1
|
Rubenina I, Gavarane I, Kirilova E, Mezaraupe L, Kirjusina M. Comparison of the Benzanthrone Luminophores: They Are Not Equal for Rapid Examination of Parafasciolopsis fasciolaemorpha (Trematoda: Digenea). Biomolecules 2021; 11:biom11040598. [PMID: 33919651 PMCID: PMC8073186 DOI: 10.3390/biom11040598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 11/30/2022] Open
Abstract
Luminescent derivatives of benzanthrone are becoming more useful based on their light-absorbing and fluorescent-emitting properties. Our previous studies showed that luminescent staining properties of the same benzanthrone dye differ for variable parasite samples. Therefore, two types of benzanthrone dyes were prepared. One has a strongly basic amidine group and a halogen atom, and the other has an amide moiety and a tertiary amine group. Trematoda Parafasciolopsis fasciolaemorpha is a liver fluke of a moose (Alces alces) and has a significant influence on the health and abundance of the moose population. Staining protocols for parasite P. fasciolaemorpha specific organ or organ systems imaging are mostly time-consuming and labor-intensive. The study aimed to compare the fixation technique and the staining protocol by synthesized benzanthrone luminescent dyes to determine detailed morphology, anatomical arrangement of the organ systems and gross organization of the muscle layers of P. fasciolaemorpha using confocal laser scanning microscopy. Luminophores were tested for samples fixed in different fixatives. Developed dyes and staining protocol resulting in imaging of all parts of trematode without additional sample preparation procedures, which usually are required for parasite examination. Obtained results confirmed that the most qualitative results could be reached using 3-N-(2-piperidinylacetamido)benzanthrone dye which has amide moiety and a tertiary amine group. Based on obtained results, 3-N-(2-piperidinylacetamido)benzanthrone gave more qualitative parasite visualization than 2-bromo-3-N-(N′,N′-dimethylformamidino)benzanthrone.
Collapse
|
2
|
Xu J, Wu L, Sun Y, Wei Y, Zheng L, Zhang J, Pang Z, Yang Y, Lu Y. Proteomics and bioinformatics analysis of Fasciola hepatica somatic proteome in different growth phases. Parasitol Res 2020; 119:2837-2850. [PMID: 32757109 PMCID: PMC7403185 DOI: 10.1007/s00436-020-06833-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/26/2020] [Indexed: 11/30/2022]
Abstract
Fasciola hepatica (F. hepatica) is a well-known zoonotic parasite that is crucial for economic and public health worldwide. Quantitative proteomics studies have been performed on proteins expressed by F. hepatica to investigate the differential expression of proteomes in different growth phases. And the screening of several marker proteins for use as early diagnostic antigens is essential. In this study, high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) was conducted to analyze the differences in the expression of F. hepatica somatic proteins in different growth phases. Furthermore, gene ontology (GO) functional annotation, KEGG metabolic pathway, and clustering analyses were also performed. LC-MS/MS identified 629, 2286, 2254, and 2192 proteins in metacercariae, juvenile flukes 28dpi, immature flukes 59dpi, and adult phases, respectively. GO analysis revealed that differentially expressed proteins (DEPs) were mainly involved in transport, localization, metabolism, enzyme regulation, protein folding and binding, and nucleoside and nucleotide binding. The DEPs were enriched in cells, intracellular components, organelles, cytoplasm, vesicles, and membranes. KEGG pathway annotation results showed that the DEPs were involved in metabolism, genetic information processing, environmental information processing, cellular processes, organismal systems, and other processes. These findings provide a theoretical basis for vaccine development and establishing early diagnostic methods in the future.
Collapse
Affiliation(s)
- Jingyun Xu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China
| | - Lijia Wu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China
| | - Yichun Sun
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China
| | - Yating Wei
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China
| | - Lushan Zheng
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China
| | - Jinpeng Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China
| | - Zixuan Pang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China
| | - Ying Yang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China
| | - Yixin Lu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China.
| |
Collapse
|
3
|
Eurytrema coelomaticum: updated morphology of adult worms using advanced microscopy experiments. J Helminthol 2020; 94:e122. [PMID: 31964430 DOI: 10.1017/s0022149x19001135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Eurytrema coelomaticum is a digenean flatworm of ruminants that is the causative agent of eurytrematosis, a disease of veterinary health concern. Although modern techniques of morphological analysis have provided new insights about the morphology and anatomy of parasitic helminths, most studies on E. coelomaticum adults are based on conventional light microscopy. In the present study, a combined approach using brightfield, fluorescence, confocal and scanning electron microscopies (SEMs), together with the cryofracture technique, have updated morphological data on E. coelomaticum recovered from cattle in Rio de Janeiro State, Brazil. Light microscopy confirmed the presence of several structures present in the current description, such as suckers, pharynx, oesophagus, intestinal bifurcation and the cirrus-sac. Fluorescence stereomicroscopy revealed for the first time the cubic crystal protein inclusions in the forebody, which were further detailed by confocal and SEMs. Confocal microscopy provided detailed information of the muscular architecture associated with the attachment structures (suckers), digestive system (pharynx and oesophagus), egg-forming complex (ovary, Mehlis' gland and Laurer's canal) and male reproductive system, which are similar to those found in other digenean flukes. SEM images of cryofractured parasites showed mucus and developing eggs within uterine loops. It was demonstrated that the combination of advanced tools generated complementary information, confirming the importance of experimental morphology in parasitology. Therefore, the knowledge of the adult structural organization of E. coelomaticum was improved and this work has contributed to propose new morphological criteria to evaluate the effects of antiparasitic drugs on flukes of medical and veterinary importance.
Collapse
|
4
|
Marques JDS, Rocha BM, Manso PPDA, D'Ávila S. New insights on the morphology of a digenean parasite (Digenea: Brachylaimidae,Brachylaima mazzantii(Travassos, 1927)) using confocal laser scanning microscopy. ZOOSYSTEMA 2017. [DOI: 10.5252/z2017n4a1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Juçara de Souza Marques
- Malacological Museum Professor Maury Pinto de Oliveira, Federal University of Juiz de Fora, Minas Gerais (Brazil)
| | - Bárbara Marum Rocha
- Malacological Museum Professor Maury Pinto de Oliveira, Federal University of Juiz de Fora, Minas Gerais (Brazil)
| | | | - Sthefane D'Ávila
- Malacological Museum Professor Maury Pinto de Oliveira and Departament of Zoology, Federal University of Juiz de Fora, Minas Gerais (Brazil)
| |
Collapse
|
5
|
Ultrastructural changes to the tegumental system and gastrodermal cells of adult Fasciola hepatica following treatment in vivo with a commercial preparation of myrrh (Mirazid). J Helminthol 2016; 91:672-685. [PMID: 27762182 DOI: 10.1017/s0022149x16000705] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An in vivo study in the laboratory rat model has been carried out to monitor changes to the tegument and gut of adult Fasciola hepatica following treatment with myrrh ('Mirazid'). Rats infected with the triclabendazole-resistant Dutch isolate were dosed orally with Mirazid at a concentration of 250 mg/kg and flukes recovered 2, 3 and 7 days post-treatment (pt). The flukes were processed for examination by scanning and transmission electron microscopy. A variety of changes to the external surface were observed, culminating in the sloughing of the tegumental syncytium. Internal changes to the syncytium and tegumental cell bodies were more severe and were evident from 2 days pt onwards. Swelling of the basal infolds (leading to flooding of the surface layer) and a decline in secretory body production were the major changes seen. The gastrodermal cells were less severely affected than the tegument, pointing to a trans-tegumental route of uptake for Mirazid by the fluke. Some loss of muscle fibres in the main somatic muscle layers was observed, which may be correlated with the decline in movement of flukes seen at recovery.
Collapse
|
6
|
Trailović SM, Marinković D, Trailović JN, Milovanović M, Marjanović DS, Aničić MR. Pharmacological and morphological characteristics of the muscular system of the giant liver fluke (Fascioloides magna - Bassi 1875). Exp Parasitol 2015; 159:136-42. [PMID: 26429130 DOI: 10.1016/j.exppara.2015.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/25/2015] [Accepted: 09/24/2015] [Indexed: 10/23/2022]
Abstract
Motility is required for feeding, reproduction and maintenance of the fluke in the host's liver. According to that, the neuromuscular system can be an attractive drugable target for chemotherapy. Musculature of the Fascioloides magna is organized into three layers, an outer circular layer, beneath this layer the longitudinal layer, and third, the oblique, or diagonal layer underlies the longitudinal layer. In our study, the administration of atropine or caffeine did not cause classic muscle contractions of F. magna muscle strips. However, the Electrical Field Stimulation (EFS) induced stable and repeatable contractions, which enabled us to examine their sensitivity to the various substances. Acetylcholine (ACh) (300 μM and 1 mM), caused only a slight relaxation, without affecting the amplitude of spontaneous contractions or the amplitude of contractions induced by EFS. Contrary to that, atropine (100 μM) caused a significant increase in the basal tone and an increase of EFS-induced contractions. If acetylcholine is an inhibitory neurotransmitter in trematodes, the described effects of atropine are achieved by the blockade of inhibitory neurotransmission. On the other hand, with respect to the process of excitation-contraction coupling, the plant alkaloid ryanodine (30 μM) significantly reduced the basal tone, as well as EFS-induced contractions of F. magna muscle strips. Ryanodine inhibited the potentiating effect of atropine on the basal tone and contractions caused by EFS, which indicates that the contractile effect of atropine is dependent on Ca(++) release from intracellular stores. Caffeine (500 μM) caused relaxation of fluke muscle strips and at the same time significantly enhanced the EFS-induced contractions. Both effects of caffeine can be explained by entry of extracellular Ca(++) into muscle cells. The muscle contractility of F. magna depends both on the entry of extracellular calcium, and calcium release from intracellular stores, which are under the control of RyRs. Our results also suggest that antitrematodal drugs could potentially be developed from substances with selective anti-cholinergic activity.
Collapse
Affiliation(s)
- Saša M Trailović
- Faculty of Veterinary Medicine, University of Belgrade, Department of Pharmacology and Toxicology, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia.
| | - Darko Marinković
- Faculty of Veterinary Medicine, University of Belgrade, Department of Pathomorphology, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia
| | - Jelena Nedeljković Trailović
- Faculty of Veterinary Medicine, University of Belgrade, Department of Nutrition and Botany, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia
| | - Mirjana Milovanović
- Faculty of Veterinary Medicine, University of Belgrade, Department of Pharmacology and Toxicology, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia
| | - Djordje S Marjanović
- Faculty of Veterinary Medicine, University of Belgrade, Department of Pharmacology and Toxicology, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia
| | - Milan R Aničić
- Faculty of Veterinary Medicine, University of Belgrade, Department of Pathomorphology, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia
| |
Collapse
|
7
|
Androgens Exert a Cysticidal Effect upon Taenia crassiceps by Disrupting Flame Cell Morphology and Function. PLoS One 2015; 10:e0127928. [PMID: 26076446 PMCID: PMC4468188 DOI: 10.1371/journal.pone.0127928] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/20/2015] [Indexed: 11/19/2022] Open
Abstract
The effects of testosterone (T4) and dihydrotestosterone (DHT) on the survival of the helminth cestode parasite Taenia crassiceps, as well as their effects on actin, tubulin and myosin expression and their assembly into the excretory system of flame cells are described in this paper. In vitro evaluations on parasite viability, flow cytometry, confocal microscopy, video-microscopy of live flame cells, and docking experiments of androgens interacting with actin, tubulin, and myosin were conducted. Our results show that T4 and DHT reduce T. crassiceps viability in a dose- and time-dependent fashion, reaching 90% of mortality at the highest dose used (40 ng/ml) and time exposed (10 days) in culture. Androgen treatment does not induce differences in the specific expression pattern of actin, tubulin, and myosin isoforms as compared with control parasites. Confocal microscopy demonstrated a strong disruption of the parasite tegument, with reduced assembly, shape, and motion of flame cells. Docking experiments show that androgens are capable of affecting parasite survival and flame cell morphology by directly interacting with actin, tubulin and myosin without altering their protein expression pattern. We show that both T4 and DHT are able to bind actin, tubulin, and myosin affecting their assembly and causing parasite intoxication due to impairment of flame cell function. Live flame cell video microscopy showing a reduced motion as well changes in the shape of flame cells are also shown. In summary, T4 and DHT directly act on T. crassiceps cysticerci through altering parasite survival as well as the assembly and function of flame cells.
Collapse
|
8
|
Muscle architecture during the course of development of Diplostomum pseudospathaceum Niewiadomska, 1984 (Trematoda, Diplostomidae) from cercariae to metacercariae. J Helminthol 2015; 90:321-36. [DOI: 10.1017/s0022149x15000310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractRecent confocal microscopy studies have greatly expanded our knowledge of muscle systems in cercariae and adult digeneans, but the gross anatomy and development of metacercarial musculature remain relatively little known. To further our understanding of metacercarial development, this study used phalloidin staining and confocal microscopy to examine changes in muscle architecture over the course of development from cercariae to infective metacercariae in Diplostomum pseudospathaceum Niewiadomska, 1984. The paper describes muscle development in the body wall, anterior organ (oral sucker), acetabulum, pharynx and midgut and in the musculo-glandular organs that first appear in metacercariae (lappets and holdfast). The muscle architecture of the cercarial tail is also described. The results of the study support previously reported observations that diplostomid musculature undergoes substantial transformation during metacercarial development. The most profound changes, involving extensive remodelling and replacement of cercarial muscles, were seen in the body-wall musculature and in the anterior organ as it developed into the oral sucker. Muscle systems of other cercarial organs showed more gradual changes. The adaptive importance of developmental changes in musculature is discussed.
Collapse
|
9
|
Ambrosio JR, Ostoa-Saloma P, Palacios-Arreola MI, Ruíz-Rosado A, Sánchez-Orellana PL, Reynoso-Ducoing O, Nava-Castro KE, Martínez-Velázquez N, Escobedo G, Ibarra-Coronado EG, Valverde-Islas L, Morales-Montor J. Oestradiol and progesterone differentially alter cytoskeletal protein expression and flame cell morphology in Taenia crassiceps. Int J Parasitol 2014; 44:687-96. [PMID: 24879953 DOI: 10.1016/j.ijpara.2014.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 01/22/2023]
Abstract
We examined the effects of oestradiol (E2) and progesterone (P4) on cytoskeletal protein expression in the helminth Taenia crassiceps - specifically actin, tubulin and myosin. These proteins assemble into flame cells, which constitute the parasite excretory system. Total protein extracts were obtained from E2- and P4-treated T. crassiceps cysticerci and untreated controls, and analysed by one- and two-dimensional protein electrophoresis, flow cytometry, immunofluorescence and videomicroscopy. Exposure of T. crassiceps cysticerci to E2 and P4 induced differential protein expression patterns compared with untreated controls. Changes in actin, tubulin and myosin expression were confirmed by flow cytometry of parasite cells and immunofluorescence. In addition, parasite morphology was altered in response to E2 and P4 versus controls. Flame cells were primarily affected at the level of the ciliary tuft, in association with the changes in actin, tubulin and myosin. We conclude that oestradiol and progesterone act directly on T. crassiceps cysticerci, altering actin, tubulin and myosin expression and thus affecting the assembly and function of flame cells. Our results increase our understanding of several aspects of the molecular crosstalk between host and parasite, which might be useful in designing anthelmintic drugs that exclusively impair parasitic proteins which mediate cell signaling and pathogenic reproduction and establishment.
Collapse
Affiliation(s)
- Javier R Ambrosio
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Edificio A, 2do piso, Ciudad Universitaria, México DF 04510, Mexico
| | - Pedro Ostoa-Saloma
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, México DF 04510, Mexico
| | - M Isabel Palacios-Arreola
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, México DF 04510, Mexico
| | - Azucena Ruíz-Rosado
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, México DF 04510, Mexico
| | - Pedro L Sánchez-Orellana
- Departamento de Fisiología Biofísica y Neurociencias, CINVESTAV-IPN, Av. Instituto Politecnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, México DF 07360, Mexico
| | - Olivia Reynoso-Ducoing
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Edificio A, 2do piso, Ciudad Universitaria, México DF 04510, Mexico
| | - Karen E Nava-Castro
- Centro de investigación sobre enfermedades infecciosas, Instituto Nacional de Salud Pública, 62100 Cuernavaca, Morelos, Mexico
| | - Nancy Martínez-Velázquez
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, México DF 04510, Mexico
| | - Galileo Escobedo
- Unidad de Medicina Experimental, Hospital General de México, AP 06726, México DF, Mexico
| | - Elizabeth G Ibarra-Coronado
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, México DF 04510, Mexico
| | - Laura Valverde-Islas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Edificio A, 2do piso, Ciudad Universitaria, México DF 04510, Mexico
| | - Jorge Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, México DF 04510, Mexico.
| |
Collapse
|
10
|
Peoples RC, Fried B. Form and function in the digenea. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 766:3-20. [PMID: 24903361 DOI: 10.1007/978-1-4939-0915-5_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Robert C Peoples
- Schistosomiasis Lab, Biomedical Research Institute, 12111 Parklawn Drive, Rockville, MD, 20851, USA,
| | | |
Collapse
|
11
|
Martínez-Ibeas A, González-Lanza C, Manga-González M. Proteomic analysis of the tegument and excretory–secretory products of Dicrocoelium dendriticum (Digenea) adult worms. Exp Parasitol 2013; 133:411-20. [DOI: 10.1016/j.exppara.2013.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/20/2012] [Accepted: 01/10/2013] [Indexed: 11/29/2022]
|
12
|
Márquez-Navarro A, Pérez-Reyes A, Zepeda-Rodríguez A, Reynoso-Ducoing O, Hernández-Campos A, Hernández-Luis F, Castillo R, Yépez-Mulia L, Ambrosio JR. RCB20, an experimental benzimidazole derivative, affects tubulin expression and induces gross anatomical changes in Taenia crassiceps cysticerci. Parasitol Res 2013; 112:2215-26. [DOI: 10.1007/s00436-013-3379-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 03/03/2013] [Indexed: 02/07/2023]
|
13
|
Boukli NM, Delgado B, Ricaurte M, Espino AM. Fasciola hepatica and Schistosoma mansoni: identification of common proteins by comparative proteomic analysis. J Parasitol 2011; 97:852-61. [PMID: 21506812 DOI: 10.1645/ge-2495.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
It is not unusual to find common molecules among parasites of different species, genera, or phyla. When those molecules are antigenic, they may be used for developing drugs or vaccines that simultaneously target different species or genera of parasite. In the present study, we used a proteomic-based approach to identify proteins that are common to adult Fasciola hepatica and Schistosoma mansoni. Whole-worm extracts from each parasite were separated by 2-dimensional electrophoresis (2-DE), and digital images of both proteomes were superimposed using imaging software to identify proteins with identical isoelectric points and molecular weights. Protein identities were determined by mass spectrometry. Imaging and immunoblot analyses identified 28 immunoreactive proteins that are common to both parasites. Among these molecules are antioxidant proteins (thioredoxin and glutathione-S-transferase), glycolytic enzymes (glyceraldehyde 6-phosphate dehydrogenase and enolase), proteolytic enzymes (cathepsin-L and -D), inhibitors (Kunitz-type, Stefin-1), proteins with chaperone activity (heat shock protein 70 and fatty acid-binding protein), and structural proteins (calcium-binding protein, actin, and myosin). Some of the identified proteins could be used to develop drugs and vaccines against fascioliasis and schistosomiasis.
Collapse
Affiliation(s)
- Nawal M Boukli
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, School of Medicine, Universidad Central del Caribe, Bayamón, Puerto Rico
| | | | | | | |
Collapse
|
14
|
D’ávila S, Manso PPDA, Bessa ECDA, Rodrigues MDLDA, Dias RJP. Gross anatomy of the musculature and a new description of the reproductive system ofTanaisia bragaiandTanaisia inopina(Trematoda: Eucotylidae) analysed by confocal laser scanning microscopy. ACTA ZOOL-STOCKHOLM 2010. [DOI: 10.1111/j.1463-6395.2008.00393.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Ultrastructural changes to the tegumental system and the gastrodermal cells in adult Fasciola hepatica following in vivo treatment with the experimental fasciolicide, compound alpha. Parasitology 2009; 136:665-80. [PMID: 19368745 DOI: 10.1017/s0031182009005678] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Sheep infected with the triclabendazole-susceptible, Cullompton isolate of Fasciola hepatica were dosed with 15 mg/kg of compound alpha at 12 weeks post-infection. Adult flukes were recovered from the bile ducts at 24, 48 and 72 h post-treatment (p.t.). Ultrastructural changes to the flukes were assessed using transmission electron microscopy (TEM), with a view to gathering information on the mechanism(s) of action for compound alpha and on the possible route of its entry into F. hepatica. The tegumental syncytium was more severely affected than the gut at all time-points p.t. with compound alpha, suggesting a predominantly trans-tegumental route of uptake. Disruption to the tegumental system became increasingly severe over time. A stress response was observed at 24 h p.t. and took the form of blebbing and increases in the production and transport of secretory bodies. By 72 h p.t., extensive tegumental loss and degeneration of the tegumental cell bodies had occurred. Degeneration of subtegumental tissues and internal flooding were also observed. Changes in the gastrodermal cells were slow to develop: reduced secretory activity was evident at 72 h p.t.. There was progressive disruption to the somatic muscle layers, with disorganization of the muscle blocks and loss of muscle fibres.
Collapse
|
16
|
Abstract
Two distinct families of neuropeptides are known to endow platyhelminth nervous systems - the FMRFamide-like peptides (FLPs) and the neuropeptide Fs (NPFs). Flatworm FLPs are structurally simple, each 4-6 amino acids in length with a carboxy terminal aromatic-hydrophobic-Arg-Phe-amide motif. Thus far, four distinct flatworm FLPs have been characterized, with only one of these from a parasite. They have a widespread distribution within the central and peripheral nervous system of every flatworm examined, including neurones serving the attachment organs, the somatic musculature and the reproductive system. The only physiological role that has been identified for flatworm FLPs is myoexcitation. Flatworm NPFs are believed to be invertebrate homologues of the vertebrate neuropeptide Y (NPY) family of peptides. Flatworm NPFs are 36-39 amino acids in length and are characterized by a caboxy terminal GRPRFamide signature and conserved tyrosine residues at positions 10 and 17 from the carboxy terminal. Like FLPs, NPF occurs throughout flatworm nervous systems, although less is known about its biological role. While there is some evidence for a myoexcitatory action in cestodes and flukes, more compelling physiological data indicate that flatworm NPF inhibits cAMP levels in a manner that is characteristic of NPY action in vertebrates. The widespread expression of these neuropeptides in flatworm parasites highlights the potential of these signalling systems to yield new targets for novel anthelmintics. Although platyhelminth FLP and NPF receptors await identification, other molecules that play pivotal roles in neuropeptide signalling have been uncovered. These enzymes, involved in the biosynthesis and processing of flatworm neuropeptides, have recently been described and offer other distinct and attractive targets for therapeutic interference.
Collapse
Affiliation(s)
- P McVeigh
- Parasitology Research Group, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | | | | | | |
Collapse
|
17
|
Mendonça-Silva DL, Novozhilova E, Cobbett PJR, Silva CLM, Noël F, Totten MIJ, Maule AG, Day TA. Role of calcium influx through voltage-operated calcium channels and of calcium mobilization in the physiology of Schistosoma mansoni muscle contractions. Parasitology 2006; 133:67-74. [PMID: 16566851 DOI: 10.1017/s0031182006000023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 12/22/2005] [Accepted: 12/23/2005] [Indexed: 11/07/2022]
Abstract
We tested the hypothesis that voltage-operated Ca2+ channels mediate an extracellular Ca2+ influx in muscle fibres from the human parasite Schistosoma mansoni and, along with Ca2+ mobilization from the sarcoplasmic reticulum, contribute to muscle contraction. Indeed, whole-cell voltage clamp revealed voltage-gated inward currents carried by divalent ions with a peak current elicited by steps to +20 mV (from a holding potential of -70 mV). Depolarization of the fibres by elevated extracellular K+ elicited contractions that were completely dependent on extracellular Ca2+ and inhibited by nicardipine (half inhibition at 4.1 microM). However these contractions were not very sensitive to other classical blockers of voltage-gated Ca2+ channels, indicating that the schistosome muscle channels have an atypical pharmacology when compared to their mammalian counterparts. Futhermore, the contraction induced by 5 mM caffeine was inhibited after depletion of the sarcoplasmic reticulum either with thapsigargin (10 microM) or ryanodine (10 microM). These data suggest that voltage-operated Ca2+ channels do contribute to S. mansoni contraction as does the mobilization of stored Ca2+, despite the small volume of sarcoplasmic reticulum in schistosome smooth muscles.
Collapse
Affiliation(s)
- D L Mendonça-Silva
- Departamento de Farmacologia Básica e Clínica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Kumar D, White C, Fairweather I, McGeown JG. Electrophysiological and pharmacological characterization of K+-currents in muscle fibres isolated from the ventral sucker ofFasciola hepatica. Parasitology 2004; 129:779-93. [PMID: 15648701 DOI: 10.1017/s0031182004006110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Fibres isolated from the ventral sucker ofFasciola hepaticawere identified as muscle on the basis of their contractility, and their actin and myosin staining. They were voltage-clamped at a holding potential of −40 mV and depolarization-activated outward currents were characterized both electrophysiologically and pharmacologically. Activation was well fitted by a Boltzmann equation with a half-maximal potential of +9 mV and a slope factor of −14·3 mV, and the kinetics of activation and deactivation were voltage-sensitive. Tail current analysis showed that the reversal potential was shifted by +46±3 mV when EKwas increased by 52 mV, confirming that this was a K+-current with electrophysiological characteristics similar to delayed rectifier and Ca2+-activated K+-currents in other tissues. The peak current at +60 mV was inhibited by 76±6% by tetrapentylammonium chloride (1 mM) and by 84±7% by Ba2+(3 mM), but was completely resistant to block by tetraethylammonium (30 mM), 3,4-diaminopyridine (100 μM) and 4-aminopyridine (10 mM). Penitrem A, a blocker of high-conductance Ca2+-activated K+-channels reduced the current at +60 mV by 23±5%. When the effects of Ca2+-channel blocking agents were tested, the peak outward current at +60 mV was reduced by 71±7% by verapamil (30 μM) and by 59±4% by nimodipine (30 μM). Superfusion with BAPTA-AM (50 μM), which is hydrolysed intracellularly to release the Ca2+-buffer BAPTA, also decreased the current by 44±16%. We conclude that voltage-and Ca2+-sensitive K+-channels are expressed in this tissue, but that their pharmacology differs considerably from equivalent channels in other phyla.
Collapse
Affiliation(s)
- D Kumar
- Parasite Proteomics and Therapeutics Research Group, School of Biology and Biochemistry, The Queen's University of Belfast, Belfast BT9 7BL, Northern Ireland
| | | | | | | |
Collapse
|