1
|
Muroya S, Zhang Y, Otomaru K, Oshima K, Oshima I, Sano M, Roh S, Ojima K, Gotoh T. Maternal Nutrient Restriction Disrupts Gene Expression and Metabolites Associated with Urea Cycle, Steroid Synthesis, Glucose Homeostasis, and Glucuronidation in Fetal Calf Liver. Metabolites 2022; 12:metabo12030203. [PMID: 35323646 PMCID: PMC8949217 DOI: 10.3390/metabo12030203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/23/2022] Open
Abstract
This study aimed to understand the mechanisms underlying the effects of maternal undernutrition (MUN) on liver growth and metabolism in Japanese Black fetal calves (8.5 months in utero) using an approach that integrates metabolomics and transcriptomics. Dams were fed 60% (low-nutrition; LN) or 120% (high-nutrition; HN) of their overall nutritional requirements during gestation. We found that MUN markedly decreased the body and liver weights of the fetuses; metabolomic analysis revealed that aspartate, glycerol, alanine, gluconate 6-phosphate, and ophthalmate levels were decreased, whereas UDP-glucose, UDP-glucuronate, octanoate, and 2-hydroxybutyrate levels were decreased in the LN fetal liver (p ≤ 0.05). According to metabolite set enrichment analysis, the highly different metabolites were associated with metabolisms including the arginine and proline metabolism, nucleotide and sugar metabolism, propanoate metabolism, glutamate metabolism, porphyrin metabolism, and urea cycle. Transcriptomic and qPCR analyses revealed that MUN upregulated QRFPR and downregulated genes associated with the glucose homeostasis (G6PC, PCK1, DPP4), ketogenesis (HMGCS2), glucuronidation (UGT1A1, UGT1A6, UGT2A1), lipid metabolism (ANGPTL4, APOA5, FADS2), cholesterol and steroid homeostasis (FDPS, HSD11B1, HSD17B6), and urea cycle (CPS1, ASS1, ASL, ARG2). These metabolic pathways were extracted as relevant terms in subsequent gene ontology/pathway analyses. Collectively, these results indicate that the citrate cycle was maintained at the expense of activities of the energy metabolism, glucuronidation, steroid hormone homeostasis, and urea cycle in the liver of MUN fetuses.
Collapse
Affiliation(s)
- Susumu Muroya
- Division of Animal Products Research, NARO Institute of Livestock and Grassland Science (NILGS), Ibaraki, Tsukuba 305-0901, Japan;
- Correspondence: (S.M.); (T.G.)
| | - Yi Zhang
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Japan; (Y.Z.); (I.O.)
| | - Kounosuke Otomaru
- Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Japan;
| | - Kazunaga Oshima
- Division of Year-Round Grazing Research, NARO Western Region Agricultural Research Center, 60 Yoshinaga, Ohda 694-0013, Shimane, Japan;
| | - Ichiro Oshima
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Japan; (Y.Z.); (I.O.)
| | - Mitsue Sano
- Faculty of Human Culture, University of Shiga Prefecture, 2500 Hassaka-cho, Hikone 522-8533, Shiga, Japan;
| | - Sanggun Roh
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Miyagi, Japan;
| | - Koichi Ojima
- Division of Animal Products Research, NARO Institute of Livestock and Grassland Science (NILGS), Ibaraki, Tsukuba 305-0901, Japan;
| | - Takafumi Gotoh
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Japan; (Y.Z.); (I.O.)
- Correspondence: (S.M.); (T.G.)
| |
Collapse
|
2
|
Kroeske K, Arévalo Sureda E, Uerlings J, Deforce D, Van Nieuwerburgh F, Heyndrickx M, Millet S, Everaert N, Schroyen M. The Impact of Maternal and Piglet Low Protein Diet and Their Interaction on the Porcine Liver Transcriptome around the Time of Weaning. Vet Sci 2021; 8:233. [PMID: 34679062 PMCID: PMC8540021 DOI: 10.3390/vetsci8100233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 02/07/2023] Open
Abstract
Maternal diet during early gestation affects offspring phenotype, but it is unclear whether maternal diet during late gestation influences piglet metabolism. We evaluated the impact of two dietary protein levels in sow late gestation diet and piglet nursery diet on piglet metabolism. Diets met or exceeded the crude protein and amino acid requirements. Sows received either 12% (Lower, L) or 17% (Higher, H) crude protein (CP) during the last five weeks of gestation, and piglets received 16.5% (L) or 21% (H) CP from weaning at age 3.5 weeks. This resulted in a 2 × 2 factorial design with four sow/piglet diet treatment groups: HH and LL (match), HL and LH (mismatch). Piglet hepatic tissues were sampled and differentially expressed genes (DEGs) were determined by RNA sequencing. At age 4.5 weeks, 25 genes were downregulated and 22 genes were upregulated in the mismatch compared to match groups. Several genes involved in catabolic pathways were upregulated in the mismatch compared to match groups, as were genes involved in lipid metabolism and inflammation. The results show a distinct interaction effect between maternal and nursery diets, implying that sow late gestation diet could be used to optimize piglet metabolism.
Collapse
Affiliation(s)
- Kikianne Kroeske
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium; (K.K.); (E.A.S.); (J.U.); (N.E.)
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Melle, Belgium; (M.H.); (S.M.)
| | - Ester Arévalo Sureda
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium; (K.K.); (E.A.S.); (J.U.); (N.E.)
| | - Julie Uerlings
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium; (K.K.); (E.A.S.); (J.U.); (N.E.)
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; (D.D.); (F.V.N.)
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; (D.D.); (F.V.N.)
| | - Marc Heyndrickx
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Melle, Belgium; (M.H.); (S.M.)
- Department of Pathology, Bacteriology and Poultry Diseases, Ghent University, 9820 Merelbeke, Belgium
| | - Sam Millet
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Melle, Belgium; (M.H.); (S.M.)
- Department of Nutrition, Genetics and Ethology, Ghent University, 9820 Merelbeke, Belgium
| | - Nadia Everaert
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium; (K.K.); (E.A.S.); (J.U.); (N.E.)
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium; (K.K.); (E.A.S.); (J.U.); (N.E.)
| |
Collapse
|
3
|
Massmann GA, Zhang J, Seong WJ, Kim M, Figueroa JP. Sex-dependent effects of antenatal glucocorticoids on insulin sensitivity in adult sheep: role of the adipose tissue renin angiotensin system. Am J Physiol Regul Integr Comp Physiol 2017; 312:R1029-R1038. [PMID: 28356296 DOI: 10.1152/ajpregu.00181.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 01/09/2023]
Abstract
Exposure to glucocorticoids in utero is associated with changes in organ function and structure in the adult. The aims of this study were to characterize the effects of antenatal exposure to glucocorticoids on glucose handling and the role of adipose tissue. Pregnant sheep received betamethasone (Beta, 0.17 mg/kg) or vehicle 24 h apart at 80 days of gestation and allowed to deliver at term. At 9 mo, male and female offspring were fed at either 100% of nutritional allowance (lean) or ad libitum for 3 mo (obese). At 1 yr, they were chronically instrumented under general anesthesia. Glucose tolerance was evaluated using a bolus of glucose (0.25 g/kg). Adipose tissue was harvested after death to determine mRNA expression levels of angiotensinogen (AGT), angiotensin-converting enzyme (ACE) 1, ACE2, and peroxisome proliferator-activated receptor γ (PPAR-γ). Data are expressed as means ± SE and analyzed by ANOVA. Sex, obesity, and Beta exposure had significant effects on glucose tolerance and mRNA expression. Beta impaired glucose tolerance in lean females but not males. Superimposed obesity worsened the impairment in females and unmasked the defect in males. Beta increased ACE1 mRNA in females and males and AGT in females only (P < 0.05 by three-way ANOVA). Obesity increased AGT in females but had no effect on ACE1 in either males or females. PPAR-γ mRNA exhibited a significant sex (F = 42.8; P < 0.01) and obesity (F = 6.9; P < 0.05) effect and was significantly higher in males (P < 0.01 by three-way ANOVA). We conclude that adipose tissue may play an important role in the sexually dimorphic response to antenatal glucocorticoids.
Collapse
Affiliation(s)
- G Angela Massmann
- Perinatal Research Laboratory, Department of Obstetrics and Gynecology, Center for Research in Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jie Zhang
- Perinatal Research Laboratory, Department of Obstetrics and Gynecology, Center for Research in Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Won Joon Seong
- Perinatal Research Laboratory, Department of Obstetrics and Gynecology, Center for Research in Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Department of Obstetrics and Gynecology, Kyungpook National University, Daegu, South Korea; and
| | - Minhyoung Kim
- Perinatal Research Laboratory, Department of Obstetrics and Gynecology, Center for Research in Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Department of Obstetrics and Gynecology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Yongin, South Korea
| | - Jorge P Figueroa
- Perinatal Research Laboratory, Department of Obstetrics and Gynecology, Center for Research in Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina;
| |
Collapse
|
4
|
Maternal dietary protein supplement confers long-term sex-specific beneficial consequences of obesity resistance and glucose tolerance to the offspring in Brandt's voles. Comp Biochem Physiol A Mol Integr Physiol 2015; 182:38-44. [DOI: 10.1016/j.cbpa.2014.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/01/2014] [Accepted: 12/01/2014] [Indexed: 11/17/2022]
|
5
|
Durrant LM, Khorram O, Buchholz JN, Pearce WJ. Maternal food restriction modulates cerebrovascular structure and contractility in adult rat offspring: effects of metyrapone. Am J Physiol Regul Integr Comp Physiol 2014; 306:R401-10. [PMID: 24477541 DOI: 10.1152/ajpregu.00436.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although the effects of prenatal undernutrition on adult cardiovascular health have been well studied, its effects on the cerebrovascular structure and function remain unknown. We used a pair-fed rat model of 50% caloric restriction from day 11 of gestation to term, with ad libitum feeding after birth. We validated that maternal food restriction (MFR) stress is mediated by glucocorticoids by administering metyrapone, a corticosterone synthesis inhibitor, to MFR mothers at day 11 of gestation. At age 8 mo, offspring from Control, MFR, and MFR + Metyrapone groups were killed, and middle cerebral artery (MCA) segments were studied using vessel-bath myography and confocal microscopy. Colocalization of smooth muscle α-actin (SMαA) with nonmuscle (NM), SM1 and SM2 myosin heavy-chain (MHC) isoforms was used to assess smooth muscle phenotype. Our results indicate that artery stiffness and wall thickness were increased, pressure-evoked myogenic reactivity was depressed, and myofilament Ca(2+) sensitivity was decreased in offspring of MFR compared with Control rats. MCA from MFR offspring exhibited a significantly greater SMαA/NM colocalization, suggesting that the smooth muscle cells had been altered toward a noncontractile phenotype. MET significantly reversed the effects of MFR on stiffness but not myogenic reactivity, lowered SMαA/NM colocalization, and increased SMαA/SM2 colocalization. Together, our data suggest that MFR alters cerebrovascular contractility via both glucocorticoid-dependent and glucocorticoid-independent mechanisms.
Collapse
Affiliation(s)
- Lara M Durrant
- Center for Perinatal Biology, Divisions of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, California; and
| | | | | | | |
Collapse
|
6
|
Blumfield M, Hure A, MacDonald-Wicks L, Smith R, Simpson S, Raubenheimer D, Collins C. The association between the macronutrient content of maternal diet and the adequacy of micronutrients during pregnancy in the Women and Their Children’s Health (WATCH) study. Nutrients 2012; 4:1958-76. [PMID: 23222964 PMCID: PMC3546616 DOI: 10.3390/nu4121958] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 11/23/2012] [Accepted: 11/29/2012] [Indexed: 12/30/2022] Open
Abstract
Nutrition during pregnancy can induce alterations in offspring phenotype. Maternal ratio of protein to non-protein (P:NP) energy has been linked to variations in offspring body composition and adult risk of metabolic disease. This study describes the dietary patterns of pregnant women by tertiles of the P:NP ratio and compares diet to Australian recommendations. Data are from 179 Australian women enrolled in the Women and Their Children's Health Study. Diet was assessed using a validated 74-item food frequency questionnaire. Food group servings and nutrient intakes were compared to the Australian Guide to Healthy Eating and Australian Nutrient Reference Values. Higher maternal P:NP tertile was positively associated with calcium (P = 0.003), zinc (P = 0.001) and servings of dairy (P = 0.001) and meat (P = 0.001) food groups, and inversely associated with the energy dense, nutrient poor non-core (P = 0.003) food group. Micronutrient intakes were optimized with intermediate protein (18%E-20%E), intermediate fat (28%E-30%E) and intermediate carbohydrate (50%E-54%E) intakes, as indicated in tertile two. Results suggest a moderate protein intake may support pregnant women to consume the largest variety of nutrients across all food groups.
Collapse
Affiliation(s)
- Michelle Blumfield
- School of Health Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia; E-Mails: (M.B.); (L.M.-W.)
- Mothers and Babies Research Centre, Hunter Medical Research Institute, John Hunter Hospital, Level 3, Endocrinology, Locked Bag 1, Hunter Region Mail Centre, New South Wales 2310, Australia; E-Mail:
| | - Alexis Hure
- School of Medicine and Public Health, Faculty of Health, University of Newcastle, Callaghan, New South Wales 2308, Australia; E-Mail:
| | - Lesley MacDonald-Wicks
- School of Health Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia; E-Mails: (M.B.); (L.M.-W.)
| | - Roger Smith
- Mothers and Babies Research Centre, Hunter Medical Research Institute, John Hunter Hospital, Level 3, Endocrinology, Locked Bag 1, Hunter Region Mail Centre, New South Wales 2310, Australia; E-Mail:
- School of Medicine and Public Health, Faculty of Health, University of Newcastle, Callaghan, New South Wales 2308, Australia; E-Mail:
| | - Stephen Simpson
- School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia; E-Mail:
| | - David Raubenheimer
- Institute of Natural Sciences, Massey University, Albany 0632, New Zealand; E-Mail:
| | - Clare Collins
- School of Health Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia; E-Mails: (M.B.); (L.M.-W.)
- Mothers and Babies Research Centre, Hunter Medical Research Institute, John Hunter Hospital, Level 3, Endocrinology, Locked Bag 1, Hunter Region Mail Centre, New South Wales 2310, Australia; E-Mail:
| |
Collapse
|