1
|
Khalaf A, Francis O, Blaxter ML. Genome evolution in intracellular parasites: Microsporidia and Apicomplexa. J Eukaryot Microbiol 2024:e13033. [PMID: 38785208 DOI: 10.1111/jeu.13033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/29/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
Microsporidia and Apicomplexa are eukaryotic, single-celled, intracellular parasites with huge public health and economic importance. Typically, these parasites are studied separately, emphasizing their uniqueness and diversity. In this review, we explore the huge amount of genomic data that has recently become available for the two groups. We compare and contrast their genome evolution and discuss how their transitions to intracellular life may have shaped it. In particular, we explore genome reduction and compaction, genome expansion and ploidy, gene shuffling and rearrangements, and the evolution of centromeres and telomeres.
Collapse
Affiliation(s)
- Amjad Khalaf
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | - Ore Francis
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | | |
Collapse
|
2
|
Khalaf A, Lawniczak MKN, Blaxter ML, Jaron KS. Polyploidy is widespread in Microsporidia. Microbiol Spectr 2024; 12:e0366923. [PMID: 38214524 PMCID: PMC10845963 DOI: 10.1128/spectrum.03669-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/15/2023] [Indexed: 01/13/2024] Open
Abstract
Microsporidia are obligate intracellular eukaryotic parasites with an extremely broad host range. They have both economic and public health importance. Ploidy in microsporidia is variable, with a few species formally identified as diploid and one as polyploid. Given the increase in the number of studies sequencing microsporidian genomes, it is now possible to assess ploidy levels across all currently explored microsporidian diversity. We estimate ploidy for all microsporidian data sets available on the Sequence Read Archive using k-mer-based analyses, indicating that polyploidy is widespread in Microsporidia and that ploidy change is dynamic in the group. Using genome-wide heterozygosity estimates, we also show that polyploid microsporidian genomes are relatively homozygous, and we discuss the implications of these findings on the timing of polyploidization events and their origin.IMPORTANCEMicrosporidia are single-celled intracellular parasites, distantly related to fungi, that can infect a broad range of hosts, from humans all the way to protozoans. Exploiting the wealth of microsporidian genomic data available, we use k-mer-based analyses to assess ploidy status across the group. Understanding a genome's ploidy is crucial in order to assemble it effectively and may also be relevant for better understanding a parasite's behavior and life cycle. We show that tetraploidy is present in at least six species in Microsporidia and that these polyploidization events are likely to have occurred independently. We discuss why these findings may be paradoxical, given that Microsporidia, like other intracellular parasites, have extremely small, reduced genomes.
Collapse
Affiliation(s)
- Amjad Khalaf
- Tree of Life, Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | - Mark L. Blaxter
- Tree of Life, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Kamil S. Jaron
- Tree of Life, Wellcome Sanger Institute, Cambridge, United Kingdom
| |
Collapse
|
3
|
Sokolova YY, Rogers HA, Lively JA. Microsporidia Ameson earli sp. n. and A. michaelis (Sprague 1965) infecting blue crabs Callinectes sapidus from shedding facilities in Louisiana. J Invertebr Pathol 2023; 196:107866. [PMID: 36436573 DOI: 10.1016/j.jip.2022.107866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/05/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
During a survey for pathogens and commensals of blue crabs in commercial soft shell shedding facilities in Louisiana, we discovered an occurrence of microsporidiosis in two of forty examined crabs. Judging from spore shape and size, tissue tropism and external signs of muscle pathology, the causative agent of infections was identified as Ameson michaelis, a muscle-infecting species that has been repeatedly detected in populations of Callinectes sapidus in Louisiana since 1965. However, retrospective ultrastructural examination revealed that in one of Ameson-infected crabs, infection was caused by a parasite with ultrastructural characters not completely compliant with the ones of A. michaelis. The major difference was the absence of microtubule-like appendages attached to the exospore, typical of A. michaelis and other Ameson spp. SSUrDNA-inferred pairwise evolutionary distances between the novel species and other Ameson spp. ranged from 0.006 to 0.051; it was 0.039 in the case of A. michaelis. Hence, we describe here a new species in the genus Ameson, and name it after Prof. Earl Weidner, our colleague and friend, an outstanding microsporidiologist and the author of pioneer papers on the ultrastructure and physiology of A. michaelis.
Collapse
Affiliation(s)
- Yuliya Y Sokolova
- Insitute of Cytology RAS, St. Petersburg, Russia; Louisiana State University Agricultural Center, Baton Rouge, LA, USA.
| | - Holly A Rogers
- Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - Julie A Lively
- Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| |
Collapse
|
4
|
Stratton CE, Reisinger LS, Behringer DC, Bojko J. Revising the Freshwater Thelohania to Astathelohania gen. et comb. nov., and Description of Two New Species. Microorganisms 2022; 10:636. [PMID: 35336214 PMCID: PMC8951847 DOI: 10.3390/microorganisms10030636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 01/25/2023] Open
Abstract
Crayfish are common hosts of microsporidian parasites, prominently from the genus Thelohania. Thelohania is a polyphyletic genus, with multiple genetically distinct lineages found from freshwater and marine environments. Researchers have been calling for a revision of this group for over a decade. We provide evidence that crayfish-infecting freshwater Thelohania are genetically and phylogenetically distinct from the marine Thelohania (Clade V/Glugeida), whilst also describing two new species that give further support to the taxonomic revision. We propose that the freshwater Thelohania should be transferred to their own genus, Astathelohania gen. et comb. nov., in a new family (Astathelohaniidae n. fam.). This results in the revision of Thelohania contejeani (Astathelohania contejeani), Thelohania montirivulorum (Astathelohania montirivulorum), and Thelohania parastaci (Astathelohania parastaci). We also describe two novel muscle-infecting Astathelohania species, A. virili n. sp. and A. rusti n. sp., from North American crayfishes (Faxonius sp.). We used histological, molecular, and ultrastructural data to formally describe the novel isolates. Our data suggest that the Astathelohania are genetically distinct from other known microsporidian genera, outside any described family, and that their SSU rRNA gene sequence diversity follows their host species and native geographic location. The range of this genus currently includes North America, Europe, and Australia.
Collapse
Affiliation(s)
- Cheyenne E. Stratton
- Fisheries and Aquatic Sciences, University of Florida, Gainesville, FL 32653, USA; (C.E.S.); (L.S.R.); (D.C.B.)
| | - Lindsey S. Reisinger
- Fisheries and Aquatic Sciences, University of Florida, Gainesville, FL 32653, USA; (C.E.S.); (L.S.R.); (D.C.B.)
| | - Donald C. Behringer
- Fisheries and Aquatic Sciences, University of Florida, Gainesville, FL 32653, USA; (C.E.S.); (L.S.R.); (D.C.B.)
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| | - Jamie Bojko
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BA, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| |
Collapse
|
5
|
Nattoh G, Maina T, Makhulu EE, Mbaisi L, Mararo E, Otieno FG, Bukhari T, Onchuru TO, Teal E, Paredes J, Bargul JL, Mburu DM, Onyango EA, Magoma G, Sinkins SP, Herren JK. Horizontal Transmission of the Symbiont Microsporidia MB in Anopheles arabiensis. Front Microbiol 2021; 12:647183. [PMID: 34394019 PMCID: PMC8355901 DOI: 10.3389/fmicb.2021.647183] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
The recently discovered Anopheles symbiont, Microsporidia MB, has a strong malaria transmission-blocking phenotype in Anopheles arabiensis, the predominant Anopheles gambiae species complex member in many active transmission areas in eastern Africa. The ability of Microsporidia MB to block Plasmodium transmission together with vertical transmission and avirulence makes it a candidate for the development of a symbiont-based malaria transmission blocking strategy. We investigate the characteristics and efficiencies of Microsporidia MB transmission between An. arabiensis mosquitoes. We show that Microsporidia MB is not transmitted between larvae but is effectively transmitted horizontally between adult mosquitoes. Notably, Microsporidia MB was only found to be transmitted between male and female An. arabiensis, suggesting sexual horizontal transmission. In addition, Microsporidia MB cells were observed infecting the An. arabiensis ejaculatory duct. Female An. arabiensis that acquire Microsporidia MB horizontally are able to transmit the symbiont vertically to their offspring. We also investigate the possibility that Microsporidia MB can infect alternate hosts that live in the same habitats as their An. arabiensis hosts, but find no other non-anopheline hosts. Notably, Microsporidia MB infections were found in another primary malaria African vector, Anopheles funestus s.s. The finding that Microsporidia MB can be transmitted horizontally is relevant for the development of dissemination strategies to control malaria that are based on the targeted release of Microsporidia MB infected Anopheles mosquitoes.
Collapse
Affiliation(s)
- Godfrey Nattoh
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Institute for Basic Sciences Technology and Innovation, Pan African University, Nairobi, Kenya
| | - Tracy Maina
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Edward E Makhulu
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Lilian Mbaisi
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Enock Mararo
- The Royal (Dick) School of Veterinary Studies, Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Fidel G Otieno
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Tullu Bukhari
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Thomas O Onchuru
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Physical and Biological Sciences, Bomet University College, Bomet, Kenya
| | - Evan Teal
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Juan Paredes
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Joel L Bargul
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Institute for Basic Sciences Technology and Innovation, Pan African University, Nairobi, Kenya
| | - David M Mburu
- Pwani University Biosciences Research Centre (PUBReC), Kilifi, Kenya
| | | | - Gabriel Magoma
- Institute for Basic Sciences Technology and Innovation, Pan African University, Nairobi, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Steven P Sinkins
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Jeremy K Herren
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
6
|
Wijayawardene NN, Pawłowska J, Letcher PM, Kirk PM, Humber RA, Schüßler A, Wrzosek M, Muszewska A, Okrasińska A, Istel Ł, Gęsiorska A, Mungai P, Lateef AA, Rajeshkumar KC, Singh RV, Radek R, Walther G, Wagner L, Walker C, Wijesundara DSA, Papizadeh M, Dolatabadi S, Shenoy BD, Tokarev YS, Lumyong S, Hyde KD. Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota). FUNGAL DIVERS 2018. [DOI: 10.1007/s13225-018-0409-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Sokolova YY, Overstreet RM. A new microsporidium, Apotaspora heleios n. g., n. sp., from the Riverine grass shrimp Palaemonetes paludosus (Decapoda: Caridea: Palaemonidae). J Invertebr Pathol 2018; 157:125-135. [PMID: 29782816 DOI: 10.1016/j.jip.2018.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/05/2018] [Accepted: 05/18/2018] [Indexed: 10/16/2022]
Abstract
We report a new microsporidium from a key species of the estuarine communities of the Gulf States, the Riverine grass shrimp, Palaemonetes paludosus. A milky-white shrimp was found in the Mobile Bay Delta, a large, oligohaline-freshwater wetland in Alabama, USA. Light microscopy of smears and thick sections of the abdominal tissues demonstrated infection with microsporidian spores enclosed in sporophorous vesicles (SVs) in sets of eight. Broadly oval spores measured 2.9 ± 0.06 × 1.7 ± 0.03 µm (2.5-3.3 × 1.6-1.9 µm, n = 11). SVs with a persistent membrane ranged from 4.4 to 5.6 µm in diameter. Subcuticular epithelium and underlying musculature were packed with sporonts, sporoblasts, and spores. Electron microscopy demonstrated diplokaryotic meronts that gave rise to sporont mother cells with a large single nucleus. The meront plasma membrane turned into a SV envelope, and the sporont wall segregated internally. The sporont nucleus underwent meiosis followed by two mitotic divisions accompanied by internal budding to produce four sporonts, each dividing in two uninucleate sporoblasts. Eight-spore SVs were filled with fibrillary-tubular secretions. Spores possessed 90-110-nm thick envelopes (exospore, 40-60 nm + endospore, 30-50 nm), a triangle-shaped nucleus, isofilar polar filament of 10-13 coils arranged in two-three rows, bipartite polaroplast, and a mushroom-shaped polar disk. The SSU rDNA sequence of the novel species was deposited in GenBank under Accession number MG 708238. SSU rDNA-based phylogenetic analysis indicated that the Riverine grass shrimp microsporidium was a new species and placed it in one branch with two species of Potaspora, xenoma-forming microsporidia from freshwater perciform fishes. Because morphological and developmental characters of the novel species did not fit the diagnosis of the genus Potaspora, and, based on SSU rDNA-inferred phylogenetic analyses, different host specificity, pathogenesis, and ecological considerations, we erect here the new genus Apotaspora for the Riverine grass shrimp microsporidium and name the new species Apotaspora heleios. Grouping together fish and crustacean parasites on SSU rDNA phylogenetic trees suggests that polyxenous life cycles might be a common feature of extinct and/or extant members of the studied lineage of the Microsporidia.
Collapse
Affiliation(s)
- Yuliya Y Sokolova
- Louisiana State University, Baton Rouge, LA, USA; Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia.
| | - Robin M Overstreet
- Gulf Coast Research Laboratory, University of Southern Mississippi, Ocean Springs, MS, USA
| |
Collapse
|
8
|
A new microsporidium Percutemincola moriokae gen. nov., sp. nov. from Oscheius tipulae: A novel model of microsporidia-nematode associations. Parasitology 2018; 145:1853-1864. [PMID: 29661263 DOI: 10.1017/s0031182018000628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Here, we describe a new microsporidium Percutemincola moriokae gen. nov., sp. nov., which was discovered in the intestinal and hypodermal cells of a wild strain of the nematode Oscheius tipulae that inhabits in the soil of Morioka, Iwate Prefecture, Japan. The spores of Pe. moriokae had an average size of 1.0 × 3.8 µm and 1.3 × 3.2 µm in the intestine and hypodermis, respectively, and electron microscopy revealed that they exhibited distinguishing features with morphological diversity in the hypodermis. Isolated spores were able to infect a reference strain of O. tipulae (CEW1) through horizontal transmission but not the nematode Caenorhabditis elegans. Upon infection, the spores were first observed in the hypodermis and then in the intestine the following day, suggesting a unique infectious route among nematode-infective microsporidia. Molecular phylogenetic analysis grouped this new species with the recently identified nematode-infective parasites Enteropsectra and Pancytospora forming a monophyletic sister clade to Orthosomella in clade IV, which also includes human pathogens such as Enterocytozoon and Vittaforma. We believe that this newly discovered species and its host could have application as a new model in microsporidia-nematode association studies.
Collapse
|
9
|
Tokarev YS, Sokolova YY, Vasilieva AA, Issi IV. Molecular and Morphological Characterization of Anncaliia azovica
sp. n. (Microsporidia) Infecting Niphargogammarus intermedius
(Crustacea, Amphipoda) from the Azov Sea. J Eukaryot Microbiol 2017; 65:296-307. [DOI: 10.1111/jeu.12473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Yuri S. Tokarev
- All-Russia Institute for Plant Protection; Russian Academy of Sciences; 3 Shosse Podbelskogo Pushkin-St. Petersburg 189620 Russia
| | - Yuliya Y. Sokolova
- Institute of Cytology; Russian Academy of Sciences; 4 Tikhoretsky Avenue St. Petersburg 194064 Russia
- Microscopy Center, Department of Comparative Biological Sciences; School of Veterinary Medicine, Louisiana State University; 1909 Skip Bertman Drive Baton Rouge Louisiana 70803
| | - Aleksandra A. Vasilieva
- All-Russia Institute for Plant Protection; Russian Academy of Sciences; 3 Shosse Podbelskogo Pushkin-St. Petersburg 189620 Russia
- Peter the Great St. Petersburg Polytechnic University; 29 Politechnicheskaya ul. St. Petersburg 195251 Russia
| | - Irma V. Issi
- All-Russia Institute for Plant Protection; Russian Academy of Sciences; 3 Shosse Podbelskogo Pushkin-St. Petersburg 189620 Russia
| |
Collapse
|
10
|
The microsporidium Nosema disstriae (Thomson 1959): Fine structure and phylogenetic position within the N . bombycis clade. J Invertebr Pathol 2017; 143:90-103. [DOI: 10.1016/j.jip.2016.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/05/2016] [Accepted: 12/11/2016] [Indexed: 11/24/2022]
|
11
|
Sokolova YY, Sakaguchi K, Paulsen DB. Establishing a New Species Encephalitozoon pogonae for the Microsporidian Parasite of Inland Bearded Dragon Pogona vitticeps Ahl 1927 (Reptilia, Squamata, Agamidae). J Eukaryot Microbiol 2016; 63:524-35. [PMID: 26785360 DOI: 10.1111/jeu.12296] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/06/2016] [Accepted: 01/06/2016] [Indexed: 11/29/2022]
Abstract
The microsporidium parasitizing Inland Bearded Dragons Pogona vitticeps, and developing primarily in macrophages within foci of granulomatous inflammation of different organs, is described as a new species Encephalitozoon pogonae. Establishing the new species was based on sequencing the ITS-SSUrDNA region of the ribosomal gene and consequent SSUrDNA-inferred phylogenetic analyses, as well as on comparison of pathogenesis, host specificity, and ultrastructure among Encephalitozoon species and isolates. The new species is closely related to E. lacertae and E. cuniculi. Analysis of the literature suggests that this microsporidium has been reported previously as an unidentified microsporidian species or isolate of E. cuniculi and may represent a common infection in bearded dragons. All stages of E. pogonae develop in parasitophorous vacuoles. Uninucleate spores on methanol-fixed smears measured 2.1 × 1.1 μm, range 1.7-2.6 × 0.9-1.7 μm; on ultrathin sections spores measured 0.8-1.1 × 1.8-2.2 μm. Ultrastructural study revealed 3-6 polar filament coils, a mushroom-shaped polar disk, and a polar sac embracing half of the volume occupied by the lamellar polaroplast. In activated spores, polar filament everted eccentrically. The overall morphology and intracellular development of E. pogonae were similar to other Encepahalitozoon spp. We also review the existing data on microsporidia infecting reptiles.
Collapse
Affiliation(s)
- Yuliya Y Sokolova
- Microscopy Center, School of Veterinary Medicine, Louisiana State University, Baton Rouge, 70803, Louisiana, USA.,Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - Kanako Sakaguchi
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, 70803, Louisiana, USA
| | - Daniel B Paulsen
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, 70803, Louisiana, USA
| |
Collapse
|
12
|
Corradi N. Microsporidia: Eukaryotic Intracellular Parasites Shaped by Gene Loss and Horizontal Gene Transfers. Annu Rev Microbiol 2015. [PMID: 26195306 DOI: 10.1146/annurev-micro-091014-104136] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microsporidia are eukaryotic parasites of many animals that appear to have adapted to an obligate intracellular lifestyle by modifying the morphology and content of their cells. Living inside other cells, they have lost many, or all, metabolic functions, resulting in genomes that are always gene poor and often very small. The minute content of microsporidian genomes led many to assume that these parasites are biochemically static and uninteresting. However, recent studies have demonstrated that these organisms can be surprisingly complex and dynamic. In this review I detail the most significant recent advances in microsporidian genomics and discuss how these have affected our understanding of many biological aspects of these peculiar eukaryotic intracellular pathogens.
Collapse
Affiliation(s)
- Nicolas Corradi
- Canadian Institute for Advanced Research, Department of Biology, University of Ottawa, Ontario, Canada K1N 6N5;
| |
Collapse
|
13
|
Plowes RM, Becnel JJ, LeBrun EG, Oi DH, Valles SM, Jones NT, Gilbert LE. Myrmecomorba nylanderiae gen. et sp. nov., a microsporidian parasite of the tawny crazy ant Nylanderia fulva. J Invertebr Pathol 2015; 129:45-56. [PMID: 26031565 DOI: 10.1016/j.jip.2015.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 10/23/2022]
Abstract
A new microsporidian genus and species, Myrmecomorba nylanderiae, is described from North American populations of the tawny crazy ant, Nylanderia fulva. This new species was found to be heterosporous producing several types of binucleate spores in both larval and adult stages and an abortive octosporoblastic sporogony in adult ants. While microsporidia are widespread arthropod parasites, this description represents only the fifth species described from an ant host. Molecular analysis indicated that this new taxon is phylogenetically closely allied to the microsporidian family Caudosporidae, a group known to parasitize aquatic black fly larvae. We report the presence of 3 spore types (Type 1 DK, Type 2 DK, and octospores) with infections found in all stages of host development and reproductive castes. This report documents the first pathogen infecting N. fulva, an invasive ant of considerable economic and ecological consequence.
Collapse
Affiliation(s)
- Robert M Plowes
- Brackenridge Field Laboratory, University of Texas at Austin, 2907 Lake Austin Blvd, Austin, TX 78703, United States.
| | - James J Becnel
- USDA, ARS, Center for Medical, Agricultural and Veterinary Entomology, 1600 SW 23rd Drive, Gainesville, FL 32608, United States
| | - Edward G LeBrun
- Brackenridge Field Laboratory, University of Texas at Austin, 2907 Lake Austin Blvd, Austin, TX 78703, United States
| | - David H Oi
- USDA, ARS, Center for Medical, Agricultural and Veterinary Entomology, 1600 SW 23rd Drive, Gainesville, FL 32608, United States
| | - Steven M Valles
- USDA, ARS, Center for Medical, Agricultural and Veterinary Entomology, 1600 SW 23rd Drive, Gainesville, FL 32608, United States
| | - Nathan T Jones
- Brackenridge Field Laboratory, University of Texas at Austin, 2907 Lake Austin Blvd, Austin, TX 78703, United States
| | - Lawrence E Gilbert
- Brackenridge Field Laboratory, University of Texas at Austin, 2907 Lake Austin Blvd, Austin, TX 78703, United States
| |
Collapse
|
14
|
Sokolova Y, Pelin A, Hawke J, Corradi N. Morphology and phylogeny of Agmasoma penaei (Microsporidia) from the type host, Litopenaeus setiferus, and the type locality, Louisiana, USA. Int J Parasitol 2014; 45:1-16. [PMID: 25449947 DOI: 10.1016/j.ijpara.2014.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 10/24/2022]
Abstract
Since June 2012, samples of wild caught white shrimp, Litopenaeus setiferus, from the Gulf of Mexico, Plaquemines and Jefferson Parishes (Louisiana, USA) with clinical signs of microsporidiosis have been delivered to the Louisiana Aquatic Diagnostic Laboratory for identification. Infection was limited predominantly to female gonads and was caused by a microsporidium producing roundish pansporoblasts with eight spores (3.6×2.1 μm) and an anisofilar (2-3+4-6) polar filament. These features allowed identification of the microsporidium as Agmasoma penaei Sprague, 1950. Agmasoma penaei is known as a microsporidium with world-wide distribution, causing devastating epizootic disease among wild and cultured shrimps. This paper provides molecular and morphological characterisation of A. penaei from the type host and type locality. Comparison of the novel ssrDNA sequence of A. penaei from Louisiana, USA with that of A. penaei from Thailand revealed 95% similarity, which suggests these geographical isolates are two different species. The A. penaei sequences did not show significant homology to any other examined taxon. Phylogenetic reconstructions using the ssrDNA and alpha- and beta-tubulin sequences supported its affiliation with the Clade IV Terresporidia sensu Vossbrink 2005, and its association with parasites of fresh and salt water crustaceans of the genera Artemia, Daphnia and Cyclops.
Collapse
Affiliation(s)
- Yuliya Sokolova
- Department of Comparative Biomedical Studies, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA; Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia.
| | - Adrian Pelin
- Canadian Institute for Advanced Research, Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - John Hawke
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Nicolas Corradi
- Canadian Institute for Advanced Research, Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
15
|
Description of Metchnikovella spiralis sp. n. (Microsporidia: Metchnikovellidae), with notes on the ultrastructure of metchnikovellids. Parasitology 2014; 141:1108-22. [DOI: 10.1017/s0031182014000420] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SUMMARYThe present paper reports results of a transmission electron microscopy study of a new metchikovellid microsporidium. It was isolated from gregarines Polyrhabdina sp. inhabiting guts of polychaetes Pygospio elegans sampled at the White Sea silt littoral zone. Free sporogony (FS) occurred in the life cycle of the microsporidium alongside sac-bound sporogony (BS). Free spores resided in a parasitophorous vacuole and were of typical metchnikovellidean structure, uninucleate and oblong. They measured on sections 2·0–3·2×1·3–1·9 μm. The life cycle included pre-sporogonial stages represented by dikaryotic cells and 4-nucleate cells with coupled nuclei. A multinucleate sporogonial plasmodium of FS split in numerous (>10) sporoblasts. In BS segregation of sporoblasts occurred within thick-walled cysts by internal budding. Spore sacs of this microsporidium, measuring on average 11·6×4·7 μm, were limited by a thick electron-dense wall, externally ornamented with spirally wound cords of dense material. These oval spore sacs contained eight barrel-shaped spores, comparable in size and ultrastructure to FS spores. Ultrastructure of both types of spores and intracellular development of the new microsporidium and Metchnikovella spp. were similar, suggesting they belong to the same genus. In this paper we describe a new species Metchnikovella spiralis and discuss morphology of metchnikovellids in the context of putative evolutionary history of Microsporidia.
Collapse
|
16
|
Karim MR, Wang R, He X, Zhang L, Li J, Rume FI, Dong H, Qi M, Jian F, Zhang S, Sun M, Yang G, Zou F, Ning C, Xiao L. Multilocus sequence typing of Enterocytozoon bieneusi in nonhuman primates in China. Vet Parasitol 2013; 200:13-23. [PMID: 24388499 DOI: 10.1016/j.vetpar.2013.12.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/29/2013] [Accepted: 12/06/2013] [Indexed: 10/25/2022]
Abstract
To infer population genetics of Enterocytozoon bieneusi in nonhuman primates (NHPs), 126 positive specimens in 839 fecal specimens from 23 NHP species in China based on ITS locus were used, belonging to genotypes Type IV, D, Peru8, Henan V, Peru11, PigEBITS7 and 3 novel ones (CM1, CM2 and CM3). Multilocus sequence typing employing four micro and minisatellites (MS1, MS3, MS4 and MS7) and ITS were used to analyze population structure of 85 isolates successfully amplified at all five loci, which yielded 59 multilocus genotypes. Linkage disequilibrium (LD) was measured using both multilocus sequences and allelic profile data. The observation of strong and significant LD with limited recombination in multilocus sequence analysis indicated the presence of overall clonal population structure of E. bieneusi, which was supported by allelic profile data analysis. Fu's selective neutrality test demonstrated the absence of neutral mutations and molecular selection. The population structure of common ITS genotypes (CM1, Type IV and D) was compared. Strong LD in multilocus sequence analysis versus insignificant LD and/or LE in allelic profile data analysis implied epidemic population in common ITS genotypes. No significant genetic isolation was evidenced by either phylogenetic or substructural analyses. The population genetics was also compared among the sub-population 1 (contained mainly genotype Type IV), sub-population 2 (contained mainly genotypes CM1 and D), sub-population 3 (contained mixed genotypes) and sub-population 4 (contained genotype Henan V). The presence of strong LD in multilocus data analysis with insignificant LD and/or LE in allele profile data analysis suggested the epidemic population in sub-populations.
Collapse
Affiliation(s)
- Md Robiul Karim
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Rongjun Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoyi He
- Xiangya School of Medicine, Central South University, 410013, China
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Jian Li
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Farzana Islam Rume
- Department of Microbiology, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh
| | - Haiju Dong
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Meng Qi
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Fuchun Jian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Sumei Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Mingfei Sun
- Institute of Veterinary Medicine, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Guangyou Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Yaan 625014, China
| | - Fengcai Zou
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Changshen Ning
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Lihua Xiao
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| |
Collapse
|
17
|
Mitigating the allergic effects of fire ant envenomation with biologically based population reduction. Curr Opin Allergy Clin Immunol 2013; 13:372-8. [PMID: 23799333 DOI: 10.1097/aci.0b013e3283624544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To describe the current efforts to use biological control agents to reduce fire ant population levels, thus ultimately reducing the number of human sting and allergic reaction incidents. RECENT FINDINGS Climate change and worldwide fire ant expansion will increase the frequency of human encounters and allergenic events, putting additional pressure on the public health sector. Six species of fire ant decapitating flies are now established in the United States. The microsporidium Kneallhazia solenopsae is well established and new fire ant hosts have been identified. The fire ant virus Solenopsis invicta virus 3 shows good potential for use as an environmentally friendly biopesticide because of its virulence and host specificity. SUMMARY During separate founding events in the United States, Australia, mainland China, and Taiwan, fire ants native to South America escaped their native pathogens and parasites. Consequently, fire ant populations in these introduced regions pose a serious public health threat to the human populations by envenomation and subsequent allergic reactions. Specific, self-sustaining biological control agents have been discovered, studied, and released into fire ant populations in the United States in an effort to re-establish an ecological/competitive balance, resulting in reduced fire ant densities and human exposure.
Collapse
|
18
|
Abstract
Parasitism, aptly defined as one of the 'living-together' strategies (Trager, 1986), presents a dynamic system in which the parasite and its host are under evolutionary pressure to evolve new and specific adaptations, thus enabling the coexistence of the two closely interacting partners. Microsporidia are very frequently encountered obligatory intracellular protistan parasites that can infect both animals and some protists and are a consummate example of various aspects of the 'living-together' strategy. Microsporidia, relatives of fungi in the superkingdom Opisthokonta, belong to the relatively small group of parasites for which the host cell cytoplasm is the site of both reproduction and maturation. The structural and physiological reduction of their vegetative stage, together with the manipulation of host cell physiology, enables microsporidia to live in the cytosolic environment for most of their life cycle in a way resembling endocytobionts. The ability to form structurally complex spores and the invention and assembly of a unique injection mechanism enable microsporidia to disperse within host tissues and between host organisms, resulting in long-lasting infections. Microsporidia have adapted their genomes to the intracellular way of life, evolved strategies how to obtain nutrients directly from the host and how to manipulate not only the infected cells, but also the hosts themselves. The enormous variability of host organisms and their tissues provide microsporidian parasites a virtually limitless terrain for diversification and ecological expansion. This review attempts to present a general overview of microsporidia, emphasising some less known and/or more recently discovered facets of their biology.
Collapse
|
19
|
Li W, Cama V, Feng Y, Gilman RH, Bern C, Zhang X, Xiao L. Population genetic analysis of Enterocytozoon bieneusi in humans. Int J Parasitol 2012; 42:287-93. [PMID: 22534008 DOI: 10.1016/j.ijpara.2012.01.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/26/2012] [Accepted: 01/29/2012] [Indexed: 10/28/2022]
Abstract
Genotyping based on sequence analysis of the ribosomal internal transcribed spacer has revealed significant genetic diversity in Enterocytozoonbieneusi. Thus far, the population genetics of E. bieneusi and its significance in the epidemiology of microsporidiosis have not been examined. In this study, a multilocus sequence typing of E. bieneusi in AIDS patients in Lima, Peru was conducted, using 72 specimens previously genotyped as A, D, IV, EbpC, WL11, Peru7, Peru8, Peru10 and Peru11 at the internal transcribed spacer locus. Altogether, 39 multilocus genotypes were identified among the 72 specimens. The observation of strong intragenic linkage disequilibria and limited genetic recombination among markers were indicative of an overall clonal population structure of E. bieneusi. Measures of pair-wise intergenic linkage disequilibria and a standardised index of association (IAS) based on allelic profile data further supported this conclusion. Both sequence-based and allelic profile-based phylogenetic analyses showed the presence of two genetically isolated groups in the study population, one (group 1) containing isolates of the anthroponotic internal transcribed spacer genotype A, and the other (group 2) containing isolates of multiple internal transcribed spacer genotypes (mainly genotypes D and IV) with zoonotic potential. The measurement of linkage disequilibria and recombination indicated group 2 had a clonal population structure, whereas group 1 had an epidemic population structure. The formation of the two sub-populations was confirmed by STRUCTURE and Wright's fixation index (FST) analyses. The data highlight the power of MLST in understanding the epidemiology of E. bieneusi.
Collapse
Affiliation(s)
- Wei Li
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Kneallhazia carolinensae sp. nov., a microsporidian pathogen of the thief ant, Solenopsis carolinensis. J Invertebr Pathol 2011; 108:59-62. [DOI: 10.1016/j.jip.2011.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/24/2011] [Accepted: 06/27/2011] [Indexed: 11/23/2022]
|
21
|
Ascunce MS, Valles SM, Oi DH, Shoemaker D, Plowes R, Gilbert L, LeBrun EG, Sánchez-Arroyo H, Sanchez-Peña S. Molecular diversity of the microsporidium Kneallhazia solenopsae reveals an expanded host range among fire ants in North America. J Invertebr Pathol 2010; 105:279-88. [PMID: 20691187 DOI: 10.1016/j.jip.2010.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 07/20/2010] [Accepted: 07/26/2010] [Indexed: 10/19/2022]
Abstract
Kneallhazia solenopsae is a pathogenic microsporidium that infects the fire ants Solenopsis invicta and Solenopsis richteri in South America and the USA. In this study, we analyzed the prevalence and molecular diversity of K. solenopsae in fire ants from North and South America. We report the first empirical evidence of K. solenopsae infections in the tropical fire ant, Solenopsis geminata, and S. geminata×Solenopsis xyloni hybrids, revealing an expanded host range for this microsporidium. We also analyzed the molecular diversity at the 16S ribosomal RNA gene in K. solenopsae from the ant hosts S.invicta, S. richteri, S. geminata and S. geminata×S. xyloni hybrids from North America, Argentina and Brazil. We found 22 16S haplotypes. One of these haplotypes (WD_1) appears to be widely distributed, and is found in S. invicta from the USA and S. geminata from southern Mexico. Phylogenetic analyses of 16S sequences revealed that K. solenopsae haplotypes fall into one of two major clades that are differentiated by 2-3%. In some cases, multiple K. solenopsae haplotypes per colony were found, suggesting either an incomplete homogenization among gene copies within the 16S gene cluster or multiple K. solenopsae variants simultaneously infecting host colonies.
Collapse
Affiliation(s)
- Marina S Ascunce
- Center for Medical, Agricultural, and Veterinary Entomology, U.S. Department of Agriculture-Agricultural Research Service, Gainesville, FL, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Host-specific segregation of ribosomal nucleotide sequence diversity in the microsporidian Enterocytozoon bieneusi. INFECTION GENETICS AND EVOLUTION 2009; 10:122-8. [PMID: 19931647 DOI: 10.1016/j.meegid.2009.11.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 11/09/2009] [Accepted: 11/11/2009] [Indexed: 11/22/2022]
Abstract
Enterocytozoon bieneusi is a unicellular enteric fungal pathogen and the most common cause of human microsporidiosis. The frequent detection of this organism in animals, including companion animals, livestock and wildlife, has raised the question of the importance of animal reservoirs in the epidemiology of this pathogen. A partial sequence of the ribosomal internal transcribed spacer (ITS) has been widely used as a genetic marker for studying the molecular epidemiology of E. bieneusi. With the aim of comparing E. bieneusi ITS genotypes originating from different host species, and assess the potential for zoonotic transmission, E. bieneusi ITS sequences retrieved from GenBank were analyzed using two metrics of diversity, rarefaction and phylogenetic distance. In spite of the human ITS sample being geographically more diverse, ITS sequence diversity in animals exceeded that of humans. In both host groups much of the ITS diversity remains to be sampled. Using quantitative phylogenetic tests we found evidence for a partial but significant segregation of E. bieneusi ITS sequences according to host species. Host-specific segregation was confirmed by hierarchical analysis of molecular variation. To improve our understanding of the epidemiology of human microsporidiosis and strengthen the study of E. bieneusi populations, efforts to genotype additional E. bieneusi isolates from wildlife and companion animals should be prioritized and the geographic and species diversify of animal samples should be increased. Due to the possibility of genetic recombination in this species, additional unlinked genetic markers need to be developed and included in future studies.
Collapse
|