1
|
Félix J, Martínez de Toda I, Díaz-Del Cerro E, González-Sánchez M, De la Fuente M. Frailty and biological age. Which best describes our aging and longevity? Mol Aspects Med 2024; 98:101291. [PMID: 38954948 DOI: 10.1016/j.mam.2024.101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/01/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Frailty and Biological Age are two closely related concepts; however, frailty is a multisystem geriatric syndrome that applies to elderly subjects, whereas biological age is a gerontologic way to describe the rate of aging of each individual, which can be used from the beginning of the aging process, in adulthood. If frailty reaches less consensus on the definition, it is a term much more widely used than this of biological age, which shows a clearer definition but is scarcely employed in social and medical fields. In this review, we suggest that this Biological Age is the best to describe how we are aging and determine our longevity, and several examples support our proposal.
Collapse
Affiliation(s)
- Judith Félix
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
| | - Irene Martínez de Toda
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
| | - Estefanía Díaz-Del Cerro
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
| | - Mónica González-Sánchez
- Department of Genetics, Physiology, and Microbiology (Unit of Genetics), Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
| | - Mónica De la Fuente
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
| |
Collapse
|
2
|
Cerro EDD, Lambea M, Félix J, Salazar N, Gueimonde M, De la Fuente M. Daily ingestion of Akkermansia mucciniphila for one month promotes healthy aging and increases lifespan in old female mice. Biogerontology 2021; 23:35-52. [PMID: 34729669 DOI: 10.1007/s10522-021-09943-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
The ingestion of certain probiotics has been suggested as a promising nutritional strategy to improve aging. The objective of this work was to evaluate the effects of the daily intake, for a month, of a new probiotic Akkermansia muciniphila (AKK) (2 × 108 cfu/100µL PBS) on behavior, as well as function and redox state of immune cells of old female ICR-CD1 mice (OA group). For this, several behavioral tests were performed, and function and oxidative-inflammatory stress parameters of peritoneal leukocytes were analyzed in OA group, in a group of the same age that did not take AKK (old control, OC group) and in another adult control (AC) group. The results showed, in OA group, a significant improvement of several behavioral responses (coordination, balance, neuromuscular vigor, exploratory ability and anxiety like-behaviors), as well as in immune functions (chemotaxis, phagocytosis, NK activity and lymphoproliferation) and in oxidative stress parameters (glutathione peroxidase and reductase activities, oxidized glutathione and lipid oxidation concentrations) of the peritoneal leukocytes in comparison to those observed in OC group. In addition, peritoneal immune cells from the OA group released lower basal concentrations of pro-inflammatory cytokines (IL-2, IL-6 and TNF-α) compared to those from the OC group. The values of parameters in OA were similar to those in AC group. These improvements in the old mice receiving the probiotic were reflected in an increase in their lifespan. In conclusion, our data indicate that AKK supplementation for a short period could be a good nutritional strategy to promote healthy longevity.
Collapse
Affiliation(s)
- Estefanía Díaz-Del Cerro
- Department of Genetics, Physiology and Microbiology (Unity of Animal Physiology), Faculty of Biology, Complutense University of Madrid (UCM), Madrid, Spain
- Institute of Investigation 12 de Octubre Hospital (i+12), Madrid, Spain
| | - Manuel Lambea
- Department of Genetics, Physiology and Microbiology (Unity of Animal Physiology), Faculty of Biology, Complutense University of Madrid (UCM), Madrid, Spain
| | - Judith Félix
- Department of Genetics, Physiology and Microbiology (Unity of Animal Physiology), Faculty of Biology, Complutense University of Madrid (UCM), Madrid, Spain
- Institute of Investigation 12 de Octubre Hospital (i+12), Madrid, Spain
| | - Nuria Salazar
- Department of Microbiology and Biochemistry of Dairy Products, IPLA-CSIC, Diet, Microbiota and Health Group, ISPA, Asturias, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, IPLA-CSIC, Diet, Microbiota and Health Group, ISPA, Asturias, Spain
| | - Mónica De la Fuente
- Department of Genetics, Physiology and Microbiology (Unity of Animal Physiology), Faculty of Biology, Complutense University of Madrid (UCM), Madrid, Spain.
- Institute of Investigation 12 de Octubre Hospital (i+12), Madrid, Spain.
| |
Collapse
|
3
|
Martínez de Toda I, Maté I, Vida C, Cruces J, De la Fuente M. Immune function parameters as markers of biological age and predictors of longevity. Aging (Albany NY) 2017; 8:3110-3119. [PMID: 27899767 PMCID: PMC5191888 DOI: 10.18632/aging.101116] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/11/2016] [Indexed: 12/15/2022]
Abstract
Chronological age is not a good indicator of how each individual ages and thus how to maintain good health. Due to the long lifespan in humans and the consequent difficulty of carrying out longitudinal studies, finding valid biomarkers of the biological age has been a challenge both for research and clinical studies. The aim was to identify and validate several immune cell function parameters as markers of biological age. Adult, mature, elderly and long-lived human volunteers were used. The chemotaxis, phagocytosis, natural killer activity and lymphoproliferation in neutrophils and lymphocytes of peripheral blood were analyzed. The same functions were measured in peritoneal immune cells from mice, at the corresponding ages (adult, mature, old and long lived) in a longitudinal study. The results showed that the evolution of these functions was similar in humans and mice, with a decrease in old subjects. However, the long-lived individuals maintained values similar to those in adults. In addition, the values of these functions in adult prematurely aging mice were similar to those in chronologically old animals, and they died before their non-prematurely aging mice counterparts. Thus, the parameters studied are good markers of the rate of aging, allowing the determination of biological age.
Collapse
Affiliation(s)
- Irene Martínez de Toda
- Department of Animal Physiology II, Faculty of Biology, Complutense University, Madrid, Spain.,Institute of Investigation, Hospital 12 Octubre, Madrid, Spain
| | - Ianire Maté
- Department of Animal Physiology II, Faculty of Biology, Complutense University, Madrid, Spain.,Institute of Investigation, Hospital 12 Octubre, Madrid, Spain
| | - Carmen Vida
- Department of Animal Physiology II, Faculty of Biology, Complutense University, Madrid, Spain.,Institute of Investigation, Hospital 12 Octubre, Madrid, Spain
| | - Julia Cruces
- Department of Animal Physiology II, Faculty of Biology, Complutense University, Madrid, Spain.,Institute of Investigation, Hospital 12 Octubre, Madrid, Spain
| | - Mónica De la Fuente
- Department of Animal Physiology II, Faculty of Biology, Complutense University, Madrid, Spain.,Institute of Investigation, Hospital 12 Octubre, Madrid, Spain
| |
Collapse
|
4
|
De Palma G, Vida C, Santacruz A, De Castro NM, De la Fuente M, Sanz Y. Impaired responses to gliadin and gut microbes of immune cells from mice with altered stress-related behavior and premature immune senescence. J Neuroimmunol 2014; 276:47-57. [PMID: 25176132 DOI: 10.1016/j.jneuroim.2014.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/03/2014] [Accepted: 08/06/2014] [Indexed: 01/22/2023]
Abstract
Stress is associated with impaired communication between the nervous and immune systems leading to immunosenescence and increased disease risk. We investigated whether leukocytes from mice with altered stress-related behavior and premature immunosenescence, as well as from chronologically aged mice differently responded ex vivo to celiac disease (CD) triggers (gliadin) and intestinal bacteria by ELISA and flow cytometry and differed in microbiota composition. We found that altered stress-related behavior and premature immunosenescence led to alterations in T lymphocytes and cytokine release of immune cells basally and in response to peptic fragments of gliadin and commensal and pathogenic bacteria, possibly increasing susceptibility to CD in adulthood.
Collapse
Affiliation(s)
- G De Palma
- Microbial Ecology, Nutrition & Health Research Group, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - C Vida
- Department of Physiology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - A Santacruz
- Microbial Ecology, Nutrition & Health Research Group, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - N M De Castro
- Department of Physiology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - M De la Fuente
- Department of Physiology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Y Sanz
- Microbial Ecology, Nutrition & Health Research Group, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain.
| |
Collapse
|
5
|
Shan L, Wang B, Gao G, Cao W, Zhang Y. l-Arginine supplementation improves antioxidant defenses through l-arginine/nitric oxide pathways in exercised rats. J Appl Physiol (1985) 2013; 115:1146-55. [DOI: 10.1152/japplphysiol.00225.2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
l-Arginine (l-Arg) supplementation has been shown to enhance physical exercise capacity and delay onset of fatigue. This work investigated the potential beneficial mechanism(s) of l-Arg supplementation by examining its effect on the cellular oxidative and nitrosative stress pathways in the exercised rats. Forty-eight rats were randomly divided into six groups: sedentary control; sedentary control with l-Arg treatment; endurance training (daily swimming training for 8 wk) control; endurance training with l-Arg treatment; an exhaustive exercise (one time swimming to fatigue) control; and an exhaustive exercise with l-Arg treatment. l-Arg (500 mg/kg body wt) or saline was given to rats by intragastric administration 1 h before the endurance training and the exhaustive swimming test. Expression levels and activities of the l-Arg/nitric oxide (NO) pathway components and parameters of the oxidative stress and antioxidant defense capacity were investigated in l-Arg-treated and control rats. The result show that the l-Arg supplementation completely reversed the exercise-induced activation of NO synthase and superoxide dismutase, increased l-Arg transport capacity, and increased NO and anti-superoxide anion levels. These data demonstrate that l-Arg supplementation effectively reduces the exercise-induced imbalance between oxidative stress and antioxidant defense capacity, and this modulation is likely mediated through the l-Arg/NO pathways. The findings of this study improved our understanding of how l-Arg supplementation prevents elevations of reactive oxygen species and favorably enhances the antioxidant defense capacity during physical exercise.
Collapse
Affiliation(s)
- Lingling Shan
- Department of Biochemistry Pharmacy, School of Chemistry and Life Science, SuZhou University, SuZhou, China; and
| | - Bin Wang
- Department of Health Science, Nanjing Sport Institute, Nanjing, China
| | - Guizhen Gao
- Department of Biochemistry Pharmacy, School of Chemistry and Life Science, SuZhou University, SuZhou, China; and
| | - Wengen Cao
- Department of Biochemistry Pharmacy, School of Chemistry and Life Science, SuZhou University, SuZhou, China; and
| | - Yunkun Zhang
- Department of Health Science, Nanjing Sport Institute, Nanjing, China
| |
Collapse
|
6
|
The mitochondria-targeted antioxidant SkQ1 but not N-acetylcysteine reverses aging-related biomarkers in rats. Aging (Albany NY) 2013; 4:686-94. [PMID: 23104863 PMCID: PMC3517939 DOI: 10.18632/aging.100493] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although antioxidants have been repeatedly tested in animal models and clinical studies, there is no evidence that antioxidants reduce already developed age-related decline. Recently we demonstrated that mitochondria-targeted antioxidant 10-(6'-plastoquinonyl) decyltriphenylphosphonium (SkQ1) delayed some manifestations of aging. Here we compared effects of SkQ1 and N-acetyl-L-cysteine (NAC) on age-dependent decline in blood levels of leukocytes, growth hormone (GH), insulin-like growth factor-1 (IGF-1), testosterone, dehydroepiandrosterone (DHEA) in Wistar and senescence-accelerated OXYS rats. When started late in life, supplementation with SkQ1 not only prevented age-related decline but also significantly reversed it. With NAC, all the observed effects were of the lower magnitude compared with SkQ1 (in spite of that dose of NAC was 16000 times higher). We suggest that supplementation with low doses of SkQ1 is a promising intervention to achieve a healthy ageing.
Collapse
|
7
|
Portal-Núñez S, Manassra R, Lozano D, Acitores A, Mulero F, Villanueva-Peñacarrillo ML, De la Fuente M, Esbrit P. Characterization of skeletal alterations in a model of prematurely aging mice. AGE (DORDRECHT, NETHERLANDS) 2013; 35:383-393. [PMID: 22234865 PMCID: PMC3592965 DOI: 10.1007/s11357-011-9372-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 12/15/2011] [Indexed: 05/31/2023]
Abstract
An age-related bone loss occurs, apparently associated with the concomitant increase in an oxidative stress situation. However, the underlying mechanisms of age-related osteopenia are ill defined since these studies are time consuming and require the use of many animals (mainly rodents). Here, we aimed to characterize for the first time the bone status of prematurely aging mice (PAM), which exhibit an increased oxidative stress. Tibiae from adult (6 months) PAM show an increase in bone mineral density (BMD) and bone mineral content (assessed by bone densitometry) versus those in their normal counterparts (non-prematurely aging mice, NPAM) and similarly decreased in both kinds of mouse with age. However, at this bone site, trabecular BMD (determined by μ-computerized tomography) was similar in both adult PAM and old (18 months) NPAM. Femurs from these groups of mice present an increase in oxidative stress, inflammation, osteoclastogenic, and adipogenic markers, but a decrease in the gene expression of osteoblastic differentiation markers and of the Wnt/β-catenin pathway. Our findings show that adult PAM recapitulate various age-related bone features, and thus are a suitable model for premature bone senescence studies.
Collapse
Affiliation(s)
- Sergio Portal-Núñez
- Bone and Mineral Metabolism Laboratory, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Avda. Reyes Católicos, 2, 28040, Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
The antioxidant N-acetylcysteine in vitro improves several functions of peritoneal leucocytes from old mice approaching their values to those of adult animals. J Appl Biomed 2012. [DOI: 10.2478/v10136-012-0005-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
9
|
The aged-related increase in xanthine oxidase expression and activity in several tissues from mice is not shown in long-lived animals. Biogerontology 2011; 12:551-64. [PMID: 21826556 DOI: 10.1007/s10522-011-9351-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 07/26/2011] [Indexed: 12/27/2022]
Abstract
Xanthine oxidase (XO) is an important source of oxidant production and plays an essential role in several oxidative stress-related diseases. Aging is associated with a progressive deregulation of homeostasis as a result of a chronic oxidative stress situation. In the present work the age-related changes in XO expression and activity, as well as the activities of superoxide dismutase and catalase have been investigated in liver, kidney and thymus from four different age groups of mice, including long-lived animals. Furthermore, we have evaluated the contribution of the XO to the oxidative stress-associated with aging, in comparison to another enzymatic key source of oxidant generation, the NADPH oxidase, in peritoneal leukocytes from old mice. In all the tissues analyzed, the old mice showed higher activity and expression of XO, and decreased or unchanged superoxide dismutase and catalase activities as compared with adult mice. Moreover, the inhibition of reactive oxygen species with allopurinol or apocynin in peritoneal leukocytes from old mice, suggest that both XO and NADPH oxidase contribute to the generation of superoxide anion, whereas the XO may have a special relevance in the production of hydrogen peroxyde. Finally, long-lived animals showed a well-preserved redox state, in terms of antioxidant defenses and oxidant compounds in tissues and immune cells, which may be related to the ability of these subjects to reach a very advanced age in healthy condition. These results confirm that XO plays an important role in the age-related oxidative stress in tissues and immune cells.
Collapse
|
10
|
Lisanti MP, Martinez-Outschoorn UE, Pavlides S, Whitaker-Menezes D, Pestell RG, Howell A, Sotgia F. Accelerated aging in the tumor microenvironment: connecting aging, inflammation and cancer metabolism with personalized medicine. Cell Cycle 2011; 10:2059-63. [PMID: 21654190 DOI: 10.4161/cc.10.13.16233] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cancer is thought to be a disease associated with aging. Interestingly, normal aging is driven by the production of ROS and mitochondrial oxidative stress, resulting in the cumulative accumulation of DNA damage. Here, we discuss how ROS signaling, NFκB- and HIF1-activation in the tumor microenvironment induces a form of "accelerated aging," which leads to stromal inflammation and changes in cancer cell metabolism. Thus, we present a unified model where aging (ROS), inflammation (NFκB) and cancer metabolism (HIF1), act as co-conspirators to drive autophagy ("self-eating") in the tumor stroma. Then, autophagy in the tumor stroma provides high-energy "fuel" and the necessary chemical building blocks, for accelerated tumor growth and metastasis. Stromal ROS production acts as a "mutagenic motor" and allows cancer cells to buffer-at a distance-exactly how much of a mutagenic stimulus they receive, further driving tumor cell selection and evolution. Surviving cancer cells would be selected for the ability to induce ROS more effectively in stromal fibroblasts, so they could extract more nutrients from the stroma via autophagy. If lethal cancer is a disease of "accelerated host aging" in the tumor stroma, then cancer patients may benefit from therapy with powerful antioxidants. Antioxidant therapy should block the resulting DNA damage, and halt autophagy in the tumor stroma, effectively "cutting off the fuel supply" for cancer cells. These findings have important new implications for personalized cancer medicine, as they link aging, inflammation and cancer metabolism with novel strategies for more effective cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Michael P Lisanti
- The Jefferson Stem Cell Biology and Regenerative Medicine Center, Thomas Jefferson University, Philadelphia, PA, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
De la Fuente M, Medina S, Baeza I, Jiménez L. Improvement of leucocyte functions in mature and old mice after 15 and 30 weeks of diet supplementation with polyphenol-rich biscuits. Eur J Nutr 2011; 50:563-73. [PMID: 21221978 DOI: 10.1007/s00394-010-0163-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 12/21/2010] [Indexed: 12/15/2022]
Abstract
PURPOSE To study the effect of diet supplementation with polyphenols on several functions suffering age-related changes, in peritoneal leucocytes from mature and old mice. METHODS Five groups of female ICR mice were used. Four groups received a supplementation (20% wt/wt) of biscuits with different cereal fractions naturally rich in polyphenols (named CO49, CO50, CO52, CO53), containing different amounts of catechin, p-hydroxybenzoic acid, vanillic acid, p-coumaric acid, sinapic acid, ferulic acid, rutin and oryzanol. The control group received only standard maintenance diet. Peritoneal suspensions were obtained after 15 and 30 weeks of diet supplementation, when the age of the animals was 49 ± 2 (mature mice) and 64 ± 2 weeks (old mice), respectively. The functions analysed were: chemotaxis of macrophages and lymphocytes, phagocytosis of particles by macrophages, intracellular superoxide anion levels, lymphoproliferative response to mitogens (concanavalin A and lipopolysaccharide), interleukin-2 secretion and natural killer (NK) activity, as functions that decrease with age, and adherence of macrophages and lymphocytes and tumour necrosis factor-α secretion as functions with age-related increase. RESULTS The supplementation, in general, increased the functions that decrease with age and decreased those that increase with age. There were differences in the effects shown by the four kinds of biscuits depending on the function studied and the number of weeks of supplementation. CONCLUSION Since the immune system has been proposed as a good marker of health and predictor of longevity, diet supplementation with cereals naturally rich in polyphenols could be an important way for health preservation with age and reaching high longevity.
Collapse
Affiliation(s)
- Mónica De la Fuente
- Department of Physiology (Animal Physiology II), Faculty of Biological Sciences, Complutense University, c/Jose Antonio Novais no. 2, 28040, Madrid, Spain.
| | | | | | | |
Collapse
|