SLO-1-channels of parasitic nematodes reconstitute locomotor behaviour and emodepside sensitivity in Caenorhabditis elegans slo-1 loss of function mutants.
PLoS Pathog 2011;
7:e1001330. [PMID:
21490955 PMCID:
PMC3072372 DOI:
10.1371/journal.ppat.1001330]
[Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 03/04/2011] [Indexed: 11/24/2022] Open
Abstract
The calcium-gated potassium channel SLO-1 in Caenorhabditis elegans was recently identified as key component for action of emodepside, a new anthelmintic drug with broad spectrum activity. In this study we identified orthologues of slo-1 in Ancylostoma caninum, Cooperia oncophora, and Haemonchus contortus, all important parasitic nematodes in veterinary medicine. Furthermore, functional analyses of these slo-1 orthologues were performed using heterologous expression in C. elegans. We expressed A. caninum and C. oncophora slo-1 in the emodepside-resistant genetic background of the slo-1 loss-of-function mutant NM1968 slo-1(js379). Transformants expressing A. caninum slo-1 from C. elegans slo-1 promoter were highly susceptible (compared to the fully emodepside-resistant slo-1(js379)) and showed no significant difference in their emodepside susceptibility compared to wild-type C. elegans (p = 0.831). Therefore, the SLO-1 channels of A. caninum and C. elegans appear to be completely functionally interchangeable in terms of emodepside sensitivity. Furthermore, we tested the ability of the 5′ flanking regions of A. caninum and C. oncophora slo-1 to drive expression of SLO-1 in C. elegans and confirmed functionality of the putative promoters in this heterologous system. For all transgenic lines tested, expression of either native C. elegans slo-1 or the parasite-derived orthologue rescued emodepside sensitivity in slo-1(js379) and the locomotor phenotype of increased reversal frequency confirming the reconstitution of SLO-1 function in the locomotor circuits. A potent mammalian SLO-1 channel inhibitor, penitrem A, showed emodepside antagonising effects in A. caninum and C. elegans. The study combined the investigation of new anthelmintic targets from parasitic nematodes and experimental use of the respective target genes in C. elegans, therefore closing the gap between research approaches using model nematodes and those using target organisms. Considering the still scarcely advanced techniques for genetic engineering of parasitic nematodes, the presented method provides an excellent opportunity for examining the pharmacofunction of anthelmintic targets derived from parasitic nematodes.
In parasitic nematodes, experiments at the molecular level are currently not feasible, since in vitro culture and genetic engineering are still in their infancy. In the present study we chose the model organism Caenorhabditis elegans not only as a mere expression system for genes from parasitic nematodes, but used the transformants to examine the functionality of the expressed proteins for mediating anthelmintic effects in vivo. The results of our experiments confirmed that SLO-1 channels mediate the activity of the new anthelmintic drug emodepside and showed that the mode of action is conserved through several nematode species. The chosen method allowed us to examine the functionality of proteins from parasitic nematodes in a defined genetic background. Notably, expression of the parasitic nematode gene in anthelmintic-resistant C. elegans completely restored drug susceptibility. As C. elegans is highly tractable to molecular genetic and pharmacological approaches, the generation of lines expressing the parasite drug target will greatly facilitate structure-function analysis of the interaction between emodepside and ion channels with direct relevance to its anthelmintic properties. In a broader context, the demonstration of C. elegans as a heterologous expression system for functional analysis of parasite proteins further strengthens this as a model for anthelmintic studies.
Collapse