1
|
Gupta S, Mitra A. Heal the heart through gut (hormone) ghrelin: a potential player to combat heart failure. Heart Fail Rev 2020; 26:417-435. [PMID: 33025414 DOI: 10.1007/s10741-020-10032-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/21/2020] [Indexed: 12/17/2022]
Abstract
Ghrelin, a small peptide hormone (28 aa), secreted mainly by X/A-like cells of gastric mucosa, is also locally produced in cardiomyocytes. Being an orexigenic factor (appetite stimulant), it promotes release of growth hormone (GH) and exerts diverse physiological functions, viz. regulation of energy balance, glucose, and/or fat metabolism for body weight maintenance. Interestingly, administration of exogenous ghrelin significantly improves cardiac functions in CVD patients as well as experimental animal models of heart failure. Ghrelin ameliorates pathophysiological condition of the heart in myocardial infarction, cardiac hypertrophy, fibrosis, cachexia, and ischemia reperfusion injury. This peptide also exerts significant impact at the level of vasculature leading to lowering high blood pressure and reversal of endothelial dysfunction and atherosclerosis. However, the molecular mechanism of actions elucidating the healing effects of ghrelin on the cardiovascular system is still a matter of conjecture. Some experimental data indicate its beneficial effects via complex cellular cross talks between autonomic nervous system and cardiovascular cells, some other suggest more direct receptor-mediated molecular actions via autophagy or ionotropic regulation and interfering with apoptotic and inflammatory pathways of cardiomyocytes and vascular endothelial cells. Here, in this review, we summarise available recent data to encourage more research to find the missing links of unknown ghrelin receptor-mediated pathways as we see ghrelin as a future novel therapy in cardiovascular protection.
Collapse
Affiliation(s)
- Shreyasi Gupta
- Department of Zoology, Triveni Devi Bhalotia College, Raniganj, Paschim Bardhaman, 713347, India
| | - Arkadeep Mitra
- Department of Zoology, City College , 102/1, Raja Rammohan Sarani, Kolkata, 700009, India.
| |
Collapse
|
2
|
Rocha NDN, de Oliveira MV, Braga CL, Guimarães G, Maia LDA, Padilha GDA, Silva JD, Takiya CM, Capelozzi VL, Silva PL, Rocco PRM. Ghrelin therapy improves lung and cardiovascular function in experimental emphysema. Respir Res 2017; 18:185. [PMID: 29100513 PMCID: PMC5670513 DOI: 10.1186/s12931-017-0668-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/30/2017] [Indexed: 12/21/2022] Open
Abstract
Background Emphysema is a progressive disease characterized by irreversible airspace enlargement followed by a decline in lung function. It also causes extrapulmonary effects, such as loss of body mass and cor pulmonale, which are associated with shorter survival and worse clinical outcomes. Ghrelin, a growth-hormone secretagogue, stimulates muscle anabolism, has anti-inflammatory effects, promotes vasodilation, and improves cardiac performance. Therefore, we hypothesized that ghrelin might reduce lung inflammation and remodelling as well as improve lung mechanics and cardiac function in experimental emphysema. Methods Forty female C57BL/6 mice were randomly assigned into two main groups: control (C) and emphysema (ELA). In the ELA group (n=20), animals received four intratracheal instillations of pancreatic porcine elastase (PPE) at 1-week intervals. C animals (n=20) received saline alone (50 μL) using the same protocol. Two weeks after the last instillation of saline or PPE, C and ELA animals received ghrelin or saline (n=10/group) intraperitoneally (i.p.) daily, during 3 weeks. Dual-energy X-ray absorptiometry (DEXA), echocardiography, lung mechanics, histology, and molecular biology were analysed. Results In elastase-induced emphysema, ghrelin treatment decreased alveolar hyperinflation and mean linear intercept, neutrophil infiltration, and collagen fibre content in the alveolar septa and pulmonary vessel wall; increased elastic fibre content; reduced M1-macrophage populations and increased M2 polarization; decreased levels of keratinocyte-derived chemokine (KC, a mouse analogue of interleukin-8), tumour necrosis factor-α, and transforming growth factor-β, but increased interleukin-10 in lung tissue; augmented static lung elastance; reduced arterial pulmonary hypertension and right ventricular hypertrophy on echocardiography; and increased lean mass. Conclusion In the elastase-induced emphysema model used herein, ghrelin not only reduced lung damage but also improved cardiac function and increased lean mass. These findings should prompt further studies to evaluate ghrelin as a potential therapy for emphysema. Electronic supplementary material The online version of this article (10.1186/s12931-017-0668-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nazareth de Novaes Rocha
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Milena Vasconcellos de Oliveira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Cássia Lisboa Braga
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Gabriela Guimarães
- Laboratory of Immunopathology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lígia de Albuquerque Maia
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Gisele de Araújo Padilha
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Johnatas Dutra Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Christina Maeda Takiya
- Laboratory of Immunopathology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vera Luiza Capelozzi
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil. .,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Müller TD, Perez-Tilve D, Tong J, Pfluger PT, Tschöp MH. Ghrelin and its potential in the treatment of eating/wasting disorders and cachexia. J Cachexia Sarcopenia Muscle 2010; 1:159-167. [PMID: 21475701 PMCID: PMC3060653 DOI: 10.1007/s13539-010-0012-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 11/02/2010] [Indexed: 01/30/2023] Open
Abstract
The gastrointestinal "hunger" hormone ghrelin is the only known circulating peripheral molecule with the ability to decrease body fat utilization and to increase body weight gain. Accordingly, due to ghrelin's effects to promote food intake while decreasing energy expenditure ghrelin may offer potential as a drug for treatment of eating/wasting disorders and cachexia. Therapeutic potential of ghrelin and ghrelin analogues to promote food intake and body weight gain was recently indicated in several clinical studies. The recent discovery of the ghrelin O-acyltransferase as the key enzyme responsible for ghrelin acylation has further deepened our understanding of ghrelin activation, thereby paving the way for more efficient targeting of the ghrelin pathway. Here, we summarize the current knowledge pertaining to the potential of the endogenous ghrelin system as a drug target for the treatment of eating/wasting disorders and cachexia.
Collapse
Affiliation(s)
- Timo D. Müller
- Division of Endocrinology, Department of Medicine, University of Cincinnati, Metabolic Diseases Institute, Cincinnati, OH USA
| | - Diego Perez-Tilve
- Division of Endocrinology, Department of Medicine, University of Cincinnati, Metabolic Diseases Institute, Cincinnati, OH USA
| | - Jenny Tong
- Division of Endocrinology, Department of Medicine, University of Cincinnati, Metabolic Diseases Institute, Cincinnati, OH USA
| | - Paul T. Pfluger
- Division of Endocrinology, Department of Medicine, University of Cincinnati, Metabolic Diseases Institute, Cincinnati, OH USA
| | - Matthias H. Tschöp
- Division of Endocrinology, Department of Medicine, University of Cincinnati, Metabolic Diseases Institute, Cincinnati, OH USA
| |
Collapse
|
5
|
Xu JP, Wang HX, Wang W, Zhang LK, Tang CS. Ghrelin improves disturbed myocardial energy metabolism in rats with heart failure induced by isoproterenol. J Pept Sci 2010; 16:392-402. [PMID: 20572026 DOI: 10.1002/psc.1253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
To explore the effects of ghrelin on disturbed myocardial energy metabolism during chronic heart failure (CHF). Rats were subcutaneously injected with isoproterenol (ISO) for 10 days with or without ghrelin for another 10 days. Enzyme immunoassay was to measure ghrelin concentrations. Compared with the control group, ISO-treated rats showed suppressed cardiac function with high ghrelin/GHS-R expressions. These rats also showed the decreases in food consumption and weight. The decreased levels of plasma glucose and myocardial glucogen, but the high lactate in blood and myocardium showed myocardial metabolic disturbance. Compared with the group given ISO alone, the rats with ghrelin (20 and 100 microg/kg/day) improved cardiac dysfunction and increased food intake by 13.5 and 14.2% (both P < 0.01), and rate of weight gain by 95% (P < 0.05) and 1.71-fold (P < 0.01), respectively. The plasma glucose were increased by 49.7 and 50.8% (both P < 0.01), and myocardial glucogen, by 40.5 and 51.7% (both P < 0.01), but blood lactate decreased by 1.56- and 1.96-fold (both P < 0.01), and myocardial lactate by 32.1 and 48.7% (both P < 0.05), respectively. Their MCT1 mRNA and protein expressions increased. The myocardial ghrelin/GHS-R pathway can be upregulated during CHF. The ghrelin can attenuate cardiac dysfunction and energy metabolic disturbance in CHF rats.
Collapse
Affiliation(s)
- Jian-Ping Xu
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| | | | | | | | | |
Collapse
|
6
|
Metabolic and cardiovascular effects of ghrelin. INTERNATIONAL JOURNAL OF PEPTIDES 2010; 2010. [PMID: 20798901 PMCID: PMC2925368 DOI: 10.1155/2010/864342] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 01/16/2010] [Indexed: 01/28/2023]
Abstract
Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor, is synthesized as a preprohormone and then proteolytically processed to yield a 28-amino acid peptide. This peptide was originally reported to induce growth hormone release; large evidence, however, has indicated many other physiological activities of ghrelin, including regulation of food intake and energy balance, as well as of lipid and glucose metabolism. Ghrelin receptors have been detected in the hypothalamus and the pituitary, but also in the cardiovascular system, where ghrelin exerts beneficial hemodynamic activities. Ghrelin administration acutely improves endothelial dysfunction by increasing nitric oxide bioavailability and normalizes the altered balance between endothelin-1 and nitric oxide within the vasculature of patients with metabolic syndrome. Other cardiovascular effects of ghrelin include improvement of left ventricular contractility and cardiac output, as well as reduction of arterial pressure and systemic vascular resistance. In addition, antinflammatory and antiapoptotic actions of ghrelin have been reported both in vivo and in vitro. This review summarizes the most recent findings on the metabolic and cardiovascular effects of ghrelin through GH-dependent and -independent mechanisms and the possible role of ghrelin as a therapeutic molecule for treating cardiovascular diseases.
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW To provide recent observations on the interrelation between chronic heart failure (CHF), cachexia and human nutrition and updating epidemiological issues in CHF. RECENT FINDINGS Present evidence suggests that impairment in cardiac muscle energetics plays an important role in the pathogenesis of heart failure. New concepts such as microRNA expression are emerging as potential agents in heart failure. Recent research suggests mechanisms by which inflammatory catabolic states may persist in the presence of adequate growth factors and nutrition. A consensus panel has recently designed a definition for general cachexia and its stratification. Together with classicals, new nutrients and substrates are showing efficacies in the malnutrition associated with CHF. Although still promising, ghrelin, growth factors and other biological compounds maintain emergent therapeutical positions for heart failure or associated catabolic states or both. SUMMARY Altered intestinal function as an agent for CHF is rising in evidence. New techniques to well diagnose and stratify malnutrition and cardiac cachexia in CHF are needed. Treatment of cachexia in CHF appears to be a combination of different approaches, in which metabolic, nutritional, immunological and hormonal strategies may play an important role. Although the current experimental research is of great help, well designed randomized controlled trials are needed to test these hypothesis and generate clinical evidence.
Collapse
|
9
|
Sustained appetite improvement in malnourished dialysis patients by daily ghrelin treatment. Kidney Int 2009; 76:199-206. [PMID: 19387475 DOI: 10.1038/ki.2009.114] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Malnutrition is a common complication in patients on dialysis and is strongly associated with poor prognosis. Effective therapy could substantially improve morbidity and mortality, but neither enteral nor parenteral supplementation provide long-term benefit because of the strong appetite suppression seen in such patients. We performed a double-blinded randomized crossover study of a week-long treatment with daily subcutaneous ghrelin, a gut hormone that regulates hunger through the hypothalamus, in a group of 12 malnourished dialysis patients. Ghrelin administration increased ghrelin levels in circulation, modestly reduced blood pressure for up to 2 h, and immediately and significantly increased appetite, with an increase in energy intake noted at the first study meal. Persistence of this effect throughout the week was confirmed with food diaries and final study meals. Energy expenditure, measured with free-living pulse and motion monitors, was unchanged by ghrelin. Our study shows that daily treatment with ghrelin achieves a sustained positive change in energy balance in malnourished dialysis patients. Direct manipulation of appetite with ghrelin or its analogs represents an attractive and promising therapeutic strategy for this difficult clinical problem.
Collapse
|