1
|
de Castro Neto AL, da Silveira JF, Mortara RA. Role of Virulence Factors of Trypanosomatids in the Insect Vector and Putative Genetic Events Involved in Surface Protein Diversity. Front Cell Infect Microbiol 2022; 12:807172. [PMID: 35573777 PMCID: PMC9097677 DOI: 10.3389/fcimb.2022.807172] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Trypanosomatids are flagellate protozoans that can infect several invertebrate and vertebrate hosts, including insects and humans. The three most studied species are the human pathogens Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. which are the causative agents of Human African Trypanosomiasis (HAT), Chagas disease and different clinical forms of leishmaniasis, respectively. These parasites possess complex dixenous life cycles, with zoonotic and anthroponotic stages, and are transmitted by hematophagous insects. To colonize this myriad of hosts, they developed mechanisms, mediated by virulence factors, to infect, propagate and survive in different environments. In insects, surface proteins play roles in parasite attachment and survival in the insect gut, whilst in the mammalian host, the parasites have a whole group of proteins and mechanisms that aid them invading the host cells and evading its immune system components. Many studies have been done on the impact of these molecules in the vertebrate host, however it is also essential to notice the importance of these virulence factors in the insect vector during the parasite life cycle. When inside the insect, the parasites, like in humans, also need to survive defense mechanisms components that can inhibit parasite colonization or survival, e.g., midgut peritrophic membrane barrier, digestive enzymes, evasion of excretion alongside the digested blood meal, anatomic structures and physiological mechanisms of the anterior gut. This protection inside the insect is often implemented by the same group of virulence factors that perform roles of immune evasion in the mammalian host with just a few exceptions, in which a specific protein is expressed specifically for the insect vector form of the parasite. This review aims to discuss the roles of the virulence molecules in the insect vectors, showing the differences and similarities of modes of action of the same group of molecules in insect and humans, exclusive insect molecules and discuss possible genetic events that may have generated this protein diversity.
Collapse
|
2
|
Castro Neto AL, Brito ANALM, Rezende AM, Magalhães FB, de Melo Neto OP. In silico characterization of multiple genes encoding the GP63 virulence protein from Leishmania braziliensis: identification of sources of variation and putative roles in immune evasion. BMC Genomics 2019; 20:118. [PMID: 30732584 PMCID: PMC6367770 DOI: 10.1186/s12864-019-5465-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 01/21/2019] [Indexed: 01/01/2023] Open
Abstract
Background The leishmaniasis are parasitic diseases caused by protozoans of the genus Leishmania, highly divergent eukaryotes, characterized by unique biological features. To survive in both the mammalian hosts and insect vectors, these pathogens make use of a number of mechanisms, many of which are associated with parasite specific proteases. The metalloprotease GP63, the major Leishmania surface antigen, has been found to have multiple functions required for the parasite’s survival. GP63 is encoded by multiple genes and their copy numbers vary considerably between different species and are increased in those from the subgenus Viannia, including L. braziliensis. Results By comparing multiple sequences from Leishmania and related organisms this study sought to characterize paralogs in silico, evaluating their differences and similarities and the implications for the GP63 function. The Leishmania GP63 genes are encoded on chromosomes 10, 28 and 31, with the genes from the latter two chromosomes more related to genes found in insect or plant parasites. Those from chromosome 10 have experienced independent expansions in numbers in Leishmania, especially in L. braziliensis. These could be clustered in three groups associated with different mRNA 3′ untranslated regions as well as distinct C-terminal ends for the encoded proteins, with presumably distinct expression patterns and subcellular localizations. Sequence variations between the chromosome 10 genes were linked to intragenic recombination events, mapped to the external surface of the proteins and predicted to be immunogenic, implying a role against the host immune response. Conclusions Our results suggest a greater role for the sequence variation found among the chromosome 10 GP63 genes, possibly related to the pathogenesis of L. braziliensis and closely related species within the mammalian host. They also indicate different functions associated to genes mapped to different chromosomes. For the chromosome 10 genes, variable subcellular localizations were found to be most likely associated with multiple functions and target substrates for this versatile protease. Electronic supplementary material The online version of this article (10.1186/s12864-019-5465-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Artur L Castro Neto
- Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.,Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (Fiocruz-Pernambuco), Recife, Pernambuco, Brazil
| | - Adriana N A L M Brito
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (Fiocruz-Pernambuco), Recife, Pernambuco, Brazil
| | - Antonio M Rezende
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (Fiocruz-Pernambuco), Recife, Pernambuco, Brazil
| | - Franklin B Magalhães
- Centro Universitário Tabosa de Almeida - ASCES/UNITA, Caruaru, Pernambuco, Brazil
| | - Osvaldo P de Melo Neto
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (Fiocruz-Pernambuco), Recife, Pernambuco, Brazil.
| |
Collapse
|
3
|
Cuypers B, Berg M, Imamura H, Dumetz F, De Muylder G, Domagalska MA, Rijal S, Bhattarai NR, Maes I, Sanders M, Cotton JA, Meysman P, Laukens K, Dujardin JC. Integrated genomic and metabolomic profiling of ISC1, an emerging Leishmania donovani population in the Indian subcontinent. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2018; 62:170-178. [PMID: 29679745 PMCID: PMC6261844 DOI: 10.1016/j.meegid.2018.04.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 01/06/2023]
Abstract
Leishmania donovani is the responsible agent for visceral leishmaniasis (VL) in the Indian subcontinent (ISC). The disease is lethal without treatment and causes 0.2 to 0.4 million cases each year. Recently, reports of VL in Nepalese hilly districts have increased as well as VL cases caused by L. donovani from the ISC1 genetic group, a new and emerging genotype. In this study, we perform for the first time an integrated, untargeted genomics and metabolomics approach to characterize ISC1, in comparison with the Core Group (CG), main population that drove the most recent outbreak of VL in the ISC. We show that the ISC1 population is very different from the CG, both at genome and metabolome levels. The genomic differences include SNPs, CNV and small indels in genes coding for known virulence factors, immunogens and surface proteins. Both genomic and metabolic approaches highlighted dissimilarities related to membrane lipids, the nucleotide salvage pathway and the urea cycle in ISC1 versus CG. Many of these pathways and molecules are important for the interaction with the host/extracellular environment. Altogether, our data predict major functional differences in ISC1 versus CG parasites, including virulence. Therefore, particular attention is required to monitor the fate of this emerging ISC1 population in the ISC, especially in a post-VL elimination context.
Collapse
Affiliation(s)
- Bart Cuypers
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium; Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
| | - Maya Berg
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Hideo Imamura
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Franck Dumetz
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Géraldine De Muylder
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Suman Rijal
- BP Koirala Institute of Health Sciences, Dharan, Nepal
| | | | - Ilse Maes
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Mandy Sanders
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - James A Cotton
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Pieter Meysman
- Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
| | - Kris Laukens
- Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
| | - Jean-Claude Dujardin
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
4
|
Zackay A, Cotton JA, Sanders M, Hailu A, Nasereddin A, Warburg A, Jaffe CL. Genome wide comparison of Ethiopian Leishmania donovani strains reveals differences potentially related to parasite survival. PLoS Genet 2018; 14:e1007133. [PMID: 29315303 PMCID: PMC5777657 DOI: 10.1371/journal.pgen.1007133] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/22/2018] [Accepted: 11/28/2017] [Indexed: 12/22/2022] Open
Abstract
Leishmania donovani is the main cause of visceral leishmaniasis (VL) in East Africa. Differences between northern Ethiopia/Sudan (NE) and southern Ethiopia (SE) in ecology, vectors, and patient sensitivity to drug treatment have been described, however the relationship between differences in parasite genotype between these two foci and phenotype is unknown. Whole genomic sequencing (WGS) was carried out for 41 L. donovani strains and clones from VL and VL/HIV co-infected patients in NE (n = 28) and SE (n = 13). Chromosome aneuploidy was observed in all parasites examined with each isolate exhibiting a unique karyotype. Differences in chromosome ploidy or karyotype were not correlated with the geographic origin of the parasites. However, correlation between single nucleotide polymorphism (SNP) and geographic origin was seen for 38/41 isolates, separating the NE and SE parasites into two large groups. SNP restricted to NE and SE groups were associated with genes involved in viability and parasite resistance to drugs. Unique copy number variation (CNV) were also associated with NE and SE parasites, respectively. One striking example is the folate transporter (FT) family genes (LdBPK_100390, LdBPK_100400 and LdBPK_100410) on chromosome 10 that are single copy in all 13 SE isolates, but either double copy or higher in 39/41 NE isolates (copy number 2-4). High copy number (= 4) was also found for one Sudanese strain examined. This was confirmed by quantitative polymerase chain reaction for LdBPK_100400, the L. donovani FT1 transporter homolog. Good correlation (p = 0.005) between FT copy number and resistance to methotrexate (0.5 mg/ml MTX) was also observed with the haploid SE strains examined showing higher viability than the NE strains at this concentration. Our results emphasize the advantages of whole genome analysis to shed light on vital parasite processes in Leishmania.
Collapse
Affiliation(s)
- Arie Zackay
- Dept Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious & Tropical Diseases, IMRIC, Hebrew University–Hadassah Medical School, Jerusalem, Israel
| | - James A. Cotton
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Mandy Sanders
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Asrat Hailu
- Dept Microbiology, Immunology & Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abedelmajeed Nasereddin
- Dept Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious & Tropical Diseases, IMRIC, Hebrew University–Hadassah Medical School, Jerusalem, Israel
| | - Alon Warburg
- Dept Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious & Tropical Diseases, IMRIC, Hebrew University–Hadassah Medical School, Jerusalem, Israel
| | - Charles L. Jaffe
- Dept Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious & Tropical Diseases, IMRIC, Hebrew University–Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
5
|
Stiles JK, Hicock PI, Shah PH, Meade JC. Genomic organization, transcription, splicing and gene regulation inLeishmania. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.1999.11813485] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Medina LS, Souza BA, Queiroz A, Guimarães LH, Lima Machado PR, M Carvalho E, Wilson ME, Schriefer A. The gp63 Gene Cluster Is Highly Polymorphic in Natural Leishmania (Viannia) braziliensis Populations, but Functional Sites Are Conserved. PLoS One 2016; 11:e0163284. [PMID: 27648939 PMCID: PMC5029894 DOI: 10.1371/journal.pone.0163284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/05/2016] [Indexed: 01/27/2023] Open
Abstract
GP63 or leishmanolysin is the major surface protease of Leishmania spp. involved in parasite virulence and host cell interaction. As such, GP63 is a potential target of eventual vaccines against these protozoa. In the current study we evaluate the polymorphism of gp63 in Leishmania (Viannia) braziliensis isolated from two sets of American tegumentary leishmaniasis (ATL) cases from Corte de Pedra, Brazil, including 35 cases diagnosed between 1994 and 2001 and 6 cases diagnosed between 2008 and 2011. Parasites were obtained from lesions by needle aspiration and cultivation. Genomic DNA was extracted, and 405 bp fragments, including sequences encoding the putative macrophage interacting sites, were amplified from gp63 genes of all isolates. DNA amplicons were cloned into plasmid vectors and ten clones per L. (V.) braziliensis isolate were sequenced. Alignment of cloned sequences showed extensive polymorphism among gp63 genes within, and between parasite isolates. Overall, 45 different polymorphic alleles were detected in all samples, which could be segregated into two clusters. Cluster one included 25, and cluster two included 20 such genotypes. The predicted peptides showed overall conservation below 50%. In marked contrast, the conservation at segments with putative functional domains approached 90% (Fisher’s exact test p<0.0001). These findings show that gp63 is very polymorphic even among parasites from a same endemic focus, but the functional domains interacting with the mammalian host environment are conserved.
Collapse
Affiliation(s)
- Lilian S. Medina
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Bruno Araújo Souza
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Adriano Queiroz
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Luiz Henrique Guimarães
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Instituto Nacional de Ciência e Tecnologia – Doenças Tropicais (INCT-DT), Brazil
| | - Paulo Roberto Lima Machado
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Instituto Nacional de Ciência e Tecnologia – Doenças Tropicais (INCT-DT), Brazil
| | - Edgar M Carvalho
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Instituto Nacional de Ciência e Tecnologia – Doenças Tropicais (INCT-DT), Brazil
- Centro de Pesquisa Gonçalo Moniz (Fiocruz), Salvador, Bahia, Brazil
| | - Mary Edythe Wilson
- Departments of Internal Medicine and Microbiology, University of Iowa and the VA Medical Center, Iowa City, Iowa, United States of America
| | - Albert Schriefer
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Instituto Nacional de Ciência e Tecnologia – Doenças Tropicais (INCT-DT), Brazil
- Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- * E-mail:
| |
Collapse
|
7
|
Valdivia HO, Scholte LLS, Oliveira G, Gabaldón T, Bartholomeu DC. The Leishmania metaphylome: a comprehensive survey of Leishmania protein phylogenetic relationships. BMC Genomics 2015; 16:887. [PMID: 26518129 PMCID: PMC4628237 DOI: 10.1186/s12864-015-2091-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/15/2015] [Indexed: 11/22/2022] Open
Abstract
Background Leishmaniasis is a neglected parasitic disease with diverse clinical manifestations and a complex epidemiology. It has been shown that its parasite-related traits vary between species and that they modulate infectivity, pathogenicity, and virulence. However, understanding of the species-specific adaptations responsible for these features and their evolutionary background is limited. To improve our knowledge regarding the parasite biology and adaptation mechanisms of different Leishmania species, we conducted a proteome-wide phylogenomic analysis to gain insights into Leishmania evolution. Results The analysis of the reconstructed phylomes (totaling 45,918 phylogenies) allowed us to detect genes that are shared in pathogenic Leishmania species, such as calpain-like cysteine peptidases and 3'a2rel-related proteins, or genes that could be associated with visceral or cutaneous development. This analysis also established the phylogenetic relationship of several hypothetical proteins whose roles remain to be characterized. Our findings demonstrated that gene duplication constitutes an important evolutionary force in Leishmania, acting on protein families that mediate host-parasite interactions, such as amastins, GP63 metallopeptidases, cathepsin L-like proteases, and our methods permitted a deeper analysis of their phylogenetic relationships. Conclusions Our results highlight the importance of proteome wide phylogenetic analyses to detect adaptation and evolutionary processes in different organisms and underscore the need to characterize the role of expanded and species-specific proteins in the context of Leishmania evolution by providing a framework for the phylogenetic relationships of Leishmania proteins. Phylogenomic data are publicly available for use through PhylomeDB (http://www.phylomedb.org). Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2091-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hugo O Valdivia
- Laboratório de Imunologia e Genômica de Parasitos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Presidente Antonio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil. .,Department of Parasitology, U.S. Naval Medical Research Unit No. 6, Lima, Peru. .,Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Lima, Peru.
| | - Larissa L S Scholte
- Genomics and Computational Biology Group, Centro de Pesquisas René Rachou, Belo Horizonte, Brazil.
| | - Guilherme Oliveira
- Genomics and Computational Biology Group, Centro de Pesquisas René Rachou, Belo Horizonte, Brazil. .,Instituto Tecnológico Vale - ITV, Belém, Brazil.
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Daniella C Bartholomeu
- Laboratório de Imunologia e Genômica de Parasitos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Presidente Antonio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil. .,Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Lima, Peru.
| |
Collapse
|
8
|
Valdivia HO, Reis-Cunha JL, Rodrigues-Luiz GF, Baptista RP, Baldeviano GC, Gerbasi RV, Dobson DE, Pratlong F, Bastien P, Lescano AG, Beverley SM, Bartholomeu DC. Comparative genomic analysis of Leishmania (Viannia) peruviana and Leishmania (Viannia) braziliensis. BMC Genomics 2015; 16:715. [PMID: 26384787 PMCID: PMC4575464 DOI: 10.1186/s12864-015-1928-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/09/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The Leishmania (Viannia) braziliensis complex is responsible for most cases of New World tegumentary leishmaniasis. This complex includes two closely related species but with different geographic distribution and disease phenotypes, L. (V.) peruviana and L. (V.) braziliensis. However, the genetic basis of these differences is not well understood and the status of L. (V.) peruviana as distinct species has been questioned by some. Here we sequenced the genomes of two L. (V.) peruviana isolates (LEM1537 and PAB-4377) using Illumina high throughput sequencing and performed comparative analyses against the L. (V.) braziliensis M2904 reference genome. Comparisons were focused on the detection of Single Nucleotide Polymorphisms (SNPs), insertions and deletions (INDELs), aneuploidy and gene copy number variations. RESULTS We found 94,070 variants shared by both L. (V.) peruviana isolates (144,079 in PAB-4377 and 136,946 in LEM1537) against the L. (V.) braziliensis M2904 reference genome while only 26,853 variants separated both L. (V.) peruviana genomes. Analysis in coding sequences detected 26,750 SNPs and 1,513 indels shared by both L. (V.) peruviana isolates against L. (V.) braziliensis M2904 and revealed two L. (V.) braziliensis pseudogenes that are likely to have coding potential in L. (V.) peruviana. Chromosomal read density and allele frequency profiling showed a heterogeneous pattern of aneuploidy with an overall disomic tendency in both L. (V.) peruviana isolates, in contrast with a trisomic pattern in the L. (V.) braziliensis M2904 reference. Read depth analysis allowed us to detect more than 368 gene expansions and 14 expanded gene arrays in L. (V.) peruviana, and the likely absence of expanded amastin gene arrays. CONCLUSIONS The greater numbers of interspecific SNP/indel differences between L. (V.) peruviana and L. (V.) braziliensis and the presence of different gene and chromosome copy number variations support the classification of both organisms as closely related but distinct species. The extensive nucleotide polymorphisms and differences in gene and chromosome copy numbers in L. (V.) peruviana suggests the possibility that these may contribute to some of the unique features of its biology, including a lower pathology and lack of mucosal development.
Collapse
Affiliation(s)
- Hugo O Valdivia
- Laboratório de Imunologia e Genômica de Parasitos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. .,Department of Parasitology, U.S. Naval Medical Research Unit No. 6, Lima, Peru.
| | - João L Reis-Cunha
- Laboratório de Imunologia e Genômica de Parasitos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Gabriela F Rodrigues-Luiz
- Laboratório de Imunologia e Genômica de Parasitos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Rodrigo P Baptista
- Laboratório de Imunologia e Genômica de Parasitos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | | | - Robert V Gerbasi
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6, Lima, Peru.
| | - Deborah E Dobson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA.
| | - Francine Pratlong
- Centre Hospitalier Universitaire de Montpellier, Departement de Parasitologie-Mycologie, Centre National de Reference des Leishmanioses, Montpellier, France.
| | - Patrick Bastien
- Centre Hospitalier Universitaire de Montpellier, Departement de Parasitologie-Mycologie, Centre National de Reference des Leishmanioses, Montpellier, France.
| | - Andrés G Lescano
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6, Lima, Peru. .,Universidad Peruana Cayetano Heredia, School of Public Health and Management, Lima, Peru.
| | - Stephen M Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA.
| | - Daniella C Bartholomeu
- Laboratório de Imunologia e Genômica de Parasitos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
9
|
Abstract
The post-genomics era has provided researchers with access to a new generation of tools for the global characterization and understanding of pathogen diversity. This review provides a critical summary of published Leishmania post-genomic research efforts to date, and discusses the potential impact of the addition of metabolomics to the post-genomic toolbox. Metabolomics aims at understanding biology by comprehensive metabolite profiling. We present an overview of the design and interpretation of metabolomics experiments in the context of Leishmania research. Sample preparation, measurement techniques, and bioinformatics analysis of the generated complex datasets are discussed in detail. To illustrate the concepts and the expected results of metabolomics analyses, we also present an overview of comparative metabolic profiles of drug-sensitive and drug-resistant Leishmania donovani clinical isolates.
Collapse
|
10
|
Lewis MD, Llewellyn MS, Gaunt MW, Yeo M, Carrasco HJ, Miles MA. Flow cytometric analysis and microsatellite genotyping reveal extensive DNA content variation in Trypanosoma cruzi populations and expose contrasts between natural and experimental hybrids. Int J Parasitol 2009; 39:1305-17. [PMID: 19393242 PMCID: PMC2731025 DOI: 10.1016/j.ijpara.2009.04.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 04/03/2009] [Accepted: 04/06/2009] [Indexed: 12/05/2022]
Abstract
Trypanosoma cruzi exhibits remarkable genetic heterogeneity. This is evident at the nucleotide level but also structurally, in the form of karyotypic variation and DNA content differences between strains. Although natural populations of T. cruzi are predominantly clonal, hybrid lineages (TcIId and TcIIe) have been identified and hybridisation has been demonstrated in vitro, raising the possibility that genetic exchange may continue to shape the evolution of this pathogen. The mechanism of genetic exchange identified in the laboratory is unusual, apparently involving fusion of diploid parents followed by genome erosion. We investigated DNA content diversity in natural populations of T. cruzi in the context of its genetic subdivisions by using flow cytometric analysis and multilocus microsatellite genotyping to determine the relative DNA content and estimate the ploidy of 54 cloned isolates. The maximum difference observed was 47.5% between strain Tu18 cl2 (TcIIb) and strain C8 cl1 (TcI), which we estimated to be equivalent to ∼73 Mb of DNA. Large DNA content differences were identified within and between discrete typing units (DTUs). In particular, the mean DNA content of TcI strains was significantly less than that for TcII strains (P < 0.001). Comparisons of hybrid DTUs TcIId/IIe with corresponding parental DTUs TcIIb/IIc indicated that natural hybrids are predominantly diploid. We also measured the relative DNA content of six in vitro-generated TcI hybrid clones and their parents. In contrast to TcIId/IIe hybrid strains these experimental hybrids comprised populations of sub-tetraploid organisms with mean DNA contents 1.65–1.72 times higher than the parental organisms. The DNA contents of both parents and hybrids were shown to be relatively stable after passage through a mammalian host, heat shock or nutritional stress. The results are discussed in the context of hybridisation mechanisms in both natural and in vitro settings.
Collapse
|
11
|
Dujardin JC. Structure, dynamics and function of Leishmania genome: Resolving the puzzle of infection, genetics and evolution? INFECTION GENETICS AND EVOLUTION 2009; 9:290-7. [DOI: 10.1016/j.meegid.2008.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 11/25/2008] [Accepted: 11/25/2008] [Indexed: 01/23/2023]
|
12
|
Evaluation of an in vitro and in vivo model for experimental infection with Leishmania (Viannia) braziliensis and L. (V.) peruviana. Parasitology 2007; 135:319-26. [DOI: 10.1017/s0031182007003848] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYLeishmania (Viannia) braziliensis and L. (V.) peruviana are two parasite species characterized by a very different pathogenicity in humans despite a high genetic similarity. We hypothesized previously that L. (V.) peruviana would descend from L. (V.) braziliensis and would have acquired its ‘peruviana’ character during the southward colonization and adaptation of the transmission cycle in the Peruvian Andes. In order to have a first appreciation of the differences in virulence between both species, we evaluated an in vitro and in vivo model for experimental infection. A procedure was adapted to enrich culture forms in infective stages and the purified metacyclics were used to infect macrophage cell lines and golden hamsters. The models were tested with 2 representative strains of L. (V.) braziliensis from cutaneous and mucosal origin respectively and 2 representative strains of L. (V.) peruviana from Northern and Southern Peru respectively. Our models were reproducible and sensitive enough to detect phenotypic differences among strains. We showed in vitro as well as in vivo that the L. (V.) braziliensis was more infective than L. (V.) peruviana. Furthermore, we found that in vitro infectivity patterns of the 4 strains analysed, were in agreement with the geographical structuring of parasite populations demonstrated in our previous studies. Further work is needed to confirm our results with more strains of different geographical origin and their specific clinical outcome. However, our data open new perspectives for understanding the process of speciation in Leishmania and its implications in terms of pathogenicity.
Collapse
|
13
|
Reithinger R, Dujardin JC, Louzir H, Pirmez C, Alexander B, Brooker S. Cutaneous leishmaniasis. THE LANCET. INFECTIOUS DISEASES 2007; 7:581-96. [PMID: 17714672 DOI: 10.1016/s1473-3099(07)70209-8] [Citation(s) in RCA: 918] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cutaneous leishmaniasis is endemic in the tropics and neotropics. It is often referred to as a group of diseases because of the varied spectrum of clinical manifestations, which range from small cutaneous nodules to gross mucosal tissue destruction. Cutaneous leishmaniasis can be caused by several Leishmania spp and is transmitted to human beings and animals by sandflies. Despite its increasing worldwide incidence, but because it is rarely fatal, cutaneous leishmaniasis has become one of the so-called neglected diseases, with little interest by financial donors, public-health authorities, and professionals to implement activities to research, prevent, or control the disease. In endemic countries, diagnosis is often made clinically and, if possible, by microscopic examination of lesion biopsy smears to visually confirm leishmania parasites as the cause. The use of more sophisticated diagnostic techniques that allow for species identification is usually restricted to research or clinical settings in non-endemic countries. The mainstays of cutaneous leishmaniasis treatment are pentavalent antimonials, with new oral and topical treatment alternatives only becoming available within the past few years; a vaccine currently does not exist. Disease prevention and control are difficult because of the complexity of cutaneous leishmaniasis epizoology, and the few options available for effective vector control.
Collapse
|
14
|
Bañuls AL, Hide M, Prugnolle F. Leishmania and the leishmaniases: a parasite genetic update and advances in taxonomy, epidemiology and pathogenicity in humans. ADVANCES IN PARASITOLOGY 2007; 64:1-109. [PMID: 17499100 DOI: 10.1016/s0065-308x(06)64001-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Leishmaniases remain a major public health problem today despite the vast amount of research conducted on Leishmania pathogens. The biological model is genetically and ecologically complex. This paper explores the advances in Leishmania genetics and reviews population structure, taxonomy, epidemiology and pathogenicity. Current knowledge of Leishmania genetics is placed in the context of natural populations. Various studies have described a clonal structure for Leishmania but recombination, pseudo-recombination and other genetic processes have also been reported. The impact of these different models on epidemiology and the medical aspects of leishmaniases is considered from an evolutionary point of view. The role of these parasites in the expression of pathogenicity in humans is also explored. It is important to ascertain whether genetic variability of the parasites is related to the different clinical expressions of leishmaniasis. The review aims to put current knowledge of Leishmania and the leishmaniases in perspective and to underline priority questions which 'leishmaniacs' must answer in various domains: epidemiology, population genetics, taxonomy and pathogenicity. It concludes by presenting a number of feasible ways of responding to these questions.
Collapse
Affiliation(s)
- Anne-Laure Bañuls
- Institut de Recherche pour le Développement, UMR CNRS/IRD 2724, Génétique et Evolution des Maladies Infectieuses, IRD Montpellier, 911 avenue Agropolis, 34394 Montpellier cedex 5, France
| | | | | |
Collapse
|
15
|
Smith DF, Peacock CS, Cruz AK. Comparative genomics: from genotype to disease phenotype in the leishmaniases. Int J Parasitol 2007; 37:1173-86. [PMID: 17645880 PMCID: PMC2696322 DOI: 10.1016/j.ijpara.2007.05.015] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 05/18/2007] [Accepted: 05/21/2007] [Indexed: 11/29/2022]
Abstract
Recent progress in sequencing the genomes of several Leishmania species, causative agents of cutaneous, mucocutaneous and visceral leishmaniasis, is revealing unusual features of potential relevance to parasite virulence and pathogenesis in the host. While the genomes of Leishmania major, Leishmania braziliensis and Leishmania infantum are highly similar in content and organisation, species-specific genes and mechanisms distinguish one from another. In particular, the presence of retrotransposons and the components of a putative RNA interference machinery in L. braziliensis suggest the potential for both greater diversity and more tractable experimentation in this Leishmania Viannia species.
Collapse
Affiliation(s)
- Deborah F Smith
- Immunology and Infection Unit, Department of Biology/Hull York Medical School, University of York, Heslington, York YO10 5YW, UK.
| | | | | |
Collapse
|
16
|
Dujardin JC, De Doncker S, Jacquet D, Bañuls AL, Balavoine M, Van Bockstaele D, Tibayrenc M, Arevalo J, Le Ray D. Clonal propagation and the fast generation of karyotype diversity: An in vitro Leishmania model. Parasitology 2006; 134:33-9. [PMID: 16978449 DOI: 10.1017/s0031182006001156] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 06/26/2006] [Accepted: 06/26/2006] [Indexed: 11/07/2022]
Abstract
In the present work we studied the karyotype stability during long-term in vitro maintenance in 3 cloned strains of Leishmania (Viannia) peruviana, Leishmania (Viannia) braziliensis and a hybrid between both species. Only the L. (V.) peruviana strain showed an unstable karyotype, even after subcloning. Four chromosomes were studied in detail, each of them characterized by homologous chromosomes of different size (heteromorphy). Variations in chromosome patterns during in vitro maintenance were rapid and discrete, involving loss of heteromorphy or appearance of additional chromosome size variants. The resulting pattern was not the same according to experimental conditions (subinoculation rate or incubation temperature), and interestingly, this was associated with differences in growth behaviour of the respective parasites. No change in total ploidy of the cells was observed by flow cytometry. We discuss several mechanisms that might account for this variation of chromosome patterns, but we favour the occurrence of aneuploidy, caused by aberrant chromosome segregation during mitosis. Our results provide insight into the generation of karyotype diversity in natural conditions and highlight the relativity of the clone concept in parasitology.
Collapse
Affiliation(s)
- J-C Dujardin
- Unit of Molecular Parasitology, Instituut voor Tropische Geneeskunde, 155 Nationalestraat, B-2000 Antwerpen, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tran T, Claes F, Dujardin JC, Buscher P. The invariant surface glycoprotein ISG75 gene family consists of two main groups in the Trypanozoon subgenus. Parasitology 2006; 133:613-21. [PMID: 16948872 DOI: 10.1017/s0031182006000953] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 06/06/2006] [Accepted: 06/08/2006] [Indexed: 11/05/2022]
Abstract
In Trypanosoma brucei brucei, an invariant surface glycoprotein of molecular weight 75 kDa (ISG75) is uniformly distributed over the surface of a trypanosome and is specific for bloodstream-form parasites. For the other taxa of the Trypanozoon subgenus no data about this surface molecule are available. Therefore, we investigated the ISG75 in the genomes of several pathogenic Trypanozoon by Southern blot, PCR and RT-PCR and sequence analysis. This study reveals that (i) all members of the Trypanozoon subgenus, i.e. T. b. brucei, T. b. gambiense, T. b. rhodesiense, T. evansi and T. equiperdum, harbour ISG75 as multiple gene copies with at least 4-16 copies per genome; (ii) ISG75 gDNA and cDNA sequences are distributed in 2 groups that share at least 75% and 77% identity respectively; (iii) sequences from both groups are transcribed in all species and subspecies of the Trypanozoon subgenus; (iv) the main differences between group I and group II are located in the variable region at the amino-terminus of the putative proteins; (v) however, all the sequences in both groups have some well-conserved features, such as the cysteine residues, an amino-terminal cleavable signal peptide, a single alpha-helix transmembrane domain and a cytoplasmic domain at the carboxy-terminus.
Collapse
Affiliation(s)
- T Tran
- Institute of Tropical Medicine, Department of Parasitology, Nationalestraat 155, B-2000 Antwerp, Belgium.
| | | | | | | |
Collapse
|
18
|
McKerrow JH, Caffrey C, Kelly B, Loke P, Sajid M. PROTEASES IN PARASITIC DISEASES. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2006; 1:497-536. [PMID: 18039124 DOI: 10.1146/annurev.pathol.1.110304.100151] [Citation(s) in RCA: 283] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- James H. McKerrow
- Department of Pathology and the Sandler Center, University of California, San Francisco, San Francisco, California 94143; , , ,
| | - Conor Caffrey
- Department of Pathology and the Sandler Center, University of California, San Francisco, San Francisco, California 94143; , , ,
| | - Ben Kelly
- Department of Pathology and the Sandler Center, University of California, San Francisco, San Francisco, California 94143; , , ,
| | - P'ng Loke
- Department of Pathology and the Sandler Center, University of California, San Francisco, San Francisco, California 94143; , , ,
| | - Mohammed Sajid
- Department of Pathology and the Sandler Center, University of California, San Francisco, San Francisco, California 94143; , , ,
| |
Collapse
|
19
|
Rodriguez NM, De Guglielmo Z, Barrios MA, Barrios RM, Zerpa O, Feliciangeli MD. Genetic homogeneity within Leishmania (L.) infantum isolated from human and dogs: the relationship with the sandfly fauna distribution in endemic areas of Nueva Esparta State, Venezuela. Parasitology 2005; 130:611-9. [PMID: 15977897 DOI: 10.1017/s0031182004007085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Leishmania infantum has been described as a highly polymorphic group of parasites, responsible for visceral leishmaniasis and cutaneous leishmaniasis. In this paper we report the life-cycle of L. (L.) infantum in an endemic area of visceral leishmaniasis in Venezuela, by using molecular diagnosis and characterization of parasites isolated from dogs, humans with visceral leishmaniasis and sand flies. The molecular characterization was carried out by use of kDNA restriction analysis, dot-blot hybridization with species-specific probes and RFLP of the PCR products. The results demonstrated that L. (L.) infantum is the parasite responsible for VL in the island. The parasites were revealed to be genetically homogeneous with no intra-specific differences between isolates from different individuals. The highest homology of the isolates was with L. (L.) infantum from the Old World rather than with L. (L.) chagasi from the New World. Additionally, we report the geographical distribution of Lutzomyia longipalpis, and the relationship with the transmission of L. (L.) infantum in the studied area.
Collapse
Affiliation(s)
- N M Rodriguez
- Genetic Engineering Laboratory, Institute of Biomedicine, Faculty of Medicine, Universidad Central de Venezuela, San Nicolas a Providencia, San José, Apdo 4043, Caracas 1010 A, Venezuela.
| | | | | | | | | | | |
Collapse
|
20
|
Cuevas IC, Cazzulo JJ, Sánchez DO. gp63 homologues in Trypanosoma cruzi: surface antigens with metalloprotease activity and a possible role in host cell infection. Infect Immun 2003; 71:5739-49. [PMID: 14500495 PMCID: PMC201075 DOI: 10.1128/iai.71.10.5739-5749.2003] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
gp63 is a highly abundant glycosylphosphatidylinositol (GPI)-anchored membrane protein expressed predominantly in the promastigote but also in the amastigote stage of Leishmania species. In Leishmania spp., gp63 has been implicated in a number of steps in establishment of infection. Here we demonstrate that Trypanosoma cruzi, the etiological agent of Chagas' disease, has a family of gp63 genes composed of multiple groups. Two of these groups, Tcgp63-I and -II, are present as high-copy-number genes. The genomic organization and mRNA expression pattern were specific for each group. Tcgp63-I was widely expressed, while the Tcgp63-II group was scarcely detected in Northern blots, even though it is well represented in the T. cruzi genome. Western blots using sera directed against a synthetic peptide indicated that the Tcgp63-I group produced proteins of approximately 78 kDa, differentially expressed during the life cycle. Immunofluorescence staining and phosphatidylinositol-specific phospholipase C digestion confirmed that Tcgp63-I group members are surface proteins bound to the membrane by a GPI anchor. We also demonstrate the presence of metalloprotease activity which is attributable, at least in part, to Tcgp63-I group. Since antibodies against Tcgp63-I partially blocked infection of Vero cells by trypomastigotes, a possible role for this group in infection is suggested.
Collapse
Affiliation(s)
- Ileana C Cuevas
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Universidad Nacional de General San Martín, 1650 San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas, San Martín, Provincia de Buenos Aires, Argentina
| | | | | |
Collapse
|
21
|
Victoir K, De Doncker S, Cabrera L, Alvarez E, Arevalo J, Llanos-Cuentas A, Le Ray D, Dujardin JC. Direct identification of Leishmania species in biopsies from patients with American tegumentary leishmaniasis. Trans R Soc Trop Med Hyg 2003; 97:80-7. [PMID: 12886810 DOI: 10.1016/s0035-9203(03)90031-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Accurate identification of Leishmania species is important for monitoring clinical outcome, adequately targeting treatment, and evaluation of epidemiological risk in tegumentary leishmaniasis. This is especially the case in regions where several species coexist and for travel medicine where the geographical source of infection is not always obvious. Species identification presently depends on parasite isolation, which is not very sensitive and not necessarily representative of parasites actually present in human tissues. We evaluated a polymerase chain reaction (PCR) assay combining amplification of the gp63 genes and restriction fragment length polymorphism (RFLP) analysis (gp63 PCR-RFLP) for direct Leishmania species-identification in tissues collected from Peruvian patients in 1999. By comparison with a kinetoplast DNA-based PCR, our PCR assay showed a detection sensitivity of 85%. Three species were encountered among patient samples, Leishmania (Viannia) braziliensis, L. (V.) peruviana and L. (V.) guyanensis, and their frequency and geographical distribution corresponded to earlier epidemiological studies of leishmaniasis in Peru. However, unexpected results raised questions about (i) the contribution of human migration to the emergence of new foci of given species, (ii) the pathogenicity of some species, and (iii) the frequency of mixed or hybrid infections.
Collapse
Affiliation(s)
- Kathleen Victoir
- Prins Leopold Instituut voor Tropische Geneeskunde, Nationalestraat 155, B-2000 Antwerpen, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Dujardin JC, Victoir K, De Doncker S, Guerbouj S, Arévalo J, Le Ray D. Molecular epidemiology and diagnosis of Leishmania: what have we learnt from genome structure, dynamics and function? Trans R Soc Trop Med Hyg 2002; 96 Suppl 1:S81-6. [PMID: 12055856 DOI: 10.1016/s0035-9203(02)90056-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This paper reviews our exploration of the dynamics of the Leishmania genome and its contribution to epidemiology and diagnosis. We used as a model Peruvian populations of L. (Viannia) braziliensis and L. (V.) peruviana, 2 species very close phylogenetically, but phenotypically very different in biotope and pathology. We initially focused on karyotype analysis. Our data showed that chromosomes were subject to a fast rate of evolution, and were sensitive indicators of genetic drift. Therefore, molecular karyotyping appeared an adequate tool for monitoring (i) emergence of close species, (ii) ecogeographical differentiation at the intraspecific level, and (iii) strain 'fingerprinting'. Chromosome size variation was mostly due to the number of tandemly repeated genes (rDNA, mini-exon, gp63, and cysteine proteinase genes), and could involve the deletion of unique genes (L. (V.) braziliensis-specific gp63 families). Considering the importance of these genes in parasitism, their rearrangement might have functional implications: adaptation to different environments and pleomorphic pathogenicity. Our knowledge of genome structure and dynamics was used to develop new polymerase chain reaction (PCR) techniques. Amplification of gp63 genes followed by cleavage with restriction enzymes and study of restriction fragment length polymorphism (gp63 PCR-RFLP) allowed the discrimination of all species tested, even directly in biopsies with 95% sensitivity (compared with PCR amplification of kinetoplast deoxyribonucleic acid). At the intra-specific level, RFLP was also observed and corresponded to mutations in major immunogen domains of gp63. These seem to be under strong selection pressure, and the technique should facilitate addressing how the host's immune pressure may modulate parasite population structure. Altogether, gp63 PCR-RFLP represents a significant operational improvement over the other techniques for molecular epidemiology and diagnosis: it combines sensitivity, discriminatory power and prognostic value.
Collapse
Affiliation(s)
- J C Dujardin
- Prins Leopold Instituut voor Tropische Geneeskunde, Protozoologie, 155 Nationalestraat, B-2000 Antwerpen, Belgium.
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Eukaryotes use sexual recombination to achieve innovation and adaptation to a changing environment, a mechanism that is exceptional in Leishmania. It is postulated that asexual mechanisms contribute efficiently to parasite fitness and that sexual recombination would not be necessary for the production of a large repertoire of genotypes. The model discussed in this review used a major Leishmania glycoprotein, gp63, which is involved in host-parasite relationships. Mitotic recombination, which occurs between and within tandem repeats, amplifies genes and generates genotypic diversity. The resulting variation in the protein sequence is concentrated in surface domains, in regions spanning T-cell epitopes and B-cell epitopes and might allow immune escape.
Collapse
Affiliation(s)
- Kathleen Victoir
- Dept of Parasitology, Prins Leopold Instituut voor Tropische Geneeskunde, 155 Nationalestraat, B-2000, Antwerpen, Belgium
| | | |
Collapse
|
24
|
Guerbouj S, Guizani I, Speybroeck N, Le Ray D, Dujardin JC. Genomic polymorphism of Leishmania infantum: a relationship with clinical pleomorphism? INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2001; 1:49-59. [PMID: 12798050 DOI: 10.1016/s1567-1348(01)00008-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Leishmania infantum is the etiological agent of visceral (VL) and a cutaneous form (CL) of leishmaniasis around the Mediterranean Basin. In order to document the parasite genetic background corresponding to this clinical diversity, chromosome size polymorphism was analysed in 32 French isolates (18 CL and 14 VL) originating from the Cévennes and the Pyrénées Orientales (PO), and corresponding to zymodemes MON-1 and MON-29. Five chromosomes bearing tandemly repeated genes encoding for important antigens (gp63, PSA-2 and K39) or key metabolic functions (mini-exon and rDNA) were studied. Significant size variation (100-270 kbp) was observed for chromosomes bearing mini-exon, PSA-2 and rDNA genes, which involved variation in copy number of corresponding genes. The two other chromosomes showed smaller size-variation and did not involve dosage of gp63 and K39 genes. Chromosomal size showed correlation with geography and clinical origin: (i) chromosome 2 (mini-exon) was found to be significantly smaller in the PO; (ii) chromosomes 12 (PSA-2) and 27 (rDNA) were significantly smaller in the strictly cutaneous MON-29 isolates. Gene rearrangements and their synergistic effects on the phenotypic expression of the parasite are discussed.
Collapse
Affiliation(s)
- S Guerbouj
- Laboratoire d' Epidémiologie et Ecologie Parasitaire, Institut Pasteur de Tunis, 13 Place Pasteur BP74, 1002 Tunis, Belvédère, Tunisia
| | | | | | | | | |
Collapse
|
25
|
Dujardin JC, Henriksson J, Victoir K, Brisse S, Gamboa D, Arevalo J, Le Ray D. Genomic rearrangements in trypanosomatids: an alternative to the "one gene" evolutionary hypotheses? Mem Inst Oswaldo Cruz 2000; 95:527-34. [PMID: 10904411 DOI: 10.1590/s0074-02762000000400015] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Most molecular trees of trypanosomatids are based on point mutations within DNA sequences. In contrast, there are very few evolutionary studies considering DNA (re) arrangement as genetic characters. Waiting for the completion of the various parasite genome projects, first information may already be obtained from chromosome size-polymorphism, using the appropriate algorithms for data processing. Three illustrative models are presented here. First, the case of Leishmania (Viannia) braziliensis/L. (V.) peruviana is described. Thanks to a fast evolution rate (due essentially to amplification/deletion of tandemly repeated genes), molecular karyotyping seems particularly appropriate for studying recent evolutionary divergence, including eco-geographical diversification. Secondly, karyotype evolution is considered at the level of whole genus Leishmania. Despite the fast chromosome evolution rate, there is qualitative congruence with MLEE- and RAPD-based evolutionary hypotheses. Significant differences may be observed between major lineages, likely corresponding to major and less frequent rearrangements (fusion/fission, translocation). Thirdly, comparison is made with Trypanosoma cruzi. Again congruence is observed with other hypotheses and major lineages are delineated by significant chromosome rearrangements. The level of karyotype polymorphism within that "species" is similar to the one observed in "genus" Leishmania. The relativity of the species concept among these two groups of parasites is discussed.
Collapse
Affiliation(s)
- J C Dujardin
- Prins Leopold Instituut voor Tropische Geneeskunde, Belgium.
| | | | | | | | | | | | | |
Collapse
|
26
|
Bañuls AL, Dujardin JC, Guerrini F, De Doncker S, Jacquet D, Arevalo J, Noël S, Le Ray D, Tibayrenc M. Is Leishmania (Viannia) peruviana a distinct species? A MLEE/RAPD evolutionary genetics answer. J Eukaryot Microbiol 2000; 47:197-207. [PMID: 10847336 DOI: 10.1111/j.1550-7408.2000.tb00039.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A set of 38 Leishmania stocks from the Andean valleys of Peru was characterized by both Multilocus Enzyme Electrophoresis (MLEE) and Random Amplified Polymorphic DNA (RAPD). Data were analyzed in terms of taxonomy and evolutionary genetics. Synapomorphic MLEE and RAPD characters, clear-cut clustering, and strong agreement between the phylogenies inferred from either MLEE or RAPD supported the view that Leishmania (Viannia) peruviana and Leishmania (Viannia) braziliensis correspond to two closely related, but distinct monophyletic lines (clades) and can therefore be considered as "discrete typing units" (DTUs). The question whether the L. (V.) peruxviana DTU deserves species status is dependent upon the desirability of it, in terms of epidemiological and medical relevance. A previous Orthogonal Field Alternating Gel Electrophoresis (OFAGE) analysis of the same L. (V.) peruviana isolates was published by Dujardin et al. (1995b). The data from the different markers (i.e. MLEE, RAPD and OFAGE) were compared by population genetics analysis. RAPD and OFAGE provided divergent results, since RAPD showed a strong linkage disequilibrium whereas OFAGE revealed no apparent departure from panmictic expectation. MLEE showed no linkage disequilibrium. Nevertheless, contrary to OFAGE, this is most probably explainable by the limited variability revealed by this marker in L. (V.) peruviana (statistical type II error). RAPD data were consistent with the hypothesis that the present L. (V.) peruviana sample displays a basically clonal population structure with limited or no genetic exchange. Disagreement between RAPD and OFAGE can be explained either by accumulation of chromosomal rearrangements due to amplification/deletion of repeated sequences, or by pseudo-recombinational events.
Collapse
Affiliation(s)
- A L Bañuls
- Centre d'Etudes sur le Polymorphisme des Microorganismes (CEPM), Unité Mixte de Recherche Centre Nationale de la Recherche Scientifique (CNRS)/Institut de Recherche pour le Developpement (IRD), Montpellier, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kebede A, De Doncker S, Arevalo J, Le Ray D, Dujardin JC. Size-polymorphism of mini-exon gene-bearing chromosomes among natural populations of Leishmania, subgenus Viannia. Int J Parasitol 1999; 29:549-57. [PMID: 10428631 DOI: 10.1016/s0020-7519(99)00010-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In order to explore genomic plasticity at the level of the mini-exon gene-bearing chromosome in natural populations of Leishmania, the molecular karyotype of 84 Leishmania stocks belonging to subgenus Viannia, originating mostly from Peru and Bolivia, and differing according to eco-geographical and clinical parameters, was resolved and hybridised with a mini-exon probe. The results suggest that size variation of the mini-exon gene-bearing chromosome is frequent and important (up to 245-kb size-difference), and partially involves variation (up to 50%) in copy number of mini-exon genes. There is no significant size-difference between mini-exon-bearing chromosomes of Peruvian and Bolivian populations of cutaneous and mucosal isolates of Leishmania (Viannia) braziliensis, but there is between eco-geographical populations of Leishmania (Viannia) peruviana. Leishmania (V.) peruviana presented a significantly smaller mini-exon-bearing chromosome than the other species of subgenus Viannia. The contrast between the general chromosome size heterogeneity and the homogeneity observed in some Peruvian Andean areas is discussed in terms of selective pressure.
Collapse
Affiliation(s)
- A Kebede
- Laboratory of Protozoology, Institute of Tropical Medicine Prince Leopold, Antwerp, Belgium
| | | | | | | | | |
Collapse
|
28
|
Torrico MC, De Doncker S, Arevalo J, Le Ray D, Dujardin JC. In vitro promastigote fitness of putative Leishmania (Viannia) braziliensis/Leishmania (Viannia) peruviana hybrids. Acta Trop 1999; 72:99-110. [PMID: 9924965 DOI: 10.1016/s0001-706x(98)00076-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In order to initiate studies on the phenotypic properties of hybrids vs. their putative parents, the in vitro growth behaviour of promastigotes was compared for 15 stocks characterised as Leishmania (Viannia) braziliensis, Leishmania (Viannia) peruviana and putative hybrids (isolated from the Eastern Andean valley of Huanuco, Peru). Five sets of three stocks, each set including a L.(V.)braziliensis, a L.(V.)peruviana and a putative hybrid, were constituted randomly and counted daily close to isolation from man (ten to 18 subcultures). Hybrids and L.(V.)peruviana presented similar growth characteristics, and they displayed a growth capacity (growth rate and cell density at stationary phase) significantly lower than the one of L.(V.)braziliensis. Following prolonged in vitro maintenance of one of the sets, the hybrid kept its lower growth capacity. The contrast between the difficulty to grow in vitro these putative hybrids, and their high isolation rate from natural populations is discussed.
Collapse
Affiliation(s)
- M C Torrico
- Laboratory of Protozoology, Institute of Tropical Medicine Prince Leopold, Antwerpen, Belgium
| | | | | | | | | |
Collapse
|
29
|
Schlagenhauf E, Etges R, Metcalf P. The crystal structure of the Leishmania major surface proteinase leishmanolysin (gp63). Structure 1998; 6:1035-46. [PMID: 9739094 DOI: 10.1016/s0969-2126(98)00104-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Despite their medical importance, there is little available structural information for the surface antigens of infectious protozoa. Diseases caused by the protozoan parasite Leishmania are common in many developing countries. Human infection occurs during the bite of infected sandfilies, when Leishmania promastigote cells from the insect gut enter the bloodstream. Promastigotes in the blood parasitize macrophages, often causing serious disease. Leishmanolysin is the predominant protein surface antigen of promastigotes, and is assumed to have a key role during infection. Leishmanolysin is a membrane-bound zinc proteinase, active in situ. Similar molecules exist in other trypanomastid protozoa. RESULTS Two crystal forms of leishmanolysin were obtained from protein purified from promastigote membranes. A single lead derivative in both crystal forms was used to solve the structure. The structure reveals three domains, two of which have novel folds. The N-terminal domain has a similar structure to the catalytic modules of zinc proteinases. The structure clearly shows that leishmanolysin is a member of the metzincin class of zinc proteinases. CONCLUSIONS The unexpected metzincin features of the leishmanolysin structure suggest that the metzincin fold may be more widespread than indicated by sequence homologies amongst existing metzincin zinc proteinases. The similarity of the active-site structure to previously well characterized metzincin class zinc proteinases should aid the development of specific inhibitors. These inhibitors might be used to determine the function of leishmanolysin in the insect and during mammalian infection, and may aid the development of drugs for human leishmaniasis.
Collapse
Affiliation(s)
- E Schlagenhauf
- EMBL Heidelberg, Biological Structures and Biocomputing Programme, Germany
| | | | | |
Collapse
|
30
|
Inga R, De Doncker S, Gomez J, Lopez M, Garcia R, Le Ray D, Arevalo J, Dujardin JC. Relation between variation in copy number of ribosomal RNA encoding genes and size of harbouring chromosomes in Leishmania of subgenus Viannia. Mol Biochem Parasitol 1998; 92:219-28. [PMID: 9657327 DOI: 10.1016/s0166-6851(98)00009-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chromosomal size polymorphism in Leishmania of subgenus Viannia has been correlated with eco-geography. The sizes of chromosomes bearing rDNA genes were determined in 69 isolates. A considerable size-variation was observed, ranging from 1100 to 1500 kb. Chromosomes of L.(V.). braziliensis, L.(V.)guyanensis and L.(V.) peruviana from northern Peru were significantly larger (200 kb) than those of L.(V.) peruviana from southern Peru. In addition, 31 out of 69 isolates presented each two different-sized homologues of the rDNA chromosome. Long range restriction mapping of three different-sized rDNA chromosomes from L.(V.)braziliensis M2903 and L.(V.)peruviana HB31 (north) and LC106 (south) each revealed three fragments delimited by PmeI restriction sites: two constant in size (the centre and one extremity of the chromosome) and one variable (the other extremity, containing a single cluster of rDNA genes). Further analysis of the M2903 rDNA chromosome allowed the localization of its 140 kb rDNA cluster at 85 kb from the telomeric end. Two arguments indicated that size-variation of the rDNA chromosome is partially due to amplification/deletion of the clustered rDNA genes: (i) size-variation of the cluster-containing fragment was proportional to the size-variation of the whole chromosome, and (ii) hybridization signal intensity of the rDNA chromosome with a small subunit rDNA probe strongly correlated with chromosomal size. Nevertheless, DNA sequences present between the rDNA cluster and the telomere might also play a role in chromosomal size polymorphism. In addition, our data suggest that rDNA gene copy number (20-40 copies cell(-1) under a diploid hypothesis) in subgenus Viannia is lower than reported previously.
Collapse
Affiliation(s)
- R Inga
- Department of Physiological Sciences and Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | | | | | | | | | | | |
Collapse
|