1
|
Inceboz T. One Health Concept against Schistosomiasis: An Overview. Infect Dis (Lond) 2022. [DOI: 10.5772/intechopen.106912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Schistosomiasis (bilharziasis) is a parasitic disease caused by Schistosoma spp. that belongs to trematode worms. These worms are known as “blood parasites”. This disease is included in “neglected tropical diseases” and “water-borne diseases”. The main species are Schistosoma (S.) haematobium, S. japonicum, S. mansoni, S. intercalatum, S. mekongi, S. guineensis and S. intercalatum, though there are more than 20 different species. The parasite in the definitive host may affect many organs and systems. The disease may become chronic and lasts 3–8 years and even up to 20–30 years. The definitive host is primarily human; however, in endemic areas animals such as monkeys, cattle, horses, rodents, cats, dogs are reservoirs. According to World Health Organization (WHO), schistosomiasis affects 250 million people, and causes 1.9 million deaths yearly in endemic areas. Moreover, due to global warming, the spread of the disease may increase. The effective way to fight against schistosomiasis is following the “one-health system”. Indeed, to overcome or “eradicate” this disease, we have to strive against different forms at different evolutionary stages of the worm such as, forms in humans, domestic or wild animals, and freshwater snails. If we combine the knowledge of professionals, we may achieve this goal.
Collapse
|
2
|
Wang X, Ruan L, Song Q, Wang W, Tong P, Kuang D, Lu C, Li N, Han Y, Dai J, Sun X. First report of Schistosoma sinensium infecting Tupaia belangeri and Tricula sp. LF. Int J Parasitol Parasites Wildl 2021; 14:84-90. [PMID: 33537205 PMCID: PMC7843412 DOI: 10.1016/j.ijppaw.2021.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 12/01/2022]
Abstract
Schistosoma sinensium belongs to the Asian Schistosoma and is transmitted by freshwater snails of the genus Tricula. Rodents are known definitive hosts of S. sinensium. In 2016, suspected schistosome eggs were found in the feces of the northern tree shrew (Tupaia belangeri) in a field in Lufeng County (latitude, 25°04'50″ N; longitude, 102°19'30″ E; altitude 1820 m), Yunnan Province, China. Morphological analysis suggested that the schistosome was S. sinensium. 18S, 12S and CO1 genes sequencing and phylogenetic analysis showed that this species had the highest similarity to and occupied the same evolutionary branch as S. sinensium from Mianzhu, Sichuan, China. Meanwhile, based on 16S and 28S rDNA sequencing and morphological identification, the snail intermediate host was identified as a species of Tricula, and was found in irrigation channels. Phylogeny indicated that Tricula sp. LF was a sister taxon to T. bambooensis, T. ludongbini. The S. sinensium was able to experimentally infect the captive-bred Tupaia belangeri, and Schistosoma eggs were recovered from all Tupaia belangeri exposed. In this study, we report the infection of Tupaia belangeri and Tricula sp. LF with S. sinensium in Lufeng, Yunnan, southwest China. These findings may improve our understanding of the host range, evolution, distribution, and phylogenetic position of S. sinensium.
Collapse
Affiliation(s)
- Xuan Wang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College. Kunming, 650118, PR China
| | - Leiying Ruan
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College. Kunming, 650118, PR China
| | - Qingkai Song
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College. Kunming, 650118, PR China
| | - Wenguang Wang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, PR China
| | - Pinfen Tong
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College. Kunming, 650118, PR China
| | - Dexuan Kuang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, PR China
| | - Caixia Lu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College. Kunming, 650118, PR China
| | - Na Li
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College. Kunming, 650118, PR China
| | - Yuanyuan Han
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College. Kunming, 650118, PR China
| | - Jiejie Dai
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College. Kunming, 650118, PR China
| | - Xiaomei Sun
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College. Kunming, 650118, PR China
| |
Collapse
|
3
|
Pritchard DI, Falcone FH, Mitchell PD. The evolution of IgE-mediated type I hypersensitivity and its immunological value. Allergy 2021; 76:1024-1040. [PMID: 32852797 DOI: 10.1111/all.14570] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022]
Abstract
The allergic phenotype manifests itself in a spectrum of troublesome to life-threatening diseases, from seasonal hay fever, through the food allergies, atopic eczema, asthma, to anaphylaxis. Allergy, that is an overreaction to allergen in hypersensitive individuals, results from the production of IgE, mast cell and basophil sensitisation and degranulation, requiring a range of medications to manage the conditions. Yet it is highly likely that allergy evolved for a purpose and that allergic diseases are accidental consequences of an insufficiently regulated immune response. This article presents a viewpoint from which to restore the immunological reputation of the allergic phenotype. We consider the evolutionary origins of potential allergens, toxins and parasites, and how they might have influenced early-mammal species in existence when IgE first developed. We conclude that the allergic phenotype has likely saved the lives of many more mammals than have ever died from allergy, so justifying the positive role of IgE in our evolution.
Collapse
Affiliation(s)
| | - Franco H. Falcone
- Institute for Parasitology Justus‐Liebig‐University Gießen Gießen Germany
| | | |
Collapse
|
4
|
Jones BP, Norman BF, Borrett HE, Attwood SW, Mondal MMH, Walker AJ, Webster JP, Rajapakse RPVJ, Lawton SP. Divergence across mitochondrial genomes of sympatric members of the Schistosoma indicum group and clues into the evolution of Schistosoma spindale. Sci Rep 2020; 10:2480. [PMID: 32051431 PMCID: PMC7015907 DOI: 10.1038/s41598-020-57736-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 01/07/2020] [Indexed: 11/21/2022] Open
Abstract
Schistosoma spindale and Schistosoma indicum are ruminant-infecting trematodes of the Schistosoma indicum group that are widespread across Southeast Asia. Though neglected, these parasites can cause major pathology and mortality to livestock leading to significant welfare and socio-economic issues, predominantly amongst poor subsistence farmers and their families. Here we used mitogenomic analysis to determine the relationships between these two sympatric species of schistosome and to characterise S. spindale diversity in order to identify possible cryptic speciation. The mitochondrial genomes of S. spindale and S. indicum were assembled and genetic analyses revealed high levels of diversity within the S. indicum group. Evidence of functional changes in mitochondrial genes indicated adaptation to environmental change associated with speciation events in S. spindale around 2.5 million years ago. We discuss our results in terms of their theoretical and applied implications.
Collapse
Affiliation(s)
- Ben P Jones
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy & Chemistry, Kingston University London, Kingston Upon Thames, Surrey, KT1 2EE, UK
| | - Billie F Norman
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy & Chemistry, Kingston University London, Kingston Upon Thames, Surrey, KT1 2EE, UK
| | - Hannah E Borrett
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy & Chemistry, Kingston University London, Kingston Upon Thames, Surrey, KT1 2EE, UK
| | - Stephen W Attwood
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Mohammed M H Mondal
- Department of Parasitology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Anthony J Walker
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy & Chemistry, Kingston University London, Kingston Upon Thames, Surrey, KT1 2EE, UK
| | - Joanne P Webster
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, The Royal Veterinary College, University of London, Hatfield, Hertfordshire, AL9 7TA, United Kingdom
| | - R P V Jayanthe Rajapakse
- Faculty of Veterinary Medicine and Animal Science, Department of Veterinary Pathobiology, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Scott P Lawton
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy & Chemistry, Kingston University London, Kingston Upon Thames, Surrey, KT1 2EE, UK.
| |
Collapse
|
5
|
Luo F, Yin M, Mo X, Sun C, Wu Q, Zhu B, Xiang M, Wang J, Wang Y, Li J, Zhang T, Xu B, Zheng H, Feng Z, Hu W. An improved genome assembly of the fluke Schistosoma japonicum. PLoS Negl Trop Dis 2019; 13:e0007612. [PMID: 31390359 PMCID: PMC6685614 DOI: 10.1371/journal.pntd.0007612] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 07/08/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Schistosoma japonicum is a parasitic flatworm that causes human schistosomiasis, which is a significant cause of morbidity in China and the Philippines. A single draft genome was available for S. japonicum, yet this assembly is very fragmented and only covers 90% of the genome, which make it difficult to be applied as a reference in functional genome analysis and genes discovery. FINDINGS In this study, we present a high-quality assembly of the fluke S. japonicum genome by combining 20 G (~53X) long single molecule real time sequencing reads with 80 G (~ 213X) Illumina paired-end reads. This improved genome assembly is approximately 370.5 Mb, with contig and scaffold N50 length of 871.9 kb and 1.09 Mb, representing 142.4-fold and 6.2-fold improvement over the released WGS-based assembly, respectively. Additionally, our assembly captured 85.2% complete and 4.6% partial eukaryotic Benchmarking Universal Single-Copy Orthologs. Repetitive elements account for 46.80% of the genome, and 10,089 of the protein-coding genes were predicted from the improved genome, of which 96.5% have been functionally annotated. Lastly, using the improved assembly, we identified 20 significantly expanded gene families in S. japonicum, and those genes were primarily enriched in functions of proteolysis and protein glycosylation. CONCLUSIONS Using the combination of PacBio and Illumina Sequencing technologies, we provided an improved high-quality genome of S. japonicum. This improved genome assembly, as well as the annotation, will be useful for the comparative genomics of the flukes and more importantly facilitate the molecular studies of this important parasite in the future.
Collapse
Affiliation(s)
- Fang Luo
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Mingbo Yin
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
| | - Xiaojin Mo
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
| | - Chengsong Sun
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Qunfeng Wu
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Bingkuan Zhu
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Manyu Xiang
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jipeng Wang
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yi Wang
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jian Li
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ting Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
| | - Bin Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Zheng Feng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
| | - Wei Hu
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
| |
Collapse
|
6
|
Phylogenetic relationships among European and Asian representatives of the genus Aspidogaster Baer, 1827 (Trematoda: Aspidogastrea) inferred from molecular data. J Helminthol 2017; 92:343-352. [DOI: 10.1017/s0022149x17000505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractIn the present study, phylogenetic relationships of European and Far Eastern representatives of the genus Aspidogaster Baer, 1827 were analysed: A. conchicola Baer, 1827, A. limacoides Diesing, 1834, A. ijimai Kawamura, 1915 and A. chongqingensis Wei, Huang & Dai, 2001. Based on ITS1–5.8S–ITS2 rDNA sequence data, an obvious differentiation was seen between specimens of A. limacoides sensu stricto from the European part of Russia and A. limacoides sensu Chen et al., 2010 from China (13.7%); the latter parasites were recognized as A. chongqingensis. Aspidogaster chongqingensis was more closely related to A. ijimai than to A. limacoides s. str. Specimens of A. ijimai from the Amur River, Khanka Lake (Russian Far East) and China were grouped into a single clade with low intra specific molecular differentiation (d = 0–0.3%). Specimens of A. conchicola from the European part of Russia, the Russian Far East and China also formed a single distinct clade. Genetic differentiation between European and Chinese samples of this species was two times lower (d = 0.45%) than between Russian Far East and European or Chinese samples (d = 0.96%), suggesting a long-term separate existence of A. conchicola in the Russian Far East.
Collapse
|
7
|
Gauffre-Autelin P, von Rintelen T, Stelbrink B, Albrecht C. Recent range expansion of an intermediate host for animal schistosome parasites in the Indo-Australian Archipelago: phylogeography of the freshwater gastropod Indoplanorbis exustus in South and Southeast Asia. Parasit Vectors 2017; 10:126. [PMID: 28264699 PMCID: PMC5339995 DOI: 10.1186/s13071-017-2043-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 02/17/2017] [Indexed: 03/13/2024] Open
Abstract
Background The planorbid snail Indoplanorbis exustus is the sole intermediate host for the Schistosoma indicum species group, trematode parasites responsible for cattle schistosomiasis and human cercarial dermatitis. This freshwater snail is widely distributed in Southern Asia, ranging from Iran to China eastwards including India and from the southeastern Himalayas to Southeast Asia southwards. The veterinary and medical importance of this snail explains the interest in understanding its geographical distribution patterns and evolutionary history. In this study, we used a large and comprehensive sampling throughout Indo-Malaya, including specimens from South India and Indonesia, areas that have been formerly less studied. Results The phylogenetic inference revealed five highly divergent clades (genetic distances among clades: 4.4–13.9%) that are morphologically indistinguishable, supporting the assumption that this presumed nominal species may represent a cryptic species complex. The species group may have originated in the humid subtropical plains of Nepal or in southern adjacent regions in the Early Miocene. The major cladogenetic events leading to the fives clades occurred successively from the Early Miocene to the Early Pleistocene, coinciding with major periods of monsoonal intensification associated with major regional paleogeographic events in the Miocene and repeated climate changes due to the Plio-Pleistocene climatic oscillations. Our coverage of the Indo-Australian Archipelago (IAA) highlights the presence of a single clade there. Contrary to expectations, an AMOVA did not reveal any population genetic structure among islands or along a widely recognised zoogeographical regional barrier, suggesting a recent colonisation independent of natural biogeographical constraints. Neutrality tests and mismatch distributions suggested a sudden demographic and spatial population expansion that could have occurred naturally in the Pleistocene or may possibly result of a modern colonisation triggered by anthropogenic activities. Conclusions Even though Indoplanorbis is the main focus of this study, our findings may also have important implications for fully understanding its role in hosting digenetic trematodes. The existence of a cryptic species complex, the historical phylogeographical patterns and the recent range expansion in the IAA provide meaningful insights to the understanding and monitoring of the parasites potential spread. It brings a substantial contribution to veterinary and public health issues. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2043-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Thomas von Rintelen
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Björn Stelbrink
- Department of Animal Ecology and Systematics, Justus Liebig University, Giessen, Germany
| | - Christian Albrecht
- Department of Animal Ecology and Systematics, Justus Liebig University, Giessen, Germany
| |
Collapse
|
8
|
Devkota R, Brant SV, Loker ES. A genetically distinct Schistosoma from Radix luteola from Nepal related to Schistosoma turkestanicum: A phylogenetic study of schistosome and snail host. Acta Trop 2016; 164:45-53. [PMID: 27542535 DOI: 10.1016/j.actatropica.2016.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 08/08/2016] [Accepted: 08/13/2016] [Indexed: 11/29/2022]
Abstract
During a survey of freshwater snails in the Terai region of southern Nepal, 16 of 2588 specimens of Radix luteola from 4 different habitats were found to be shedding schistosome cercariae. None of the 1411 specimens of Radix acuminata we collected were positive for schistosomes. Analysis of 28S, cox1, 16S and 12S sequences indicated that all the R. luteola-derived schistosomes were genetically very similar to one another and, although unambiguously grouping most closely to the widespread Asian species Schistosoma turkestanicum, were clearly genetically distinct from it. We lack information from other life cycle stages to verify the specific identity of these cercariae, but it is possible they are of Schistosoma bomfordi or Schistosoma dattai, both species previously known only from northern India, the latter species known to infect R. luteola. This study provides sequence evidence for a third genetically distinct lymnaeid-transmitted Schistosoma lineage in Asia (to go along with S. turkestanicum and S. incognitum). As a close relative of S. turkestanicum, it provides the first direct molecular evidence to accompany morphological results from earlier studies for the presence of a S. turkestanicum species group in Asia. It increases to five the number of known or suspected mammalian schistosome species to be present in the Terai region of Nepal. Radix luteola and R. acuminata were identified and differentiated using conchological features and by molecular phylogenetic analyses of cox1 and 16S genes.
Collapse
Affiliation(s)
- Ramesh Devkota
- Navajo Technical University Chinle Site, PO box 849, Chinle, AZ 86503, USA.
| | - Sara V Brant
- Center for Evolutionary and Theoretical Immunology, Division of Parasitology, Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Eric S Loker
- Center for Evolutionary and Theoretical Immunology, Division of Parasitology, Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
9
|
Devkota R, Brant SV, Loker ES. The Schistosoma indicum species group in Nepal: presence of a new lineage of schistosome and use of the Indoplanorbis exustus species complex of snail hosts. Int J Parasitol 2015; 45:857-70. [PMID: 26385438 DOI: 10.1016/j.ijpara.2015.07.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/25/2015] [Accepted: 07/08/2015] [Indexed: 10/23/2022]
Abstract
From 2007-2014, 19,360 freshwater snails from the Terai and Hilly regions of Nepal were screened for cercariae of mammalian schistosomes. Based on analysis of mitochondrial cytochrome oxidase I, 12S, 16S and 28S sequences (3,675bp) of the cercariae recovered, we provide, to our knowledge, the first report of the Schistosoma indicum species group in Nepal. Five samples of Schistosoma nasale, nine of Schistosoma spindale and 17 of Schistosoma sp. were recovered, all from the snail Indoplanorbis exustus. The last-mentioned lineage failed to group in any of our analyses with S. nasale, S. spindale or S. indicum. It diverged in cox1 sequence from them by 16%, 13% and 13%, respectively, levels of difference comparable to well-studied species pairs of Schistosoma. Analysis of cox1, 16S and internal transcribed spacer 1 sequences (1,874bp) for Nepalese specimens of I. exustus was also surprising in revealing the presence of four genetically distinct clades. They diverged from one another at levels comparable to those noted for species pairs in the sister genus Bulinus. There was no obvious pattern of use by Nepalese Schistosoma of the Indoplanorbis clades. We found high support for a close relationship between S. indicum and Schistosoma haematobium groups, but failed to retrieve support for a clean separation of the two, with a tendency for S. nasale to fall as the most basal representative. If this pattern holds, hypotheses for the origin of the Asian Indoplanorbis-transmitted S. indicum group from the Bulinus-transmitted S. haematobium group may require modification, including consideration of more contemporaneous origins of the two groups. The Indian subcontinent is under-studied with respect to schistosome diversity and our current knowledge of the S. indicum and I. exustus species groups is inadequate. Further study is warranted given the ability of indicum group species to cause veterinary problems and cercarial dermatitis, with a worrisome potential in the future to establish infections in humans.
Collapse
Affiliation(s)
- Ramesh Devkota
- Center for Evolutionary and Theoretical Immunology, Division of Parasitology, Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Sara V Brant
- Center for Evolutionary and Theoretical Immunology, Division of Parasitology, Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Eric S Loker
- Center for Evolutionary and Theoretical Immunology, Division of Parasitology, Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
10
|
Liu L, Huo GN, He HB, Zhou B, Attwood SW. A phylogeny for the pomatiopsidae (Gastropoda: Rissooidea): a resource for taxonomic, parasitological and biodiversity studies. BMC Evol Biol 2014; 14:29. [PMID: 24548800 PMCID: PMC4016560 DOI: 10.1186/1471-2148-14-29] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 02/07/2014] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The Pomatiopsidae are reported from northern India into southern China and Southeast Asia, with two sub-families, the Pomatiopsinae (which include freshwater, amphibious, terrestrial and marine species) and the freshwater Triculinae. Both include species acting as intermediate host for species of the blood-fluke Schistosoma which cause a public health problem in East Asia. Also, with around 120 species, triculine biodiversity exceeds that of any other endemic freshwater molluscan fauna. Nevertheless, the origins of the Pomatiopsidae, the factors driving such a diverse radiation and aspects of their co-evolution with Schistosoma are not fully understood. Many taxonomic questions remain; there are problems identifying medically relevant species. The predicted range is mostly unsurveyed and the true biodiversity of the family is underestimated. Consequently, the aim of the study was to collect DNA-sequence data for as many pomatiopsid taxa as possible, as a first step in providing a resource for identification of epidemiologically significant species (by non-malacologists), for use in resolving taxonomic confusion and for testing phylogeographical hypotheses. RESULTS The evolutionary radiation of the Triculinae was shown to have been rapid and mostly post late Miocene. Molecular dating indicated that the radiation of these snails was driven first by the uplift of the Himalaya and onset of a monsoon system, and then by late-Pliocene global warming. The status of Erhaia as Anmicolidae is supported. The genera Tricula and Neotricula are shown to be non-monophyletic and the tribe Jullieniini may be polyphyletic (based on convergent characters). Triculinae from northern Vietnam could be derived from Gammatricula of Fujian/Yunnan, China. CONCLUSIONS The molecular dates and phylogenetic estimates in this study are consistent with an Australasian origin for the Pomatiopsidae and an East to West radiation via Oligocene Borneo-Philippines island hopping to Japan and then China (Triculinae arising mid-Miocene in Southeast China), and less so with a triculine origin in Tibet. The lack of monophyly in the medically important genera and indications of taxonomic inaccuracies, call for further work to identify epidemiologically significant taxa (e.g., Halewisia may be potential hosts for Schistosoma mekongi) and highlight the need for surveys to determine the true biodiversity of the Triculinae.
Collapse
Affiliation(s)
| | | | | | | | - Stephen W Attwood
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, 1 KeYuan 4 Lu, Chengdu, Sichuan 610041, People's Republic of China.
| |
Collapse
|
11
|
Brusentsov II, Katokhin AV, Brusentsova IV, Shekhovtsov SV, Borovikov SN, Goncharenko GG, Lider LA, Romashov BV, Rusinek OT, Shibitov SK, Suleymanov MM, Yevtushenko AV, Mordvinov VA. Low genetic diversity in wide-spread Eurasian liver fluke Opisthorchis felineus suggests special demographic history of this trematode species. PLoS One 2013; 8:e62453. [PMID: 23634228 PMCID: PMC3636034 DOI: 10.1371/journal.pone.0062453] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/21/2013] [Indexed: 01/09/2023] Open
Abstract
Opisthorchis felineus or Siberian liver fluke is a trematode parasite (Opisthorchiidae) that infects the hepato-biliary system of humans and other mammals. Despite its public health significance, this wide-spread Eurasian species is one of the most poorly studied human liver flukes and nothing is known about its population genetic structure and demographic history. In this paper, we attempt to fill this gap for the first time and to explore the genetic diversity in O. felineus populations from Eastern Europe (Ukraine, European part of Russia), Northern Asia (Siberia) and Central Asia (Northern Kazakhstan). Analysis of marker DNA fragments from O. felineus mitochondrial cytochrome c oxidase subunit 1 and 3 (cox1, cox3) and nuclear rDNA internal transcribed spacer 1 (ITS1) sequences revealed that genetic diversity is very low across the large geographic range of this species. Microevolutionary processes in populations of trematodes may well be influenced by their peculiar biology. Nevertheless, we suggest that lack of population genetics structure observed in O. felineus can be primarily explained by the Pleistocene glacial events and subsequent sudden population growth from a very limited group of founders. Rapid range expansion of O. felineus through Asian and European territories after severe bottleneck points to a high dispersal potential of this trematode species.
Collapse
Affiliation(s)
- Ilja I. Brusentsov
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexey V. Katokhin
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Irina V. Brusentsova
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergei V. Shekhovtsov
- Laboratory of Molecular Biotechnology, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergei N. Borovikov
- Department of Animal Biotechnology, S.Seifullin Kazakh Agrotechnical University, Astana, Republic of Kazakhstan
| | | | - Lyudmila A. Lider
- Department of Veterinary Medicine, S.Seifullin Kazakh Agrotechnical University, Astana, Republic of Kazakhstan
| | - Boris V. Romashov
- Scientific Department, Voronezh State Biosphere Reserve, Voronezh, Russia
| | - Olga T. Rusinek
- Department of Parasitology, The Baikal Museum at the Irkutsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Listvyanka, Irkutsk, Russia
| | - Samat K. Shibitov
- Department of Epizootological Problems, All-Russian K.I. Skryabin Institute of Helminthology, Moscow, Russia
| | - Marat M. Suleymanov
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Andrey V. Yevtushenko
- Department of Parasitology Ichthyopathology and Arachnology, National Scientific Center “Institute of Experimental and Clinical Veterinary Medicine”, Kharkov, Ukraine
| | - Viatcheslav A. Mordvinov
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
12
|
Zhao GH, Li J, Blair D, Li XY, Elsheikha HM, Lin RQ, Zou FC, Zhu XQ. Biotechnological advances in the diagnosis, species differentiation and phylogenetic analysis of Schistosoma spp. Biotechnol Adv 2012; 30:1381-9. [DOI: 10.1016/j.biotechadv.2012.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 01/08/2012] [Accepted: 02/08/2012] [Indexed: 11/26/2022]
|
13
|
Webster BL, Littlewood DTJ. Mitochondrial gene order change in Schistosoma (Platyhelminthes: Digenea: Schistosomatidae). Int J Parasitol 2012; 42:313-21. [DOI: 10.1016/j.ijpara.2012.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Swain MT, Larkin DM, Caffrey CR, Davies SJ, Loukas A, Skelly PJ, Hoffmann KF. Schistosoma comparative genomics: integrating genome structure, parasite biology and anthelmintic discovery. Trends Parasitol 2011; 27:555-64. [PMID: 22024648 PMCID: PMC3223292 DOI: 10.1016/j.pt.2011.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/09/2011] [Accepted: 09/20/2011] [Indexed: 12/11/2022]
Abstract
Schistosoma genomes provide a comprehensive resource for identifying the molecular processes that shape parasite evolution and for discovering novel chemotherapeutic or immunoprophylactic targets. Here, we demonstrate how intragenus and intergenus comparative genomics can be used to drive these investigations forward, illustrate the advantages and limitations of these approaches and review how post-genomic technologies offer complementary strategies for genome characterisation. Although sequencing and functional characterisation of other schistosome/platyhelminth genomes continues to expedite anthelmintic discovery, we contend that future priorities should equally focus on improving assembly quality, and chromosomal assignment, of existing schistosome/platyhelminth genomes.
Collapse
Affiliation(s)
- Martin T Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | | | | | | | | | | | | |
Collapse
|
15
|
Lawton SP, Hirai H, Ironside JE, Johnston DA, Rollinson D. Genomes and geography: genomic insights into the evolution and phylogeography of the genus Schistosoma. Parasit Vectors 2011; 4:131. [PMID: 21736723 PMCID: PMC3162923 DOI: 10.1186/1756-3305-4-131] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 07/07/2011] [Indexed: 11/10/2022] Open
Abstract
Blood flukes within the genus Schistosoma still remain a major cause of disease in the tropics and subtropics and the study of their evolution has been an area of major debate and research. With the advent of modern molecular and genomic approaches deeper insights have been attained not only into the divergence and speciation of these worms, but also into the historic movement of these parasites from Asia into Africa, via migration and dispersal of definitive and snail intermediate hosts. This movement was subsequently followed by a radiation of Schistosoma species giving rise to the S. mansoni and S. haematobium groups, as well as the S. indicum group that reinvaded Asia. Each of these major evolutionary events has been marked by distinct changes in genomic structure evident in differences in mitochondrial gene order and nuclear chromosomal architecture between the species associated with Asia and Africa. Data from DNA sequencing, comparative molecular genomics and karyotyping are indicative of major constitutional genomic events which would have become fixed in the ancestral populations of these worms. Here we examine how modern genomic techniques may give a more in depth understanding of the evolution of schistosomes and highlight the complexity of speciation and divergence in this group.
Collapse
Affiliation(s)
- Scott P Lawton
- The Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3D, UK.
| | | | | | | | | |
Collapse
|
16
|
Chrisanfova GG, Lopatkin AA, Shestak AG, Mishchenkov VA, Zhukova TV, Akimova LN, Semyenova SK. Polymorphism of the cox1 mtDNA gene from cercarial isolates of the avian schistosome Bilharziella polonica (Trematoda: Schistosomatidae) from Belarussian lakes. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411050097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Zhao GH, Blair D, Li XY, Li J, Lin RQ, Zou FC, Sugiyama H, Mo XH, Yuan ZG, Song HQ, Zhu XQ. The ribosomal intergenic spacer (IGS) region in Schistosoma japonicum: structure and comparisons with related species. INFECTION GENETICS AND EVOLUTION 2011; 11:610-7. [PMID: 21277395 DOI: 10.1016/j.meegid.2011.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 12/27/2010] [Accepted: 01/21/2011] [Indexed: 12/17/2022]
Abstract
The intergenic spacer (IGS) between the 28S and 18S ribosomal RNA genes was PCR-amplified, sequenced and characterized for Schistosoma japonicum from mainland China, and compared with those of other Schistosoma species. Excluding flanking portions of the 28S and 18S genes, the IGS in the longest sequenced amplicon from S. japonicum IGS was 1457bp in length. However, intra-specific and intra-individual variation was noted. The IGS region of S. japonicum is strikingly different in structure from those of African Schistosoma species for which data are available. S. japonicum has a shorter IGS and largely lacks a long region of complex repeats seen in the African species. However, careful comparisons with African species highlighted the presence of a few shared repeat motifs that were not apparent from study of African species only. Such motifs presumably have functional significance. Discovery of such motifs may in general be aided by comparisons of relatively distant taxa rather than of sibling taxa.
Collapse
Affiliation(s)
- Guang-Hui Zhao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu Province, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Liu L, Mondal MMH, Idris MA, Lokman HS, Rajapakse PRVJ, Satrija F, Diaz JL, Upatham ES, Attwood SW. The phylogeography of Indoplanorbis exustus (Gastropoda: Planorbidae) in Asia. Parasit Vectors 2010; 3:57. [PMID: 20602771 PMCID: PMC2914737 DOI: 10.1186/1756-3305-3-57] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 07/05/2010] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The freshwater snail Indoplanorbis exustus is found across India, Southeast Asia, central Asia (Afghanistan), Arabia and Africa. Indoplanorbis is of economic importance in that it is responsible for the transmission of several species of the genus Schistosoma which infect cattle and cause reduced livestock productivity. The snail is also of medical importance as a source of cercarial dermatitis among rural workers, particularly in India. In spite of its long history and wide geographical range, it is thought that Indoplanorbis includes only a single species. The aims of the present study were to date the radiation of Indoplanorbis across Asia so that the factors involved in its dispersal in the region could be tested, to reveal potential historical biogeographical events shaping the phylogeny of the snail, and to look for signs that I. exustus might be polyphyletic. RESULTS The results indicated a radiation beginning in the late Miocene with a divergence of an ancestral bulinine lineage into Assam and peninsular India clades. A Southeast Asian clade diverged from the peninsular India clade late-Pliocene; this clade then radiated at a much more rapid pace to colonize all of the sampled range of Indoplanorbis in the mid-Pleistocene. CONCLUSIONS The phylogenetic depth of divergences between the Indian clades and Southeast Asian clades, together with habitat and parasitological differences suggest that I. exustus may comprise more than one species. The timescale estimated for the radiation suggests that the dispersal to Arabia and to Southeast Asia was facilitated by palaeogeographical events and climate change, and did not require human involvement. Further samples from Afghanistan, Africa and western India are required to refine the phylogeographical hypothesis and to include the African Recent dispersal.
Collapse
Affiliation(s)
- Liang Liu
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Mohammed MH Mondal
- Department of Parasitology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mohamed A Idris
- Department of Microbiology and Immunology, College of Medicine, Sultan Qaboos University, Oman
| | - Hakim S Lokman
- Infectious Diseases Research Centre, IMR, Jalan Pahang, 50588 Kuala Lumpur, Malaysia
| | - PRV Jayanthe Rajapakse
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Fadjar Satrija
- Department of Animal Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, Bogor Agricultural University (IPB), Jl. Agathis-Kampus IPB Darmaga, Bogor 16680, Indonesia
| | - Jose L Diaz
- Veterinary Inspection Board, Vitas, Tondo, Metro Manila, Philippines
| | - E Suchart Upatham
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Medical Science, Faculty of Science, Burapha University, Bangsaen, Chonburi, Thailand
| | - Stephen W Attwood
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
- Department of Zoology, The Natural History Museum, London, UK
| |
Collapse
|
19
|
Steinauer ML, Blouin MS, Criscione CD. Applying evolutionary genetics to schistosome epidemiology. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2010; 10:433-43. [PMID: 20176142 PMCID: PMC2861999 DOI: 10.1016/j.meegid.2010.02.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 02/09/2010] [Accepted: 02/15/2010] [Indexed: 10/19/2022]
Abstract
We review how molecular markers and evolutionary analysis have been applied to the study of schistosome parasites, important pathogens that infect over 200 million people worldwide. Topics reviewed include phylogenetics and biogeography, hybridization, infection within snails, mating systems, and genetic structure. Some interesting generalizations include that schistosome species hybridize frequently and have switched definitive hosts repeatedly in evolutionary time. We show that molecular markers can be used to infer epidemiologically relevant processes such as spatial variation in transmission, or to reveal complex patterns of mate choice. Analysis of genetic structure data shows that transmission foci can be structured by watershed boundaries, habitat types, and host species. We also discuss sampling and analytical problems that arise when using larvae to estimate genetic parameters of adult schistosome populations. Finally, we review pitfalls in methodologies such as genotyping very small individuals, statistical methods for identifying clonemates or for identifying sibling groups, and estimating allele frequencies from pooled egg samples.
Collapse
Affiliation(s)
- Michelle L Steinauer
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, 105 Magruder Hall, Corvallis, OR 97331, United States.
| | | | | |
Collapse
|
20
|
Studies on the Parasitology, Phylogeography and the Evolution of Host–Parasite Interactions for the Snail Intermediate Hosts of Medically Important Trematode Genera in Southeast Asia. ADVANCES IN PARASITOLOGY 2010; 73:405-40. [DOI: 10.1016/s0065-308x(10)73013-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
21
|
Han ZG, Brindley PJ, Wang SY, Chen Z. Schistosoma genomics: new perspectives on schistosome biology and host-parasite interaction. Annu Rev Genomics Hum Genet 2009; 10:211-40. [PMID: 19630560 DOI: 10.1146/annurev-genom-082908-150036] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Schistosomiasis, caused mainly by Schistosoma japonicum, S. mansoni, and S. hematobium, remains one of the most prevalent and serious parasitic diseases worldwide. The blood flukes have a complex life cycle requiring adaptation for survival in fresh water as free-living forms and as parasites in snail intermediate and vertebrate definitive hosts. Functional genomics analyses, including transcriptomic and proteomic approaches, have been performed on schistosomes, in particular S. mansoni and S. japonicum, using powerful high-throughput methodologies. These investigations have not only chartered gene expression profiles across genders and developmental stages within mammalian and snail hosts, but have also characterized the features of the surface tegument, the eggshell and excretory-secretory proteomes of schistosomes. The integration of the genomic, transcriptomic, and proteomic information, together with genetic manipulation on individual genes, will provide a global insight into the molecular architecture of the biology, pathogenesis, and host-parasite interactions of the human blood flukes. Importantly, these functional genomics analyses lay a foundation on which to develop new antischistosome vaccines as well as drug targets and diagnostic markers for treatment and control of schistosomiasis.
Collapse
Affiliation(s)
- Ze-Guang Han
- Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China.
| | | | | | | |
Collapse
|
22
|
Current World Literature. Curr Opin Lipidol 2009; 20:135-42. [PMID: 19276892 DOI: 10.1097/mol.0b013e32832a7e09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Sato Y, Le TH, Hiraike R, Yukawa M, Sakai T, Rajapakse RJ, Agatsuma T. Mitochondrial DNA sequence and gene order of the Sri Lankan Schistosoma nasale is affiliated to the African/Indian group. Parasitol Int 2008; 57:460-4. [DOI: 10.1016/j.parint.2008.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 05/24/2008] [Accepted: 05/30/2008] [Indexed: 11/25/2022]
|
24
|
Attwood SW, Fatih FA, Campbell I, Upatham ES. The distribution of Mekong schistosomiasis, past and future: Preliminary indications from an analysis of genetic variation in the intermediate host. Parasitol Int 2008; 57:256-70. [DOI: 10.1016/j.parint.2008.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Attwood SW, Fatih FA, Upatham ES. DNA-sequence variation among Schistosoma mekongi populations and related taxa; phylogeography and the current distribution of Asian schistosomiasis. PLoS Negl Trop Dis 2008; 2:e200. [PMID: 18350111 PMCID: PMC2265426 DOI: 10.1371/journal.pntd.0000200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 01/23/2008] [Indexed: 02/05/2023] Open
Abstract
Background Schistosomiasis in humans along the lower Mekong River has proven a persistent public health problem in the region. The causative agent is the parasite Schistosoma mekongi (Trematoda: Digenea). A new transmission focus is reported, as well as the first study of genetic variation among S. mekongi populations. The aim is to confirm the identity of the species involved at each known focus of Mekong schistosomiasis transmission, to examine historical relationships among the populations and related taxa, and to provide data for use (a priori) in further studies of the origins, radiation, and future dispersal capabilities of S. mekongi. Methodology/Principal Findings DNA sequence data are presented for four populations of S. mekongi from Cambodia and southern Laos, three of which were distinguishable at the COI (cox1) and 12S (rrnS) mitochondrial loci sampled. A phylogeny was estimated for these populations and the other members of the Schistosoma sinensium group. The study provides new DNA sequence data for three new populations and one new locus/population combination. A Bayesian approach is used to estimate divergence dates for events within the S. sinensium group and among the S. mekongi populations. Conclusions/Significance The date estimates are consistent with phylogeographical hypotheses describing a Pliocene radiation of the S. sinensium group and a mid-Pleistocene invasion of Southeast Asia by S. mekongi. The date estimates also provide Bayesian priors for future work on the evolution of S. mekongi. The public health implications of S. mekongi transmission outside the lower Mekong River are also discussed. Schistosomiasis is a disease caused by parasitic worms of the genus Schistosoma. In the lower Mekong river, schistosomiasis in humans is called Mekong schistosomiasis and is caused by Schistosoma mekongi. In the past, Mekong schistosomiasis was known only from the lower Mekong river. Here DNA-sequence variation is used to study the relationships and history of populations of S. mekongi. Populations from other rivers are compared and shown to be S. mekongi, thus confirming that this species is not restricted to only a small section of one river. The dates of divergence among populations are also estimated. Prior to this study it was assumed that S. mekongi originated in Yunnan, China, migrated southwards across Laos and into Cambodia, later becoming extinct in Laos (due to conditions unsuitable for transmission). In contrast, the dates estimated here indicate that S. mekongi entered Cambodia from Vietnam, 2.5–1 Ma. The pattern of genetic variation fits better with a more recent, and ongoing, northwards migration from Cambodia into Laos. The implications are that Mekong schistosomiasis is more widespread than once thought and that the human population at risk is up to 10 times greater than originally estimated. There is also an increased possibility of the spread of Mekong schistosomiasis across Laos.
Collapse
Affiliation(s)
- Stephen W Attwood
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, People's Republic of China.
| | | | | |
Collapse
|