of the glacial horizons, the Chuos tillite. Carbon-13 enriched isotopic abundances in immediately pre-glacial carbonates suggest that oceanographic conditions favored high rates of organic burial. It is likely that marine waters were stratified, with deep waters anoxic. A prolonged period of ocean stratification would permit the build-up of ferrous iron, probably from hydrothermal sources. At the onset of glaciation, upwelling would have brought 13C-depleted and iron-rich deep water onto shallow shelves where contact with cold, oxygenated surface waters led to the precipitation of ferric iron.
Collapse
Affiliation(s)
- A J Kaufman
- Department of Geology, Indiana University, Bloomington 47405-5101, USA
| | | | | | | |
Collapse
|
11
|
Asmerom Y, Jacobsen SB, Knoll AH, Butterfield NJ, Swett K. Strontium isotopic variations of Neoproterozoic seawater: implications for crustal evolution. GEOCHIMICA ET COSMOCHIMICA ACTA 1991; 55:2883-2894. [PMID: 11537198 DOI: 10.1016/0016-7037(91)90453-c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We report high precision Sr isotopic data on carbonates from the Neoproterozoic Shaler Group, Victoria Island, Northwest Territories, Canada. Lithostratigraphic correlations with the relatively well-dated Mackenzie Mountains Supergroup constrain Shaler deposition to approximately 770-880 Ma, a range corroborated by 723 +/- 3 Ma lavas that disconformably overlie Shaler carbonates and by Late Riphean microfossils within the section. Samples with low 87Rb/86Sr ratios (<0.01) were selected for Sr isotopic analysis. Delta 18O, Mn, Ca, Mg, and Sr data were used to recognize altered samples. The altered samples are characterized by high Mn/Sr (> or = 2) and variable delta 18O; most are dolomites. The data indicate that between ca. 790-850 Ma the 87Sr/86Sr ratio of seawater varied between 0.70676 and 0.70561. The samples show smooth and systematic variation, with the lowest 87Sr/86Sr value of 0.70561 at ca. 830 Ma. The low 87Sr/86Sr ratio of carbonates from the lower parts of our section is similar to a value reported for one sample from the Adrar of Mauritania (approximately 900 Ma), West African Craton. Isotopic ratios from the upper part of the Shaler section are identical to values from the lower part of the Neoproterozoic Akademikerbreen Group, Spitsbergen. Although a paucity of absolute age determinations hinders attempts at the precise correlation of Neoproterozoic successions, it is possible to draw a broad outline of the Sr isotopic composition of seawater for this period. Indeed, the Sr isotope data themselves provide a stratigraphic tool of considerable potential. Data from this study and the literature are used to construct a curve of the 87Sr/86Sr ratio of Neoproterozoic seawater. The new data reported in this study substantially improve the isotopic record of Sr in seawater for the period 790-850 Ma. The Sr isotope composition of seawater reflects primarily the balance between continental Sr input through river input and mantle input via hydrothermal circulation of seawater through mid-ocean ridges. Coupling of Nd and Sr isotopic systems allows us to model changes in seafloor spreading rates (or hydrothermal flux) and continental erosion. The Sr hydrothermal flux and the erosion rate (relative to present-day value) are modeled for the period 500-900 Ma. The results indicate that the hydrothermal flux reached a maximum value at ca. 830 Ma. In contrast, a large peak in erosion rate is indicated at ca. 570 Ma. The peaks in hydrothermal flux and erosion rate are most likely related to developments in the Pan-African and related orogenic events, whose initial development is characterized by production of juvenile crust during supercontinental break up and rifting. The time ca. 570 Ma is characterized by continent-continent collision and production of recycled crust. Sr isotope data from Proterozoic carbonates offer a valuable resource for understanding large-scale crust dynamics.
Collapse
Affiliation(s)
- Y Asmerom
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138
| | | | | | | | | |
Collapse
|