1
|
Riyal H, Ferreira TR, Paun A, Ghosh K, Samaranayake N, Sacks DL, Karunaweera ND. First evidence of experimental genetic hybridization between cutaneous and visceral strains of Leishmania donovani within its natural vector Phlebotomus argentipes. Acta Trop 2023; 245:106979. [PMID: 37391025 PMCID: PMC11332911 DOI: 10.1016/j.actatropica.2023.106979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Leishmaniasis is a neglected tropical disease caused by protozoan parasites of genus Leishmania, and transmitted by different species of Phlebotomine sand flies. More than 20 species of Leishmania are known to cause disease in humans and other animals. Leishmania donovani species complex is known to have a vast diversity of clinical manifestations in humans, but underlying mechanisms for such diversity are yet unknown. Long believed to be strictly asexual, Leishmania have been shown to undergo a cryptic sexual cycle inside its sandfly vector. Natural populations of hybrid parasites have been associated with the rise of atypical clinical outcomes in the Indian subcontinent (ISC). However, formal demonstration of genetic crossing in the major endemic sandfly species in the ISC remain unexplored. Here, we investigated the ability of two distinct variants of L. donovani associated with strikingly different forms of the disease to undergo genetic exchange inside its natural vector, Phlebotomus argentipes. Clinical isolates of L. donovani either from a Sri Lankan cutaneous leishmaniasis (CL) patient or an Indian visceral leishmaniasis (VL) patient were genetically engineered to express different fluorescent proteins and drug-resistance markers and subsequently used as parental strains in experimental sandfly co-infection. After 8 days of infection, sand flies were dissected and midgut promastigotes were transferred into double drug-selective media. Two double drug-resistant, dual fluorescent hybrid cell lines were recovered, which after cloning and whole genome sequencing, were shown to be full genomic hybrids. This study provides the first evidence of L. donovani hybridization within its natural vector Ph. argentipes.
Collapse
Affiliation(s)
- Hasna Riyal
- Department of Parasitology, Faculty of Medicine, University of Colombo, Sri Lanka
| | - Tiago R Ferreira
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrea Paun
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kashinath Ghosh
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - David L Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Nadira D Karunaweera
- Department of Parasitology, Faculty of Medicine, University of Colombo, Sri Lanka.
| |
Collapse
|
2
|
Silva JA, Pinheiro AI, Dourado ML, Medina L, Queiroz A, Guimarães LH, Lessa MM, Lago EL, Machado PRL, Wilson ME, Carvalho EM, Schriefer A. Leishmania braziliensis causing human disease in Northeast Brazil presents loci with genotypes in long-term equilibrium. PLoS Negl Trop Dis 2022; 16:e0010390. [PMID: 35704664 PMCID: PMC9239440 DOI: 10.1371/journal.pntd.0010390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/28/2022] [Accepted: 04/03/2022] [Indexed: 11/23/2022] Open
Abstract
Background Leishmaniases are neglected tropical diseases that inflict great burden to poor areas of the globe. Intense research has aimed to identify parasite genetic signatures predictive of infection outcomes. Consistency of diagnostic tools based on these markers would greatly benefit from accurate understanding of Leishmania spp. population genetics. We explored two chromosomal loci to characterize a population of L. braziliensis causing human disease in Northeast Brazil. Methodology/Principal findings Two temporally distinct samples of L. braziliensis were obtained from patients attending the leishmaniasis clinic at the village of Corte de Pedra: (2008–2011) primary sample, N = 120; (1999–2001) validation sample, N = 35. Parasites were genotyped by Sanger’s sequencing of two 600 base pairs loci starting at nucleotide positions 3,074 and 425,451 of chromosomes 24 and 28, respectively. Genotypes based on haplotypes of biallelic positions in each locus were tested for several population genetic parameters as well as for geographic clustering within the region. Ample geographic overlap of genotypes at the two loci was observed as indicated by non-significant Cusick and Edward’s comparisons. No linkage disequilibrium was detected among combinations of haplotypes for both parasite samples. Homozygous and heterozygous genotypes displayed Hardy-Weinberg equilibrium (HWE) at both loci in the two samples when straight observed and expected counts were compared by Chi-square (p>0.5). However, Bayesian statistics using one million Monte-Carlo randomizations disclosed a less robust HWE for chromosome 24 genotypes, particularly in the primary sample (p = 0.04). Fixation indices (Fst) were consistently lower than 0.05 among individuals of the two samples at both tested loci, and no intra-populational structuralization could be detected using STRUCTURE software. Conclusions/Significance These findings suggest that L. braziliensis can maintain stable populations in foci of human leishmaniasis and are capable of robust genetic recombination possibly due to events of sexual reproduction during the parasite’s lifecycle. Leishmania braziliensis affects poor human populations in the tropics, may cause face disfiguring lesions and may also resist treatment. There has been intense research for markers in these parasites genetic contents for helping predict if an infected human being would be of greater chance of severe disease or treatment failure. The consistent identification of such markers requires a deep understanding of how genes circulate within these parasites’ natural populations. We explored two small segments of DNA (i.e. loci), one on chromosome 24, the other on chromosome 28 of L. braziliensis to characterize a population that causes human disease in Northeast Brazil. We employed two samples of parasites obtained from lesions of patients diagnosed from 1999 to 2001, and from 2008 to 2011. We sequenced the DNA of those loci in each parasite of the two samples. Then, we evaluated the status of several population genetics parameters among them. Based on our findings to that region, we concluded that L. braziliensis can maintain populations that are genetically stable for several years in foci of human leishmaniasis and are capable of robust recombination of their genetic contents, probably due to events of sexual reproduction during its lifecycle.
Collapse
Affiliation(s)
- Juliana A. Silva
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia (UFBA), Salvador, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina da Bahia, UFBA, Salvador, Brazil
| | - Ana Isabelle Pinheiro
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia (UFBA), Salvador, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina da Bahia, UFBA, Salvador, Brazil
| | - Maria Luiza Dourado
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Lilian Medina
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia (UFBA), Salvador, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina da Bahia, UFBA, Salvador, Brazil
| | - Adriano Queiroz
- Instituto Gonçalo Moniz, Fundação Instituto Oswaldo Cruz, Salvador, Brazil
| | - Luiz Henrique Guimarães
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia (UFBA), Salvador, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Salvador, Brazil
- Universidade Federal do Sul da Bahia, Teixeira de Freitas, Brazil
| | - Marcus Miranda Lessa
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina da Bahia, UFBA, Salvador, Brazil
| | - Ednaldo L. Lago
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia (UFBA), Salvador, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Salvador, Brazil
| | - Paulo Roberto L. Machado
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia (UFBA), Salvador, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina da Bahia, UFBA, Salvador, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Salvador, Brazil
| | - Mary E. Wilson
- Departments of Internal Medicine and Microbiology, University of Iowa and the VA Medical Center, Iowa City, Iowa, United States of America
| | - Edgar M. Carvalho
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia (UFBA), Salvador, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina da Bahia, UFBA, Salvador, Brazil
- Instituto Gonçalo Moniz, Fundação Instituto Oswaldo Cruz, Salvador, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Salvador, Brazil
| | - Albert Schriefer
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia (UFBA), Salvador, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina da Bahia, UFBA, Salvador, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Salvador, Brazil
- Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, UFBA, Salvador, Brazil
- * E-mail:
| |
Collapse
|
3
|
Louradour I, Ferreira TR, Duge E, Karunaweera N, Paun A, Sacks D. Stress conditions promote Leishmania hybridization in vitro marked by expression of the ancestral gamete fusogen HAP2 as revealed by single-cell RNA-seq. eLife 2022; 11:73488. [PMID: 34994687 PMCID: PMC8794473 DOI: 10.7554/elife.73488] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/06/2022] [Indexed: 12/18/2022] Open
Abstract
Leishmania are protozoan parasites transmitted by the bite of sand fly vectors producing a wide spectrum of diseases in their mammalian hosts. These diverse clinical outcomes are directly associated with parasite strain and species diversity. Although Leishmania reproduction is mainly clonal, a cryptic sexual cycle capable of producing hybrid genotypes has been inferred from population genetic studies and directly demonstrated by laboratory crosses. Experimentally, mating competence has been largely confined to promastigotes developing in the sand fly midgut. The ability to hybridize culture promastigotes in vitro has been limited so far to low-efficiency crosses between two Leishmania tropica strains, L747 and MA37, that mate with high efficiency in flies. Here, we show that exposure of promastigote cultures to DNA damage stress produces a remarkably enhanced efficiency of in vitro hybridization of the L. tropica strains and extends to other species, including Leishmania donovani, Leishmania infantum, and Leishmania braziliensis, a capacity to generate intra- and interspecific hybrids. Whole-genome sequencing and total DNA content analyses indicate that the hybrids are in each case full genome, mostly tetraploid hybrids. Single-cell RNA sequencing of the L747 and MA37 parental lines highlights the transcriptome heterogeneity of culture promastigotes and reveals discrete clusters that emerge post-irradiation in which genes potentially involved in genetic exchange are expressed, including the ancestral gamete fusogen HAP2. By generating reporter constructs for HAP2, we could select for promastigotes that could either hybridize or not in vitro. Overall, this work reveals that there are specific populations involved in Leishmania hybridization associated with a discernible transcriptomic signature, and that stress facilitated in vitro hybridization can be a transformative approach to generate large numbers of hybrid genotypes between diverse species and strains.
Collapse
Affiliation(s)
- Isabelle Louradour
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, United States
| | - Tiago Rodrigues Ferreira
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, United States
| | - Emma Duge
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, United States
| | - Nadira Karunaweera
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Andrea Paun
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, United States
| | - David Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, United States
| |
Collapse
|
4
|
Lima ACS, Gomes CMC, Tomokane TY, Campos MB, Zampieri RA, Jorge CL, Laurenti MD, Silveira FT, Corbett CEP, Floeter-Winter LM. Molecular tools confirm natural Leishmania (Viannia) guyanensis/L. (V.) shawi hybrids causing cutaneous leishmaniasis in the Amazon region of Brazil. Genet Mol Biol 2021; 44:e20200123. [PMID: 33949621 PMCID: PMC8108439 DOI: 10.1590/1678-4685-gmb-2020-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 03/03/2021] [Indexed: 11/22/2022] Open
Abstract
Seven isolates from patients with American cutaneous leishmaniasis in the Amazon region of Brazil were phenotypically suggestive of Leishmania (Viannia) guyanensis/L. (V.) shawi hybrids. In this work, two molecular targets were employed to check the hybrid identity of the putative hybrids. Heat shock protein 70 (hsp70) gene sequences were analyzed by three different polymerase chain reaction (PCR) approaches, and two different patterns of inherited hsp70 alleles were found. Three isolates presented heterozygous L. (V.) guyanensis/L. (V.) shawi patterns, and four presented homozygous hsp70 patterns involving only L. (V.) shawi alleles. The amplicon sequences confirmed the RFLP patterns. The high-resolution melting method detected variant heterozygous and homozygous profiles. Single-nucleotide polymorphism genotyping/cleaved amplified polymorphic site analysis suggested a higher contribution from L. (V.) guyanensis in hsp70 heterozygous hybrids. Additionally, PCR-RFLP analysis targeting the enzyme mannose phosphate isomerase (mpi) gene indicated heterozygous and homozygous cleavage patterns for L. (V.) shawi and L. (V.) guyanensis, corroborating the hsp70 findings. In this communication, we present molecular findings based on partial informative regions of the coding sequences of hsp70 and mpi as markers confirming that some of the parasite strains from the Brazilian Amazon region are indeed hybrids between L. (V.) guyanensis and L. (V.) shawi.
Collapse
Affiliation(s)
- Ana Carolina S Lima
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Patologia, São Paulo, SP, Brazil.,Ministério da Saúde, Secretaria de Vigilância em Saúde, Instituto Evandro Chagas, Belém, PA, Brazil
| | - Claudia Maria C Gomes
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Patologia, São Paulo, SP, Brazil
| | - Thaise Y Tomokane
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Patologia, São Paulo, SP, Brazil
| | - Marliane Batista Campos
- Ministério da Saúde, Secretaria de Vigilância em Saúde, Instituto Evandro Chagas, Belém, PA, Brazil
| | - Ricardo A Zampieri
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, São Paulo, SP, Brazil
| | - Carolina L Jorge
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, São Paulo, SP, Brazil
| | - Marcia D Laurenti
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Patologia, São Paulo, SP, Brazil
| | - Fernando T Silveira
- Ministério da Saúde, Secretaria de Vigilância em Saúde, Instituto Evandro Chagas, Belém, PA, Brazil
| | - Carlos Eduardo P Corbett
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Patologia, São Paulo, SP, Brazil
| | | |
Collapse
|
5
|
S. L. Figueiredo de Sá B, Rezende AM, de Melo Neto OP, de Brito MEF, Brandão Filho SP. Identification of divergent Leishmania (Viannia) braziliensis ecotypes derived from a geographically restricted area through whole genome analysis. PLoS Negl Trop Dis 2019; 13:e0007382. [PMID: 31170148 PMCID: PMC6581274 DOI: 10.1371/journal.pntd.0007382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 06/18/2019] [Accepted: 04/10/2019] [Indexed: 01/22/2023] Open
Abstract
Leishmania braziliensis, the main etiological agent of cutaneous leishmaniasis (CL) in Latin America, is characterized by major differences in basic biology in comparison with better-known Leishmania species. It is also associated with a high phenotypic and possibly genetic diversity that need to be more adequately defined. Here we used whole genome sequences to evaluate the genetic diversity of ten L. braziliensis isolates from a CL endemic area from Northeastern Brazil, previously classified by Multi Locus Enzyme Electrophoresis (MLEE) into ten distinct zymodemes. These sequences were first mapped using the L. braziliensis M2904 reference genome followed by identification of Single Nucleotide Polymorphisms (SNPs). A substantial level of diversity was observed when compared with the reference genome, with SNP counts ranging from ~95,000 to ~131,000 for the different isolates. When the genome data was used to infer relationship between isolates, those belonging to zymodemes Z72/Z75, recovered from forested environments, were found to cluster separately from the others, generally associated with more urban environments. Among the remaining isolates, those from zymodemes Z74/Z106 were also found to form a separate group. Phylogenetic analyses were also performed using Multi-Locus Sequence Analysis from genes coding for four metabolic enzymes used for MLEE as well as the gene sequence coding for the Hsp70 heat shock protein. All 10 isolates were firmly identified as L. braziliensis, including the zymodeme Z26 isolate previously classified as Leishmania shawi, with the clustering into three groups confirmed. Aneuploidy was also investigated but found in general restricted to chromosome 31, with a single isolate, from zymodeme Z27, characterized by extra copies for other chromosomes. Noteworthy, both Z72 and Z75 isolates are characterized by a much reduced heterozygosity. Our data is consistent with the existence of distinct evolutionary groups in the restricted area sampled and a substantial genetic diversity within L. braziliensis.
Collapse
Affiliation(s)
| | - Antonio M. Rezende
- Department of Microbiology, Aggeu Magalhães Institute/FIOCRUZ, Recife, Pernambuco, Brazil
| | | | | | | |
Collapse
|
6
|
Inbar E, Shaik J, Iantorno SA, Romano A, Nzelu CO, Owens K, Sanders MJ, Dobson D, Cotton JA, Grigg ME, Beverley SM, Sacks D. Whole genome sequencing of experimental hybrids supports meiosis-like sexual recombination in Leishmania. PLoS Genet 2019; 15:e1008042. [PMID: 31091230 PMCID: PMC6519804 DOI: 10.1371/journal.pgen.1008042] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/21/2019] [Indexed: 11/29/2022] Open
Abstract
Hybrid genotypes have been repeatedly described among natural isolates of Leishmania, and the recovery of experimental hybrids from sand flies co-infected with different strains or species of Leishmania has formally demonstrated that members of the genus possess the machinery for genetic exchange. As neither gamete stages nor cell fusion events have been directly observed during parasite development in the vector, we have relied on a classical genetic analysis to determine if Leishmania has a true sexual cycle. Here, we used whole genome sequencing to follow the chromosomal inheritance patterns of experimental hybrids generated within and between different strains of L. major and L. infantum. We also generated and sequenced the first experimental hybrids in L. tropica. We found that in each case the parental somy and allele contributions matched the inheritance patterns expected under meiosis 97–99% of the time. The hybrids were equivalent to F1 progeny, heterozygous throughout most of the genome for the markers that were homozygous and different between the parents. Rare, non-Mendelian patterns of chromosomal inheritance were observed, including a gain or loss of somy, and loss of heterozygosity, that likely arose during meiosis or during mitotic divisions of the progeny clones in the fly or culture. While the interspecies hybrids appeared to be sterile, the intraspecies hybrids were able to produce backcross and outcross progeny. Analysis of 5 backcross and outcross progeny clones generated from an L. major F1 hybrid, as well as 17 progeny clones generated from backcrosses involving a natural hybrid of L. tropica, revealed genome wide patterns of recombination, demonstrating that classical crossing over occurs at meiosis, and allowed us to construct the first physical and genetic maps in Leishmania. Altogether, the findings provide strong evidence for meiosis-like sexual recombination in Leishmania, presenting clear opportunities for forward genetic analysis and positional cloning of important genes. Leishmania promastigotes are able to undergo genetic exchange during their growth and development in the sand fly vector, however, it is still not known if they have a true sexual cycle involving meiosis. Here, we used whole genome sequencing to follow the chromosomal inheritance patterns of 44 experimental hybrids generated between different strains of L. major, L. infantum, and L. tropica. In almost every case the number of chromosomes and the allele contributions from each parent matched the inheritance patterns expected under meiosis. Rare instances of hybrid chromosomes that did not fit Mendelian expectations were observed, including gain or loss of somy, and loss of heterozygosity. Strong evidence for a meiotic-like process was also obtained from the genome wide patterns of recombination observed in the offspring generated from backcrosses involving an experimental or natural hybrid, consistent with crossing over occurring between homologous chromosomes during meiosis. The frequency and position of the recombination breakpoints observed on each chromosome allowed us to construct the first physical and genetic maps in Leishmania. The results demonstrate that forward genetic approaches are possible for positional cloning of important genes.
Collapse
Affiliation(s)
- Ehud Inbar
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jahangheer Shaik
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine in St Louis, St Louis, Missouri, United States of America
| | - Stefano A. Iantorno
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Audrey Romano
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chukwunonso O. Nzelu
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Katherine Owens
- Department of Molecular Microbiology, Washington University School of Medicine in St Louis, St Louis, Missouri, United States of America
| | - Mandy J. Sanders
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Deborah Dobson
- Department of Molecular Microbiology, Washington University School of Medicine in St Louis, St Louis, Missouri, United States of America
| | - James A. Cotton
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Michael E. Grigg
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine in St Louis, St Louis, Missouri, United States of America
| | - David Sacks
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: ,
| |
Collapse
|
7
|
Prieto Barja P, Pescher P, Bussotti G, Dumetz F, Imamura H, Kedra D, Domagalska M, Chaumeau V, Himmelbauer H, Pages M, Sterkers Y, Dujardin JC, Notredame C, Späth GF. Haplotype selection as an adaptive mechanism in the protozoan pathogen Leishmania donovani. Nat Ecol Evol 2017; 1:1961-1969. [DOI: 10.1038/s41559-017-0361-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/26/2017] [Indexed: 11/09/2022]
|
8
|
Boité MC, de Oliveira TS, Ferreira GEM, Trannin M, dos Santos BN, Porrozzi R, Cupolillo E. Polymorphisms and ambiguous sites present in DNA sequences of Leishmania clones: looking closer. INFECTION GENETICS AND EVOLUTION 2014; 25:110-6. [PMID: 24768683 DOI: 10.1016/j.meegid.2014.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 04/09/2014] [Accepted: 04/13/2014] [Indexed: 10/25/2022]
Abstract
In genetic studies of Leishmania parasites, co-dominant markers are chosen for their ability to detect heterozygous polymorphisms, to infer the occurrence of inbreeding and to resolve genetic variability. The majority of DNA sequence based reports perform conventional dye terminator cycle sequencing where perfectly ambiguous sites or double peaks in the chromatogram are interpreted as heterozygous strains. However, molecular peculiarities of the parasite such as aneuploidy, mixed populations and homologous recombination advise that data from regular DNA sequence analysis should be carefully evaluated. We report here a closer look at ambiguous sites observed in 6pgd DNA sequences obtained for a multilocus sequence analysis project on Leishmania (Viannia) strains. After comparing 286 DNA sequences from biological and molecular clones of six L. (Viannia) strains we could distinguish events that contribute to genetic variation in Leishmania (recombination, mutation, chromosomal mosaics). Also, the results suggest how diversity might not be completely revealed through regular DNA sequence analysis and demonstrate the importance for molecular epidemiology research to be aware of such possibilities while choosing samples for studies.
Collapse
Affiliation(s)
- Mariana Côrtes Boité
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil.
| | - Taíse Salgado de Oliveira
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Gabriel Eduardo Melim Ferreira
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Marcos Trannin
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Barbara Neves dos Santos
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Renato Porrozzi
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Elisa Cupolillo
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Restrepo CM, De La Guardia C, Sousa OE, Calzada JE, Fernández PL, Lleonart R. AFLP polymorphisms allow high resolution genetic analysis of American Tegumentary Leishmaniasis agents circulating in Panama and other members of the Leishmania genus. PLoS One 2013; 8:e73177. [PMID: 24039881 PMCID: PMC3767818 DOI: 10.1371/journal.pone.0073177] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/18/2013] [Indexed: 11/18/2022] Open
Abstract
American Tegumentary Leishmaniasis is caused by parasites of the genus Leishmania, and causes significant health problems throughout the Americas. In Panama, Leishmania parasites are endemic, causing thousands of new cases every year, mostly of the cutaneous form. In the last years, the burden of the disease has increased, coincident with increasing disturbances in its natural sylvatic environments. The study of genetic variation in parasites is important for a better understanding of the biology, population genetics, and ultimately the evolution and epidemiology of these organisms. Very few attempts have been made to characterize genetic polymorphisms of parasites isolated from Panamanian patients of cutaneous leishmaniasis. Here we present data on the genetic variability of local isolates of Leishmania, as well as specimens from several other species, by means of Amplified Fragment Length Polymorphisms (AFLP), a technique seldom used to study genetic makeup of parasites. We demonstrate that this technique allows detection of very high levels of genetic variability in local isolates of Leishmania panamensis in a highly reproducible manner. The analysis of AFLP fingerprints generated by unique selective primer combinations in L. panamensis suggests a predominant clonal mode of reproduction. Using fluorescently labeled primers, many taxon-specific fragments were identified which may show potential as species diagnostic fragments. The AFLP permitted a high resolution genetic analysis of the Leishmania genus, clearly separating certain groups among L. panamensis specimens and highly related species such as L. panamensis and L. guyanensis. The phylogenetic networks reconstructed from our AFLP data are congruent with established taxonomy for the genus Leishmania, even when using single selective primer combinations. Results of this study demonstrate that AFLP polymorphisms can be informative for genetic characterization in Leishmania parasites, at both intra and inter-specific levels.
Collapse
Affiliation(s)
- Carlos M Restrepo
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Ciudad de Panamá, Panamá ; Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | | | | | | | | | | |
Collapse
|
10
|
Mannaert A, Downing T, Imamura H, Dujardin JC. Adaptive mechanisms in pathogens: universal aneuploidy in Leishmania. Trends Parasitol 2012; 28:370-6. [PMID: 22789456 DOI: 10.1016/j.pt.2012.06.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/14/2012] [Accepted: 06/14/2012] [Indexed: 02/07/2023]
Abstract
Genomic stability and maintenance of the correct chromosome number are assumed to be essential for normal development in eukaryotes. Aneuploidy is usually associated with severe abnormalities and decrease of cell fitness, but some organisms appear to rely on aneuploidy for rapid adaptation to changing environments. This phenomenon is mostly described in pathogenic fungi and cancer cells. However, recent genome studies highlight the importance of Leishmania as a new model for studies on aneuploidy. Several reports revealed extensive variation in chromosome copy number, indicating that aneuploidy is a constitutive feature of this protozoan parasite genus. Aneuploidy appears to be beneficial in organisms that are primarily asexual, unicellular, and that undergo sporadic epidemic expansions, including common pathogens as well as cancer.
Collapse
Affiliation(s)
- An Mannaert
- Unit of Molecular Parasitology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | | | | |
Collapse
|
11
|
Adaui V, Maes I, Huyse T, Van den Broeck F, Talledo M, Kuhls K, De Doncker S, Maes L, Llanos-Cuentas A, Schönian G, Arevalo J, Dujardin JC. Multilocus genotyping reveals a polyphyletic pattern among naturally antimony-resistant Leishmania braziliensis isolates from Peru. INFECTION GENETICS AND EVOLUTION 2011; 11:1873-80. [PMID: 21871584 DOI: 10.1016/j.meegid.2011.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/29/2011] [Accepted: 08/01/2011] [Indexed: 10/17/2022]
Abstract
In order to understand the epidemiological dynamics of antimonial (Sb(V)) resistance in zoonotic tegumentary leishmaniasis and its link with treatment outcome, we analyzed the population structure of 24 Peruvian Leishmania braziliensis clinical isolates with known in vitro antimony susceptibility and clinical phenotype by multilocus microsatellite typing (14 microsatellite loci). The genetic variability in the Peruvian isolates was high and the multilocus genotypes were strongly differentiated from each other. No correlation was found between the genotypes and in vitro drug susceptibility or clinical treatment outcome. The finding of a polyphyletic pattern among the Sb(V)-resistant L. braziliensis might be explained by (i) independent events of drug resistance emergence, (ii) sexual recombination and/or (iii) other phenomena mimicking recombination signals. Interestingly, the polyphyletic pattern observed here is very similar to the one we observed in the anthroponotic Leishmania donovani (Laurent et al., 2007), hereby questioning the role of transmission and/or chemotherapeutic drug pressure in the observed population structure.
Collapse
Affiliation(s)
- Vanessa Adaui
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lewis MD, Llewellyn MS, Gaunt MW, Yeo M, Carrasco HJ, Miles MA. Flow cytometric analysis and microsatellite genotyping reveal extensive DNA content variation in Trypanosoma cruzi populations and expose contrasts between natural and experimental hybrids. Int J Parasitol 2009; 39:1305-17. [PMID: 19393242 PMCID: PMC2731025 DOI: 10.1016/j.ijpara.2009.04.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 04/03/2009] [Accepted: 04/06/2009] [Indexed: 12/05/2022]
Abstract
Trypanosoma cruzi exhibits remarkable genetic heterogeneity. This is evident at the nucleotide level but also structurally, in the form of karyotypic variation and DNA content differences between strains. Although natural populations of T. cruzi are predominantly clonal, hybrid lineages (TcIId and TcIIe) have been identified and hybridisation has been demonstrated in vitro, raising the possibility that genetic exchange may continue to shape the evolution of this pathogen. The mechanism of genetic exchange identified in the laboratory is unusual, apparently involving fusion of diploid parents followed by genome erosion. We investigated DNA content diversity in natural populations of T. cruzi in the context of its genetic subdivisions by using flow cytometric analysis and multilocus microsatellite genotyping to determine the relative DNA content and estimate the ploidy of 54 cloned isolates. The maximum difference observed was 47.5% between strain Tu18 cl2 (TcIIb) and strain C8 cl1 (TcI), which we estimated to be equivalent to ∼73 Mb of DNA. Large DNA content differences were identified within and between discrete typing units (DTUs). In particular, the mean DNA content of TcI strains was significantly less than that for TcII strains (P < 0.001). Comparisons of hybrid DTUs TcIId/IIe with corresponding parental DTUs TcIIb/IIc indicated that natural hybrids are predominantly diploid. We also measured the relative DNA content of six in vitro-generated TcI hybrid clones and their parents. In contrast to TcIId/IIe hybrid strains these experimental hybrids comprised populations of sub-tetraploid organisms with mean DNA contents 1.65–1.72 times higher than the parental organisms. The DNA contents of both parents and hybrids were shown to be relatively stable after passage through a mammalian host, heat shock or nutritional stress. The results are discussed in the context of hybridisation mechanisms in both natural and in vitro settings.
Collapse
|
13
|
In vitro effects of growth factors and hormones on three Perkinsus species and increased proliferation of P. marinus during cloning. Exp Parasitol 2009; 121:257-67. [DOI: 10.1016/j.exppara.2008.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 11/21/2008] [Accepted: 11/26/2008] [Indexed: 11/20/2022]
|
14
|
Bañuls AL, Hide M, Prugnolle F. Leishmania and the leishmaniases: a parasite genetic update and advances in taxonomy, epidemiology and pathogenicity in humans. ADVANCES IN PARASITOLOGY 2007; 64:1-109. [PMID: 17499100 DOI: 10.1016/s0065-308x(06)64001-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Leishmaniases remain a major public health problem today despite the vast amount of research conducted on Leishmania pathogens. The biological model is genetically and ecologically complex. This paper explores the advances in Leishmania genetics and reviews population structure, taxonomy, epidemiology and pathogenicity. Current knowledge of Leishmania genetics is placed in the context of natural populations. Various studies have described a clonal structure for Leishmania but recombination, pseudo-recombination and other genetic processes have also been reported. The impact of these different models on epidemiology and the medical aspects of leishmaniases is considered from an evolutionary point of view. The role of these parasites in the expression of pathogenicity in humans is also explored. It is important to ascertain whether genetic variability of the parasites is related to the different clinical expressions of leishmaniasis. The review aims to put current knowledge of Leishmania and the leishmaniases in perspective and to underline priority questions which 'leishmaniacs' must answer in various domains: epidemiology, population genetics, taxonomy and pathogenicity. It concludes by presenting a number of feasible ways of responding to these questions.
Collapse
Affiliation(s)
- Anne-Laure Bañuls
- Institut de Recherche pour le Développement, UMR CNRS/IRD 2724, Génétique et Evolution des Maladies Infectieuses, IRD Montpellier, 911 avenue Agropolis, 34394 Montpellier cedex 5, France
| | | | | |
Collapse
|