1
|
Widdicombe M, Coff L, Nowak BF, Ramsland PA, Bott NJ. Understanding the host response of farmed fish to blood flukes (Trematoda: Aporocotylidae) for developing new treatment strategies. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109613. [PMID: 38710341 DOI: 10.1016/j.fsi.2024.109613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Aporocotylids (Trematoda: Digenea), also known as fish blood flukes infect the circulatory system of fish leading to serious health problems and mortality. Aporocotylids are a particular concern for farmed fish as infection intensity can increase within the farming environment and lead to mortalities. In the context of managing these infections, one of the most crucial aspects to consider is the host response of the infected fish against these blood flukes. Understanding the response is essential to improving current treatment strategies that are largely based on the use of anthelmintic praziquantel to manage infections in aquaculture. This review focuses on the current knowledge of farmed fish host responses against the different life stages of aporocotylids. New treatment strategies that are able to provide protection against reinfections should be a long-term goal and is not possible without understanding the fish response to infection and the interactions between host and parasite.
Collapse
Affiliation(s)
- Maree Widdicombe
- School of Science, STEM College, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Lachlan Coff
- School of Science, STEM College, RMIT University, Bundoora, Victoria, 3083, Australia; Australian Centre for Disease Preparedness, CSIRO, East Geelong, Victoria, 3219, Australia
| | - Barbara F Nowak
- School of Science, STEM College, RMIT University, Bundoora, Victoria, 3083, Australia; Institute for Marine and Antarctic Studies, University of Tasmania, Locked Bag 1370, Launceston, Tasmania, 7250, Australia
| | - Paul A Ramsland
- School of Science, STEM College, RMIT University, Bundoora, Victoria, 3083, Australia; Department of Immunology, Monash University, Melbourne, Victoria, 3004. Australia; Department of Surgery, Austin Health, University of Melbourne, Heidelberg, Victoria, 3084, Australia
| | - Nathan J Bott
- School of Science, STEM College, RMIT University, Bundoora, Victoria, 3083, Australia.
| |
Collapse
|
2
|
Reshmi MN, Karunakaran C, Priya Ta J, Kappalli S. Immune responses of Cyprinus carpio induced by protein extracts of Lernaea cyprinacea Linnaeus, 1758. Exp Parasitol 2022; 239:108306. [PMID: 35709887 DOI: 10.1016/j.exppara.2022.108306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022]
Abstract
Lernaea cyprinacea Linnaeus, 1758 is an ectoparasite showing widespread infections in tropical aquaculture, and the present study aimed to determine the specific immune responses against this parasite. For the experiment, whole parasite extracts were injected intraperitoneally into Cyprinus carpio Linnaeus, 1758, and samples of epidermal mucus and blood were drawn at 0, 1, 7 and 14-days post-injection (DPI). The results revealed high levels of protein, protease and lysozyme activities in the experimental fish which were injected with L. cyprinacea protein extract. In the epidermal mucus, the total protein concentration of the control fish was 460 μg/mL, and the level raised significantly to 800 μg/mL in the experimental fish. The lysozyme activity increased from 741.5 u/mL to a peak level of 1448.5 u/mL at 7DPI. The protease activity was also found elated gradually from 2.91 u/μL to 4.49 u/μL at 1 to 14 DPI. In the serum samples, the protein concentration remained steady throughout the experiment period. However, all the experimental fish displayed statistically high levels of lysozyme and protease activity, from 890 u/mL to 1220 u/mL, and 6.10 u/μL to 11.88 u/μL, respectively. In the whole blood samples, the haemoglobin content and the red blood cells (RBC) count did not show any significant change in any of the experimental groups. But, the percentage of lymphocytes showed a marginal increase from 0.47 to 0.6 in the experimental groups. Overall, the immune responses induced by L. cyprinacea protein extracts depicts a pattern of specific responses, in which the local humoral responses dominate the systemic humoral/cellular response. The results further revealed the possibility of futuristic approaches to control freshwater ectoparasites.
Collapse
Affiliation(s)
- Mv Nikhila Reshmi
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, India
| | - Charutha Karunakaran
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, India
| | - Jose Priya Ta
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, India.
| | - Sudha Kappalli
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, India.
| |
Collapse
|
3
|
Souza DCDM, Santos MCD, Chagas EC. Immune response of teleost fish to helminth parasite infection. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA 2019; 28:533-547. [DOI: 10.1590/s1984-29612019080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/05/2019] [Indexed: 01/07/2023]
Abstract
Abstract Fish immune systems have become the subject of several studies due to the growing development of aquaculture and fisheries, and the demand for healthy produce for human consumption. Among the parasites responsible for diseases in fish farming, helminths stand out because they cause infections in farmed fish and decrease food conversion, zootechnical performance and meat quality. In the present review, the components that participate in the innate and adaptive immune responses of teleost fish that have so far been described are presented in order to summarize the defenses that these hosts have recourse to, in combating different groups of helminth parasites.
Collapse
|
4
|
Polinas M, Mele S, Padrós F, Merella P, Antuofermo E, Gouraguine A, Reñones O. Ecological and histopathological aspects of Didymodiclinus sp. (Trematoda: Didymozoidae) parasite of the dusky grouper, Epinephelus marginatus (Osteichthyes: Serranidae), from the western Mediterranean Sea. JOURNAL OF FISH DISEASES 2018; 41:1385-1393. [PMID: 29926922 DOI: 10.1111/jfd.12836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
The dusky grouper Epinephelus marginatus (Lowe) is an ecologically and commercially important fish species of the Atlantic and Mediterranean coastal rocky habitats. Despite records of didymozoid infections in several grouper species, the identification and pathogenesis of these parasites in E. marginatus are lacking. The aim of this study is to characterize the didymozoids of E. marginatus, particularly their mechanisms of infection and histopathological features. Dusky groupers (n = 205) were caught off Majorca Island (western Mediterranean Sea) and examined for parasites. Of the fish sampled, 45% were infected with white and yellow didymozoid capsules and brown nodules, found on the gills and pseudobranchs. Parasite abundance had a strong positive relationship with the fish length; only fish larger than 20 cm were infected, suggesting infection via consumption of an intermediate host, for which E. marginatus size was a limiting factor. The capsules contained two convoluted viable adult trematodes, identified as Didymodiclinus sp., in close contact with host capillary vessels, with no evidence of the tissue inflammatory response. Conversely, nodules containing degraded parasites were surrounded by an intense inflammatory infiltrate. The findings suggest that Didymodiclinus sp. have the potential to evade the host's immune system by inhibiting the inflammatory response.
Collapse
Affiliation(s)
- Marta Polinas
- Anatomia Patologica, Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - Salvatore Mele
- Parassitologia e Malattie Parassitarie, Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - Francesc Padrós
- Fish Diseases Diagnostic Service, Facultat de Veterinària, Universitat Autònoma de Barcelona, Catalonia, Spain
| | - Paolo Merella
- Parassitologia e Malattie Parassitarie, Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - Elisabetta Antuofermo
- Anatomia Patologica, Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - Adam Gouraguine
- School of Biological Sciences, University of Essex, Colchester, UK
| | - Olga Reñones
- Centro Oceanográfico de Baleares, Instituto Español de Oceanografía, Palma, Spain
| |
Collapse
|
5
|
Pennacchi Y, Shirakashi S, Nowak BF, Bridle AR. Immune reactivity in early life stages of sea-cage cultured Pacific bluefin tuna naturally infected with blood flukes from genus Cardicola (Trematoda: Aporocotylidae). FISH & SHELLFISH IMMUNOLOGY 2016; 58:490-499. [PMID: 27702677 DOI: 10.1016/j.fsi.2016.09.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
Pacific bluefin tuna (PBT), Thunnus orientalis, due to its high average price on the market is an economically valuable fish species. Infections by blood flukes from the genus Cardicola (Trematoda: Aporocotylidae) represent a growing concern for the cage culture of bluefin tuna in Japan, Australia and Southern Europe. The accumulation of numerous Cardicola eggs in the fish gills causes severe pathology that has been linked to mortality in PBT juveniles up to one year old. The only effective treatment used to mitigate the infection is the oral administration of the antihelminthic drug praziquantel (PZQ) to the affected fish. However, with the need to minimise therapeutic drug use in aquaculture it is hoped that immunoprophylaxis can provide a future alternative to protect the PBT juveniles against Cardicola infection. Currently, little is known of the host immune response to these parasites and of their infection dynamics. In this study, using real-time qPCR we aimed to quantitatively detect C. orientalis and C. opisthorchis DNA within the gills and heart of cultured PBT juveniles and to investigate the host immune response at the transcriptional level in the gills. The research focused mainly during early stages of infection soon after young PBT were transferred to culture cages (from 14 to 77 days post-transfer). An increase (up to 11-fold) of immune-related genes, namely IgM, MHC-I, TCR-β and IL-1β was observed in the PBT gills infected with Cardicola spp. (28-77 days post-transfer). Furthermore, IgM (19-fold increase) and MHC-I (11.5-fold increase) transcription was strongly up-regulated in gill samples of PBT infected with C. orientalis relative to uninfected fish but not in fish infected with C. opisthorchis. Cardicola-specific DNA was first detected in the host 14 days post-transfer (DPT) to sea-cages which was 55 days earlier than the first detection of parasite eggs and adults by microscopy. Oral administration of PZQ did not have an immediate effect on parasite DNA presence in the host and the DNA presence started to reduce after 24 days only in the host heart. The results provide evidence of an immune response in early age sea-cage cultured juveniles of PBT naturally infected with C. orientalis and C. opisthorchis. This response, whilst not protective against primary infection, provides evidence that immunisation at an early age may have potential as a health strategy.
Collapse
Affiliation(s)
| | - Sho Shirakashi
- Aquaculture Research Institute, Kindai University, Nishimuro, Wakayama, Japan
| | | | | |
Collapse
|
6
|
Madera-Sandoval RL, Reyes-Maldonado E, Dzul-Caamal R, Gallegos-Rangel E, Domínguez-López ML, García-Latorre E, Vega-López A. Fat-associated lymphoid cluster in Cyprinus carpio: Characterisation and its relation with peritoneal haemangiosarcoma. FISH & SHELLFISH IMMUNOLOGY 2015; 44:633-641. [PMID: 25804491 DOI: 10.1016/j.fsi.2015.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/21/2015] [Accepted: 03/14/2015] [Indexed: 06/04/2023]
Abstract
FALC cells are natural helper cells producing Th2-type cytokines, which express c-kit, Sca-1, IL7R and CD45 in mouse and human. These cells are involved in allergic responses and contribute to the inflammatory reactions of adipose tissue; however, a lack of information prevails about the presence of these cells in other species. The aim of the study was to identify and characterise FALC cells in the common carp (Cyprinus carpio) using immunohistochemistry and molecular biology techniques as well as to explore their relationships with their microenvironment. Histological description of the FALC was performed using H&E and polyclonal antibodies were used against cell-surface markers such as c-kit, Sca-1 and CD45. Furthermore, gene expression of c-kit, Sca-1 and IL7R was assessed. C. carpio FALC cells express the same surface markers reported in FALC of the mouse at both the pre- and post-transcriptional level. By exposure to the soluble fraction of helminths, FALC cells produce abundant Th2 cytokines (IL-5, IL-6 and IL-13) but do not synthesise IL-1α. Additionally, FALC cells probably participate in vascular remodelling of the intestine vessels, inducing tumours because a malignant haemangiosarcoma in the peritoneal cavity was found. In this tumour, abundant FALC with their characteristic cell-surface markers were detected. The findings of this study suggest the involvement of some proto-oncogenes such as c-kit and Sca-1, and the deregulation of Src kinases modulated by CD45 present in C. carpio FALC with the ontogeny of peritoneal haemangiosarcoma in this fish species.
Collapse
Affiliation(s)
- Ruth L Madera-Sandoval
- Laboratorio de Toxicología Ambiental, Departamento de Ingeniería en Sistemas Ambientales, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, México, D.F. CP 07738, Mexico
| | - Elba Reyes-Maldonado
- Laboratorio de Citología, Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala s/n, Casco de Santo Tomás, México, D.F. CP 11340, Mexico
| | - Ricardo Dzul-Caamal
- Laboratorio de Toxicología Ambiental, Departamento de Ingeniería en Sistemas Ambientales, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, México, D.F. CP 07738, Mexico
| | - Esperanza Gallegos-Rangel
- Laboratorio de Toxicología Ambiental, Departamento de Ingeniería en Sistemas Ambientales, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, México, D.F. CP 07738, Mexico
| | - María Lilia Domínguez-López
- Laboratorio de Inmunoquímica I, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala s/n, Casco de Santo Tomás, México, D.F. CP 11340, Mexico
| | - Ethel García-Latorre
- Laboratorio de Inmunoquímica I, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala s/n, Casco de Santo Tomás, México, D.F. CP 11340, Mexico
| | - Armando Vega-López
- Laboratorio de Toxicología Ambiental, Departamento de Ingeniería en Sistemas Ambientales, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, México, D.F. CP 07738, Mexico.
| |
Collapse
|
7
|
Selective and universal primers for trematode barcoding in freshwater snails. Parasitol Res 2014; 113:2535-40. [PMID: 24781022 DOI: 10.1007/s00436-014-3903-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
Abstract
Trematodes are significant pathogens of high medical, veterinary, and environmental importance. They are hard to isolate from their intermediate hosts, and their early life stages are difficult to identify morphologically. Therefore, primers were developed for trematodes to create a species barcoding system and allow selective PCR amplification in mixed samples. The specific oligonucleotide primer was universal for trematodes that infected several freshwater snail species in Israel. The diagnostic tool is based on the 18S rDNA gene. In contrast to morphological identification, trematode barcoding is rapid as it is based on a sequence of only 800 bp, and it classifies species accurately due to high polymorphism between conserved areas.
Collapse
|
8
|
Kirchhoff NT, Leef MJ, Valdenegro V, Hayward CJ, Nowak BF. Correlation of humoral immune response in southern bluefin tuna, T. maccoyii, with infection stage of the blood fluke, Cardicola forsteri. PLoS One 2012; 7:e45742. [PMID: 23029217 PMCID: PMC3459975 DOI: 10.1371/journal.pone.0045742] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 08/24/2012] [Indexed: 01/13/2023] Open
Abstract
The blood fluke, Cardicola forsteri, is a prevalent infection in ranched southern bluefin tuna. This project aimed to define the timing and intensity of the various developmental stages of C. forsteri within southern bluefin tuna as well as to relate infection to host pathology and immune response. Archival samples from several cohorts of T. maccoyii sampled from 2008 to 2010 were used in this study. The prevalence and intensity of C. forsteri infection was described using heart flushes and histological examination. Humoral immune response, i.e. C. forsteri specific antibody, lysozyme activity, and alternative complement activity, was also described. Based on the validated and detailed C. forsteri infection timeline, relationships between infection events, physiological response, and diagnosis were proposed. Immune response developed concurrently with C. forsteri infection, with the majority of physiological response coinciding with commencing egg production. Further research is needed to confirm the origin of C. forsteri antigen which is responsible for immune response development and how T. maccoyii immune response works against infection. To aide this research, further diagnostic methods for confirmation of infection need to be developed.
Collapse
Affiliation(s)
- Nicole T. Kirchhoff
- National Centre for Marine Conservation and Resource Sustainability, University of Tasmania, Launceston, Tasmania, Australia
| | - Melanie J. Leef
- National Centre for Marine Conservation and Resource Sustainability, University of Tasmania, Launceston, Tasmania, Australia
| | - Victoria Valdenegro
- National Centre for Marine Conservation and Resource Sustainability, University of Tasmania, Launceston, Tasmania, Australia
| | - Craig J. Hayward
- National Centre for Marine Conservation and Resource Sustainability, University of Tasmania, Launceston, Tasmania, Australia
- SARDI Aquatic Sciences, Lincoln Marine Science Center, Port Lincoln, South Australia, Australia
| | - Barbara F. Nowak
- National Centre for Marine Conservation and Resource Sustainability, University of Tasmania, Launceston, Tasmania, Australia
| |
Collapse
|
9
|
Harikrishnan R, Balasundaram C, Heo MS. Inonotus obliquus containing diet enhances the innate immune mechanism and disease resistance in olive flounder Paralichythys olivaceus against Uronema marinum. FISH & SHELLFISH IMMUNOLOGY 2012; 32:1148-1154. [PMID: 22484608 DOI: 10.1016/j.fsi.2012.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 03/19/2012] [Accepted: 03/19/2012] [Indexed: 05/31/2023]
Abstract
The present study describes the effect of diet supplementation with Chaga mushroom, Inonotus obliquus extract at 0%, 0.01%, 0.1%, and 1.0% levels on the innate humoral (lysozyme, antiprotease, and complement), cellular responses (production of reactive oxygen and nitrogen species and myeloperoxidase), and disease resistance in olive flounder, Paralichythys olivaceus against Uronema marinum. The lysozyme activity and complement activity significantly increased in each diet on weeks 2 and 4 against pathogen. The serum antiprotease activity and reactive nitrogen intermediates production significantly increased in fish fed with 0.1% and 1.0% diets from weeks 1-4. However, reactive oxygen species production and myeloperoxidase activity significantly increased in 1.0% and 2.0% diets on weeks 2 and 4. In fish fed with 0.1% and 1.0% diets and challenged with U. marinum the cumulative mortality was 50% and 40% while in 0% and 0.01% diets the mortality was 85% and 55%. The results clearly indicate that supplementation diet with I. obliquus at 0.1% and 1.0% level positively enhance the immune system and confer disease resistance which may be potentially used as an immunoprophylactic in finfish culture.
Collapse
Affiliation(s)
- Ramasamy Harikrishnan
- Department of Aquatic Biomedical Sciences, School of Marine Biomedical Sciences & Marine and Environmental Research Institute, College of Ocean Sciences, Jeju National University, Jeju, Republic of Korea.
| | | | | |
Collapse
|
10
|
HENRY MA, ALEXIS MN, FOUNTOULAKI E, NENGAS I, RIGOS G. Effects of a natural parasitical infection (Lernanthropus kroyeri) on the immune system of European sea bass,Dicentrarchus labraxL. Parasite Immunol 2009; 31:729-40. [DOI: 10.1111/j.1365-3024.2009.01150.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Hammerschmidt K, Kurtz J. Ecological immunology of a tapeworms' interaction with its two consecutive hosts. ADVANCES IN PARASITOLOGY 2009; 68:111-37. [PMID: 19289192 DOI: 10.1016/s0065-308x(08)00605-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Host-parasite interactions in parasites with complex life cycles have recently gained much interest. Here, we take an evolutionary ecologist's perspective and analyse the immunological interaction of such a parasite, the model tapeworm Schistocephalus solidus, with its two intermediate hosts, a cyclopoid copepod and the three-spined stickleback. We will be focussing especially on the parallel links between the different phases during an infection in the different hosts; the immunological interactions between host(s) and parasite; and their impact on parasite establishment, growth, host manipulation and parasite virulence in the next host in the cycle. We propose to extend the 'extended phenotype' concept and not only include the ultimate but also the proximate, physiological causes. In particular, parasite-induced host manipulation is suggested to be caused by the interactions of the parasite with the hosts' immune systems.
Collapse
Affiliation(s)
- Katrin Hammerschmidt
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
12
|
Alvarez-Pellitero P. Fish immunity and parasite infections: from innate immunity to immunoprophylactic prospects. Vet Immunol Immunopathol 2008; 126:171-98. [DOI: 10.1016/j.vetimm.2008.07.013] [Citation(s) in RCA: 243] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 07/22/2008] [Accepted: 07/25/2008] [Indexed: 10/21/2022]
|
13
|
Sitjà-Bobadilla A. Living off a fish: a trade-off between parasites and the immune system. FISH & SHELLFISH IMMUNOLOGY 2008; 25:358-372. [PMID: 18722790 DOI: 10.1016/j.fsi.2008.03.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 03/14/2008] [Accepted: 03/27/2008] [Indexed: 05/26/2023]
Abstract
Research in fish immune system and parasite invasion mechanisms has advanced the knowledge of the mechanisms whereby parasites evade or cope with fish immune response. The main mechanisms of immune evasion employed by fish parasites are reviewed and considered under ten headings. 1) Parasite isolation: parasites develop in immuno-privileged host tissues, such as brain, gonads, or eyes, where host barriers prevent or limit the immune response. 2) Host isolation: the host cellular immune response isolates and encapsulates the parasites in a dormant stage without killing them. 3) Intracellular disguise: typical of intracellular microsporidians, coccidians and some myxosporeans. 4) Parasite migration, behavioural and environmental strategies: parasites migrate to host sites the immune response has not yet reached or where it is not strong enough to kill them, or they accommodate their life cycles to the season or the age in which the host immune system is down-regulated. 5) Antigen-based strategies such as mimicry or masking, variation and sharing of parasite antigens. 6) Anti-immune mechanisms: these allow parasites to resist innate humoral factors, to neutralize host antibodies or to scavenge reactive oxygen species within macrophages. 7) Immunodepression: parasites either suppress the fish immune systems by reducing the proliferative capacity of lymphocytes or the phagocytic activity of macrophages, or they induce apoptosis of host leucocytes. 8) Immunomodulation: parasites secrete or excrete substances which modulate the secretion of host immune factors, such as cytokines, to their own benefit. 9) Fast development: parasites proliferate faster than the ability of the host to mount a defence response. 10) Exploitation of the host immune reaction. Knowledge of the evasion strategies adopted by parasites will help us to understand host-parasite interactions and may therefore help in the discovery of novel immunotherapeutic agents or targeted vaccines, and permit the selection of host-resistant strains.
Collapse
Affiliation(s)
- A Sitjà-Bobadilla
- Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas, Torre de la Sal s/n, 12595 Ribera de Cabanes, Castellón, Spain.
| |
Collapse
|
14
|
Aiken HM, Hayward CJ, Crosbie P, Watts M, Nowak BF. Serological evidence of an antibody response in farmed southern bluefin tuna naturally infected with the blood fluke Cardicola forsteri. FISH & SHELLFISH IMMUNOLOGY 2008; 25:66-75. [PMID: 18502150 DOI: 10.1016/j.fsi.2007.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 12/12/2007] [Accepted: 12/23/2007] [Indexed: 05/26/2023]
Abstract
In this study, adaptive immune response was investigated in farmed southern bluefin tuna, Thunnus maccoyii, infected with a sanguinicolid Cardicola forsteri. A cohort (Cohort(2005)) of southern bluefin tuna was sampled between March 2005 and August 2006. Samples were taken at the transfer of wild caught tuna to sea cages and then at regular intervals. Parasite intensity, abundance and prevalence data were recorded. An ELISA was developed to detect and quantify an antibody response against the blood fluke in southern bluefin tuna serum. Intensity and prevalence of the blood fluke were shown to peak in May 2005 at 10.9 flukes per infected fish (SE=1.72) and 97.5% prevalence and then decreased to low prevalence (10%) and intensity (1.0). There were no significant changes in prevalence or intensity in 2006. Antibody titres and seroprevalence increased from 1.37 U microl(-1) and 10% at transfer in March 2005 to reach a peak in December 2005 of 25.86 U microl(-1) (SE=6.26 U microl(-1)) and 66.66%. No significant changes were observed in antibody titres for the same cohort of fish during 2006. Parasitological and serological values from Cohort(2005) were compared to a 2006 cohort (Cohort(2006)) in March 2006 and August 2006 to determine if prior infection in Cohort(2005) elicited any protection against infection in 2006. Although significant differences were not observed in intensities between cohorts it was shown that Cohort(2005) had significantly lower abundances and prevalences of blood fluke infection than Cohort(2006). Although there was no significant difference in mean antibody titres between cohorts in March 2006, the mean antibody titre of Cohort(2006) was significantly greater than that of Cohort(2005) in August 2006. No significant differences were observed in seroprevalence. This is one of the few studies to demonstrate the development of acquired resistance in fish against a parasite in an aquaculture environment under natural infection conditions.
Collapse
Affiliation(s)
- Hamish M Aiken
- School of Aquaculture, University of Tasmania and Aquafin CRC, Locked Bag 1-370, Launceston 7250, Tasmania, Australia.
| | | | | | | | | |
Collapse
|
15
|
Scharsack JP, Koch K, Hammerschmidt K. Who is in control of the stickleback immune system: interactions between Schistocephalus solidus and its specific vertebrate host. Proc Biol Sci 2008; 274:3151-8. [PMID: 17939987 DOI: 10.1098/rspb.2007.1148] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The cestode Schistocephalus solidus is a frequent parasite of three-spined sticklebacks and has a large impact on its host's fitness. Selection pressure should therefore be high on stickleback defence mechanisms, like an efficient immune system, and also on parasite strategies to overcome these. Even though there are indications for manipulation of the immune system of its specific second intermediate host by the cestode, nothing is yet known about the chronology of specific interactions of S. solidus with the stickleback immune system. We here expected sticklebacks to first mount an innate immune response directly post-exposure to the parasite to clear the infection at an early stage and after an initial lag phase to upregulate adaptive immunity. Most interestingly, we did not find any upregulation of the specific lymphocyte-mediated immune response. Also, the pattern of activation of the innate immune system did not match our expectations: the proliferation of monocytes followed fluctuating kinetics suggesting that the parasite repeatedly installs a new surface coat not immunogenic to the host. Furthermore, the respiratory burst activity, which has the potential to clear an early S. solidus infection, was upregulated very late during infection, when the parasite was too big to be cleared but ready for transmission to its final host. We here suggest that the late activation of the innate immune system interferes with the neuroendocrine system, which mediates reduced predation avoidance behaviour and so facilitates the transmission to the final host.
Collapse
Affiliation(s)
- Jörn Peter Scharsack
- Department of Evolutionary Ecology, Max-Planck-Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Plön, Germany
| | | | | |
Collapse
|
16
|
Scharsack JP, Kalbe M, Harrod C, Rauch G. Habitat-specific adaptation of immune responses of stickleback (Gasterosteus aculeatus) lake and river ecotypes. Proc Biol Sci 2008; 274:1523-32. [PMID: 17426014 PMCID: PMC2176159 DOI: 10.1098/rspb.2007.0210] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Freshwater populations of three-spined sticklebacks (Gasterosteus aculeatus) in northern Germany are found as distinct lake and river ecotypes. Adaptation to habitat-specific parasites might influence immune capabilities of stickleback ecotypes. Here, naive laboratory-bred sticklebacks from lake and river populations were exposed reciprocally to parasite environments in a lake and a river habitat. Sticklebacks exposed to lake conditions were infected with higher numbers of parasite species when compared with the river. River sticklebacks in the lake had higher parasite loads than lake sticklebacks in the same habitat. Respiratory burst, granulocyte counts and lymphocyte proliferation of head kidney leucocytes were increased in river sticklebacks exposed to lake when compared with river conditions. Although river sticklebacks exposed to lake conditions showed elevated activation of their immune system, parasites could not be diminished as effectively as by lake sticklebacks in their native habitat. River sticklebacks seem to have reduced their immune-competence potential due to lower parasite diversity in rivers.
Collapse
Affiliation(s)
- Jörn P Scharsack
- Department of Evolutionary Ecology, Max-Planck-Institute for Limnology, August-Thienemann-Strasse 2, 24306 Plön, Germany.
| | | | | | | |
Collapse
|
17
|
Morley NJ, Lewis JW, Hoole D. Pollutant-induced effects on immunological and physiological interactions in aquatic host–trematode systems: implications for parasite transmission. J Helminthol 2007; 80:137-49. [PMID: 16768857 DOI: 10.1079/joh2006345] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AbstractUnder conditions of pollution both host and parasite are susceptible to the pathogenic effects of toxicants, which in turn may result in detrimental changes to their immunological and physiological processes. Digenetic trematodes, which encompass species of both medical and economic importance, possess complex life cycles and are common parasites of both vertebrates and molluscs. The combined stress induced by pollution and parasitism influences the physiology of the host which can have implications not only on host survival but also on the functional biology of resident parasite populations. The present paper reviews the effects of pollutants on the immunology and physiology in both vertebrate and molluscan host–trematode systems and the implications for parasite transmission.
Collapse
Affiliation(s)
- N J Morley
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK.
| | | | | |
Collapse
|