1
|
Hambrook JR, Hanington PC. A cercarial invadolysin interferes with the host immune response and facilitates infection establishment of Schistosoma mansoni. PLoS Pathog 2023; 19:e1010884. [PMID: 36730464 PMCID: PMC9928134 DOI: 10.1371/journal.ppat.1010884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/14/2023] [Accepted: 01/22/2023] [Indexed: 02/04/2023] Open
Abstract
Schistosoma mansoni employs immune evasion and immunosuppression to overcome immune responses mounted by its snail and human hosts. Myriad immunomodulating factors underlie this process, some of which are proteases. Here, we demonstrate that one protease, an invadolysin we have termed SmCI-1, is released from the acetabular glands of S. mansoni cercaria and is involved in creating an immunological milieu favorable for survival of the parasite. The presence of SmCI-1 in the cercarial stage of S. mansoni is released during transformation into the schistosomula. SmCI-1 functions as a metalloprotease with the capacity to cleave collagen type IV, gelatin and fibrinogen. Additionally, complement component C3b is cleaved by this protease, resulting in inhibition of the classical and alternative complement pathways. Using SmCI-1 knockdown cercariae, we demonstrate that SmCI-1 protects schistosomula from complement-mediated lysis in human plasma. We also assess the effect of SmCI-1 on cytokine release from human peripheral blood mononuclear cells, providing compelling evidence that SmCI-1 promotes an anti-inflammatory microenvironment by enhancing production of IL-10 and suppressing the production of inflammatory cytokines like IL-1B and IL-12p70 and those involved in eosinophil recruitment and activation, like Eotaxin-1 and IL-5. Finally, we utilize the SmCI-1 knockdown cercaria in a mouse model of infection, revealing a role for SmCI-1 in S. mansoni survival.
Collapse
Affiliation(s)
- Jacob R. Hambrook
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
2
|
Cheng S, Zhu B, Luo F, Lin X, Sun C, You Y, Yi C, Xu B, Wang J, Lu Y, Hu W. Comparative transcriptome profiles of Schistosoma japonicum larval stages: Implications for parasite biology and host invasion. PLoS Negl Trop Dis 2022; 16:e0009889. [PMID: 35025881 PMCID: PMC8791509 DOI: 10.1371/journal.pntd.0009889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 01/26/2022] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Schistosoma japonicum is prevalent in Asia with a wide mammalian host range, which leads to highly harmful zoonotic parasitic diseases. Most previous transcriptomic studies have been performed on this parasite, but mainly focus on stages inside the mammalian host. Moreover, few larval transcriptomic data are available in public databases. Here we mapped the detailed transcriptome profiles of four S. japonicum larval stages including eggs, miracidia, sporocysts and cercariae, providing a comprehensive development picture outside of the mammalian host. By analyzing the stage-specific/enriched genes, we identified functional genes associated with the biological characteristic at each stage: e.g. we observed enrichment of genes necessary for DNA replication only in sporocysts, while those involved in proteolysis were upregulated in sporocysts and/or cercariae. This data indicated that miracidia might use leishmanolysin and neprilysin to penetrate the snail, while elastase (SjCE2b) and leishmanolysin might contribute to the cercariae invasion. The expression profile of stem cell markers revealed potential germinal cell conversion during larval development. Additionally, our analysis indicated that tandem duplications had driven the expansion of the papain family in S. japonicum. Notably, all the duplicated cathepsin B-like proteases were highly expressed in cercariae. Utilizing our 3rd version of S. japonicum genome, we further characterized the alternative splicing profiles throughout these four stages. Taken together, the present study provides compressive gene expression profiles of S. japonicum larval stages and identifies a set of genes that might be involved in intermediate and definitive host invasion.
Collapse
Affiliation(s)
- Shaoyun Cheng
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Bingkuan Zhu
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Fang Luo
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Xiying Lin
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Chengsong Sun
- Anhui Provincial Institute of Parasitic Diseases, Hefei, China
| | - Yanmin You
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Cun Yi
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Bin Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
| | - Jipeng Wang
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Yan Lu
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Wei Hu
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
3
|
Assessment of reference genes at six different developmental stages of Schistosoma mansoni for quantitative RT-PCR. Sci Rep 2021; 11:16816. [PMID: 34413342 PMCID: PMC8376997 DOI: 10.1038/s41598-021-96055-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/31/2021] [Indexed: 12/13/2022] Open
Abstract
Reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR) is the most used, fast, and reproducible method to confirm large-scale gene expression data. The use of stable reference genes for the normalization of RT-qPCR assays is recognized worldwide. No systematic study for selecting appropriate reference genes for usage in RT-qPCR experiments comparing gene expression levels at different Schistosoma mansoni life-cycle stages has been performed. Most studies rely on genes commonly used in other organisms, such as actin, tubulin, and GAPDH. Therefore, the present study focused on identifying reference genes suitable for RT-qPCR assays across six S. mansoni developmental stages. The expression levels of 25 novel candidates that we selected based on the analysis of public RNA-Seq datasets, along with eight commonly used reference genes, were systematically tested by RT-qPCR across six developmental stages of S. mansoni (eggs, miracidia, cercariae, schistosomula, adult males and adult females). The stability of genes was evaluated with geNorm, NormFinder and RefFinder algorithms. The least stable candidate reference genes tested were actin, tubulin and GAPDH. The two most stable reference genes suitable for RT-qPCR normalization were Smp_101310 (Histone H4 transcription factor) and Smp_196510 (Ubiquitin recognition factor in ER-associated degradation protein 1). Performance of these two genes as normalizers was successfully evaluated with females maintained unpaired or paired to males in culture for 8 days, or with worm pairs exposed for 16 days to double-stranded RNAs to silence a protein-coding gene. This study provides reliable reference genes for RT-qPCR analysis using samples from six different S. mansoni life-cycle stages.
Collapse
|
4
|
Hambrook JR, Hanington PC. Immune Evasion Strategies of Schistosomes. Front Immunol 2021; 11:624178. [PMID: 33613562 PMCID: PMC7889519 DOI: 10.3389/fimmu.2020.624178] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
Human schistosomes combat the unique immune systems of two vastly different hosts during their indirect life cycles. In gastropod molluscs, they face a potent innate immune response composed of variable immune recognition molecules and highly phagocytic hemocytes. In humans, a wide variety of innate and adaptive immune processes exist in proximity to these parasites throughout their lifespan. To survive and thrive as the second most common parasitic disease in humans, schistosomes have evolved many techniques to avoid and combat these targeted host responses. Among these techniques are molecular mimicry of host antigens, the utilization of an immune resistant outer tegument, the secretion of several potent proteases, and targeted release of specific immunomodulatory factors affecting immune cell functions. This review seeks to describe these key immune evasion mechanisms, among others, which schistosomes use to survive in both of their hosts. After diving into foundational observational studies of the processes mediating the establishment of schistosome infections, more recent transcriptomic and proteomic studies revealing crucial components of the host/parasite molecular interface are discussed. In order to combat this debilitating and lethal disease, a comprehensive understanding of schistosome immune evasion strategies is necessary for the development of novel therapeutics and treatment plans, necessitating the discussion of the numerous ways in which these parasitic flatworms overcome the immune responses of both hosts.
Collapse
Affiliation(s)
- Jacob R Hambrook
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
5
|
Kim HC, Khalil AM, Jolly ER. LncRNAs in molluscan and mammalian stages of parasitic schistosomes are developmentally-regulated and coordinately expressed with protein-coding genes. RNA Biol 2020; 17:805-815. [PMID: 32131676 PMCID: PMC7549628 DOI: 10.1080/15476286.2020.1729594] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite the low level expression of some long noncoding RNAs (lncRNAs), the differential expression of specific lncRNAs plays important roles during the development of many organisms. Schistosomes, parasitic flatworms that are responsible for schistosomiasis, infects over 200 million people resulting in chronic disease and hundreds of thousands of deaths. Schistosomes have a complex life cycle that transitions between molluscan and mammalian hosts. In a molluscan snail host, the sporocyst stage develops over 5 weeks undergoing asexual reproduction to give rise to free-swimming and infectious cercariae that penetrate human skin and eventually mature into egg producing worms in mammals. The tight integration of the sporocyst to the snail host hepatopancreas hinders the -omics study in the molluscan stage, so the sporocyst transcriptome has only been examined for lncRNAs in immature in vitro samples. Here we analyzed the in vivo mature sporocyst transcriptome to identify 4,930 total lncRNAs between the molluscan and mammalian stages of the parasite. We further demonstrate that the lncRNAs are differentially expressed in a development-dependent manner. In addition, we constructed a co-expression correlation network between lncRNAs and protein-coding (PC) genes that was used to identify clusters of lncRNA transcripts with potential functional relevance. We also describe lncRNA-lncRNA and lncRNA-kinome correlations that identify lncRNAs with prospective roles in gene regulation. Finally, our results show clear differential expression patterns of lncRNAs in host-dependent development stages of S. mansoni and ascribe potential functional roles in development based on predicted intracellular interaction.
Collapse
Affiliation(s)
- Hyung Chul Kim
- Department of Biology, Case Western Reserve University , Cleveland, OH, USA
| | - Ahmad M Khalil
- Department of Genetics and Genome Sciences, Case Western Reserve University , Cleveland, OH, USA.,Case Comprehensive Cancer Center, Case Western Reserve University , Cleveland, OH, USA
| | - Emmitt R Jolly
- Department of Biology, Case Western Reserve University , Cleveland, OH, USA.,Center for Global Health and Disease, Case Western Reserve University , Cleveland, OH, USA
| |
Collapse
|
6
|
Haeberlein S, Angrisano A, Quack T, Lu Z, Kellershohn J, Blohm A, Grevelding CG, Hahnel SR. Identification of a new panel of reference genes to study pairing-dependent gene expression in Schistosoma mansoni. Int J Parasitol 2019; 49:615-624. [PMID: 31136746 DOI: 10.1016/j.ijpara.2019.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 12/18/2022]
Abstract
Facilitated by the Schistosoma mansoni genome project, multiple transcriptomic studies were performed over the last decade to elucidate gene expression patterns among different developmental stages of the complex schistosome life cycle. While these analyses enable the identification of candidate genes with key functions in schistosome biology, a diverse molecular tool set is needed that allows comprehensive functional characterization at the single gene level. This includes the availability of reliable reference genes to confirm changes in the transcription of genes of interest over different biological samples and experimental conditions. In particular, the investigation of one key aspect of schistosome biology, the pairing-dependent gene expression in females and males, requires knowledge on reference genes that are expressed independently of both pairing and of in vitro culture effects. Therefore, the present study focused on the identification of quantitative reverse transcription (qRT)-PCR reference genes suitable for the investigation of pairing-dependent gene expression in the S. mansoni male. The "pipeline" we present here is based on qRT-PCR analyses of high biological replication combined with three different statistical analysis tools, BestKeeper, geNorm, and NormFinder. Our approach resulted in a statistically robust ranking of 15 selected reference genes with respect to their transcription stability between pairing-unexperienced and -experienced males. We further tested the top seven candidate genes for their transcription stability during invitro culture of adult S. mansoni. Of these, the two most suitable reference genes were used to investigate the influence of the pairing contact on the transcription of genes of interest, comprising a tyrosine decarboxylase gene Smtdc1, an ebony ortholog Smebony, and the follistatin ortholog Smfst in S. mansoni males. Performing pairing, separation and re-pairing experiments with adult S. mansoni in vitro, our results indicate for the first time that pairing can act as a molecular on/off-switch of specific genes to strictly control their expression in schistosome males.
Collapse
Affiliation(s)
- Simone Haeberlein
- Institute of Parasitology, BFS, Justus-Liebig-University, Giessen, Germany
| | | | - Thomas Quack
- Institute of Parasitology, BFS, Justus-Liebig-University, Giessen, Germany
| | - Zhigang Lu
- Institute of Parasitology, BFS, Justus-Liebig-University, Giessen, Germany; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Josina Kellershohn
- Institute of Parasitology, BFS, Justus-Liebig-University, Giessen, Germany
| | - Ariane Blohm
- Institute of Parasitology, BFS, Justus-Liebig-University, Giessen, Germany
| | | | - Steffen R Hahnel
- Institute of Parasitology, BFS, Justus-Liebig-University, Giessen, Germany.
| |
Collapse
|
7
|
Wang B, Lee J, Li P, Saberi A, Yang H, Liu C, Zhao M, Newmark PA. Stem cell heterogeneity drives the parasitic life cycle of Schistosoma mansoni. eLife 2018; 7:35449. [PMID: 29988015 PMCID: PMC6039179 DOI: 10.7554/elife.35449] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/08/2018] [Indexed: 12/14/2022] Open
Abstract
Schistosomes are parasitic flatworms infecting hundreds of millions of people. These parasites alternate between asexual reproduction in molluscan hosts and sexual reproduction in mammalian hosts; short-lived, water-borne stages infect each host. Thriving in such disparate environments requires remarkable developmental plasticity, manifested by five body plans deployed throughout the parasite’s life cycle. Stem cells in Schistosoma mansoni provide a potential source for such plasticity; however, the relationship between stem cells from different life-cycle stages remains unclear, as does the origin of the germline, required for sexual reproduction. Here, we show that subsets of larvally derived stem cells are likely sources of adult stem cells and the germline. We also identify a novel gene that serves as the earliest marker for the schistosome germline, which emerges inside the mammalian host and is ultimately responsible for disease pathology. This work reveals the stem cell heterogeneity driving the propagation of the schistosome life cycle. Parasitic flatworms called schistosomes infect around 250 million people, causing the disease schistosomiasis. Schistosomes live complex lives, spending part of their life cycle inside snails and part of it inside mammals; short-lived, water-borne stages infect each of these hosts. To thrive in such different environments, schistosomes go through several life-cycle stages. At each stage the flatworms transition to a new body plan adapted to its new environment. Understanding how these transitions occur could help researchers devise new strategies for eliminating these parasites. Previous research suggested that stem cells help schistosomes transition to new body plans. Stem cells have the ability to transform into many different cell types, and have been found in schistosome larvae and adults. However, the relationship between the larval and adult stem cells was not clear. Wang et al. used transcriptional profiling, a technique that measures the genes currently in use in different cells, to study the stem cells in the schistosome species Schistosoma mansoni. This uncovered four types of stem cell, each of which uses a slightly different combination of genes. Examining the behaviour of these cells at different schistosome life-cycle stages revealed that certain larval stem cells produce adult stem cells. Other larval stem cells seem to be the source of the ‘germline’ cells that make gametes (egg and sperm) and allow the parasites to reproduce sexually. Schistosomes only produce germline cells when they are inside mammals. Wang et al. found that as juvenile flatworms develop inside mouse blood vessels, a gene called eledh becomes active in some of their stem cells. Further investigation showed that this activity is the earliest indicator that germline cells are developing and is also required for proper development of the germline. This knowledge, along with future work to characterize the roles of the stem cell populations identified by Wang et al., could ultimately help researchers develop new ways to stop the spread of schistosomiasis.
Collapse
Affiliation(s)
- Bo Wang
- Department of Bioengineering, Stanford University, Stanford, United States.,Department of Developmental Biology, Stanford University School of Medicine, Stanford, United States.,Department of Cell and Developmental Biology, Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Jayhun Lee
- Department of Cell and Developmental Biology, Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Pengyang Li
- Department of Bioengineering, Stanford University, Stanford, United States
| | - Amir Saberi
- Department of Cell and Developmental Biology, Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Huiying Yang
- Department of Bioengineering, Stanford University, Stanford, United States
| | - Chang Liu
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - Minglei Zhao
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - Phillip A Newmark
- Department of Cell and Developmental Biology, Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, United States
| |
Collapse
|
8
|
Cwiklinski K, Dalton JP. Advances in Fasciola hepatica research using 'omics' technologies. Int J Parasitol 2018; 48:321-331. [PMID: 29476869 DOI: 10.1016/j.ijpara.2017.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/05/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022]
Abstract
The liver fluke Fasciola hepatica is an economically important pathogen of livestock worldwide, as well as being an important neglected zoonosis. Parasite control is reliant on the use of drugs, particularly triclabendazole, which is effective against multiple parasite stages. However, the spread of parasites resistant to triclabendazole has intensified the pursuit for novel control strategies. Emerging 'omics' technologies are helping advance our understanding of liver fluke biology, specifically the molecules that act at the host-parasite interface and are central to infection, virulence and long-term survival within the definitive host. This review discusses the technological sequencing advances that have facilitated the unbiased analysis of liver fluke biology, resulting in an extensive range of 'omics' datasets. In addition, we highlight the 'omics' studies of host responses to F. hepatica infection that, when combined with the parasite datasets, provide the opportunity for integrated analyses of host-parasite interactions. These extensive datasets will form the foundation for future in-depth analysis of F. hepatica biology and development, and the search for new drug or vaccine interventions.
Collapse
Affiliation(s)
- Krystyna Cwiklinski
- School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK.
| | - John P Dalton
- School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK; Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
9
|
Buddenborg SK, Bu L, Zhang SM, Schilkey FD, Mkoji GM, Loker ES. Transcriptomic responses of Biomphalaria pfeifferi to Schistosoma mansoni: Investigation of a neglected African snail that supports more S. mansoni transmission than any other snail species. PLoS Negl Trop Dis 2017; 11:e0005984. [PMID: 29045404 PMCID: PMC5685644 DOI: 10.1371/journal.pntd.0005984] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/14/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Biomphalaria pfeifferi is highly compatible with the widespread human-infecting blood fluke Schistosoma mansoni and transmits more cases of this parasite to people than any other snail species. For these reasons, B. pfeifferi is the world's most important vector snail for S. mansoni, yet we know relatively little at the molecular level regarding the interactions between B. pfeifferi and S. mansoni from early-stage sporocyst transformation to the development of cercariae. METHODOLOGY/PRINCIPAL FINDINGS We sought to capture a portrait of the response of B. pfeifferi to S. mansoni as it occurs in nature by undertaking Illumina dual RNA-Seq on uninfected control B. pfeifferi and three intramolluscan developmental stages (1- and 3-days post infection and patent, cercariae-producing infections) using field-derived west Kenyan specimens. A high-quality, well-annotated de novo B. pfeifferi transcriptome was assembled from over a half billion non-S. mansoni paired-end reads. Reads associated with potential symbionts were noted. Some infected snails yielded fewer normalized S. mansoni reads and showed different patterns of transcriptional response than others, an indication that the ability of field-derived snails to support and respond to infection is variable. Alterations in transcripts associated with reproduction were noted, including for the oviposition-related hormone ovipostatin and enzymes involved in metabolism of bioactive amines like dopamine or serotonin. Shedding snails exhibited responses consistent with the need for tissue repair. Both generalized stress and immune factors immune factors (VIgLs, PGRPs, BGBPs, complement C1q-like, chitinases) exhibited complex transcriptional responses in this compatible host-parasite system. SIGNIFICANCE This study provides for the first time a large sequence data set to help in interpreting the important vector role of the neglected snail B. pfeifferi in transmission of S. mansoni, including with an emphasis on more natural, field-derived specimens. We have identified B. pfeifferi targets particularly responsive during infection that enable further dissection of the functional role of these candidate molecules.
Collapse
Affiliation(s)
- Sarah K. Buddenborg
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Lijing Bu
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Si-Ming Zhang
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Faye D. Schilkey
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Gerald M. Mkoji
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, KEN
| | - Eric S. Loker
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
10
|
Rodríguez-Esteban G, González-Sastre A, Rojo-Laguna JI, Saló E, Abril JF. Digital gene expression approach over multiple RNA-Seq data sets to detect neoblast transcriptional changes in Schmidtea mediterranea. BMC Genomics 2015; 16:361. [PMID: 25952370 PMCID: PMC4494696 DOI: 10.1186/s12864-015-1533-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/13/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The freshwater planarian Schmidtea mediterranea is recognised as a valuable model for research into adult stem cells and regeneration. With the advent of the high-throughput sequencing technologies, it has become feasible to undertake detailed transcriptional analysis of its unique stem cell population, the neoblasts. Nonetheless, a reliable reference for this type of studies is still lacking. RESULTS Taking advantage of digital gene expression (DGE) sequencing technology we compare all the available transcriptomes for S. mediterranea and improve their annotation. These results are accessible via web for the community of researchers. Using the quantitative nature of DGE, we describe the transcriptional profile of neoblasts and present 42 new neoblast genes, including several cancer-related genes and transcription factors. Furthermore, we describe in detail the Smed-meis-like gene and the three Nuclear Factor Y subunits Smed-nf-YA, Smed-nf-YB-2 and Smed-nf-YC. CONCLUSIONS DGE is a valuable tool for gene discovery, quantification and annotation. The application of DGE in S. mediterranea confirms the planarian stem cells or neoblasts as a complex population of pluripotent and multipotent cells regulated by a mixture of transcription factors and cancer-related genes.
Collapse
Affiliation(s)
- Gustavo Rodríguez-Esteban
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Av. Diagonal 643, Barcelona, 08028, Catalonia, Spain.
| | - Alejandro González-Sastre
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Av. Diagonal 643, Barcelona, 08028, Catalonia, Spain.
| | - José Ignacio Rojo-Laguna
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Av. Diagonal 643, Barcelona, 08028, Catalonia, Spain.
| | - Emili Saló
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Av. Diagonal 643, Barcelona, 08028, Catalonia, Spain.
| | - Josep F Abril
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Av. Diagonal 643, Barcelona, 08028, Catalonia, Spain.
| |
Collapse
|
11
|
Wang S, Hu W. Development of "-omics" research in Schistosoma spp. and -omics-based new diagnostic tools for schistosomiasis. Front Microbiol 2014; 5:313. [PMID: 25018752 PMCID: PMC4072072 DOI: 10.3389/fmicb.2014.00313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Indexed: 12/02/2022] Open
Abstract
Schistosomiasis, caused by dioecious flatworms in the genus Schistosoma, is torturing people from many developing countries nowadays and frequently leads to severe morbidity and mortality of the patients. Praziquantel based chemotherapy and morbidity control for this disease adopted currently necessitate viable and efficient diagnostic technologies. Fortunately, those “-omics” researches, which rely on high-throughput experimental technologies to produce massive amounts of informative data, have substantially contributed to the exploitation and innovation of diagnostic tools of schistosomiasis. In its first section, this review provides a concise conclusion on the progresses pertaining to schistosomal “-omics” researches to date, followed by a comprehensive section on the diagnostic methods of schistosomiasis, especially those innovative ones based on the detection of antibodies, antigens, nucleic acids, and metabolites with a focus on those achievements inspired by “-omics” researches. Finally, suggestions about the design of future diagnostic tools of schistosomiasis are proposed, in order to better harness those data produced by “-omics” studies.
Collapse
Affiliation(s)
- Shuqi Wang
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University Shanghai, China
| | - Wei Hu
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University Shanghai, China ; Key Laboratory of Parasite and Vector Biology of Ministry of Health, National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention Shanghai, China
| |
Collapse
|
12
|
Hahnel S, Lu Z, Wilson RA, Grevelding CG, Quack T. Whole-organ isolation approach as a basis for tissue-specific analyses in Schistosoma mansoni. PLoS Negl Trop Dis 2013; 7:e2336. [PMID: 23936567 PMCID: PMC3723596 DOI: 10.1371/journal.pntd.0002336] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/14/2013] [Indexed: 12/11/2022] Open
Abstract
Background Schistosomiasis is one of the most important parasitic diseases worldwide, second only to malaria. Schistosomes exhibit an exceptional reproductive biology since the sexual maturation of the female, which includes the differentiation of the reproductive organs, is controlled by pairing. Pathogenicity originates from eggs, which cause severe inflammation in their hosts. Elucidation of processes contributing to female maturation is not only of interest to basic science but also considering novel concepts combating schistosomiasis. Methodology/Principal Findings To get direct access to the reproductive organs, we established a novel protocol using a combined detergent/protease-treatment removing the tegument and the musculature of adult Schistosoma mansoni. All steps were monitored by scanning electron microscopy (SEM) and bright-field microscopy (BF). We focused on the gonads of adult schistosomes and demonstrated that isolated and purified testes and ovaries can be used for morphological and structural studies as well as sources for RNA and protein of sufficient amounts for subsequent analyses such as RT-PCR and immunoblotting. To this end, first exemplary evidence was obtained for tissue-specific transcription within the gonads (axonemal dynein intermediate chain gene SmAxDynIC; aquaporin gene SmAQP) as well as for post-transcriptional regulation (SmAQP). Conclusions/Significance The presented method provides a new way of getting access to tissue-specific material of S. mansoni. With regard to many still unanswered questions of schistosome biology, such as elucidating the molecular processes involved in schistosome reproduction, this protocol provides opportunities for, e.g., sub-transcriptomics and sub-proteomics at the organ level. This will promote the characterisation of gene-expression profiles, or more specifically to complete knowledge of signalling pathways contributing to differentiation processes, so discovering involved molecules that may represent potential targets for novel intervention strategies. Furthermore, gonads and other tissues are a basis for cell isolation, opening new perspectives for establishing cell lines, one of the tools desperately needed in the post-genomic era. As a neglected disease, schistosomiasis is still an enormous problem in the tropics and subtropics. Since the 1980s, Praziquantel (PZQ) has been the drug of choice but can be anticipated to lose efficacy in the future due to emerging resistance. Alternative drugs or efficient vaccines are still lacking, strengthening the need for the discovery of novel strategies and targets for combating schistosomiasis. One avenue is to understand the unique reproductive biology of this trematode in more detail. Sexual maturation of the adult female depends on a constant pairing with the male. This is a crucial prerequisite for the differentiation of the female reproductive organs such as the vitellarium and ovary, and consequently for the production of mature eggs. These are needed for life-cycle maintenance, but they also cause pathogenesis. With respect to adult males, the production of mature sperm is essential for fertilisation and life-cycle progression. In our study we present a convenient and inexpensive method to isolate reproductive tissues from adult schistosomes in high amounts and purity, representing a source for gonad-specific RNA and protein, which will serve for future sub-transcriptome and -proteome studies helping to characterise genes, or to unravel differentiation programs in schistosome gonads. Beyond that, isolated organs may be useful for approaches to establish cell cultures, desperately needed in the post-genomic era.
Collapse
Affiliation(s)
- Steffen Hahnel
- Institute of Parasitology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | |
Collapse
|
13
|
Yoshino TP, Bickham U, Bayne CJ. Molluscan cells in culture: primary cell cultures and cell lines. CAN J ZOOL 2013. [PMID: 24198436 DOI: 10.1139/cjz-20120258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as biomonitors for environmental contaminants, as models for gene transfer technologies, and for studies of innate immunity and neoplastic disease. Despite efforts to isolate proliferative cell lines from molluscs, the snail Biomphalaria glabrata Say, 1818 embryonic (Bge) cell line is the only existing cell line originating from any molluscan species. Taking an organ systems approach, this review summarizes efforts to establish molluscan cell cultures and describes the varied applications of primary cell cultures in research. Because of the unique status of the Bge cell line, an account is presented of the establishment of this cell line, and of how these cells have contributed to our understanding of snail host-parasite interactions. Finally, we detail the difficulties commonly encountered in efforts to establish cell lines from molluscs and discuss how these difficulties might be overcome.
Collapse
Affiliation(s)
- T P Yoshino
- Department of Pathobiological Sciences, University of Wisconsin, School of Veterinary Medicine, Madison, WI 53706
| | | | | |
Collapse
|
14
|
Abstract
In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as biomonitors for environmental contaminants, as models for gene transfer technologies, and for studies of innate immunity and neoplastic disease. Despite efforts to isolate proliferative cell lines from molluscs, the snail Biomphalaria glabrata Say, 1818 embryonic (Bge) cell line is the only existing cell line originating from any molluscan species. Taking an organ systems approach, this review summarizes efforts to establish molluscan cell cultures and describes the varied applications of primary cell cultures in research. Because of the unique status of the Bge cell line, an account is presented of the establishment of this cell line, and of how these cells have contributed to our understanding of snail host-parasite interactions. Finally, we detail the difficulties commonly encountered in efforts to establish cell lines from molluscs and discuss how these difficulties might be overcome.
Collapse
Affiliation(s)
- T P Yoshino
- Department of Pathobiological Sciences, University of Wisconsin, School of Veterinary Medicine, Madison, WI 53706
| | | | | |
Collapse
|
15
|
Mbah AN, Mahmud O, Awofolu OR, Isokpehi RD. Inferences on the biochemical and environmental regulation of universal stress proteins from Schistosomiasis parasites. Adv Appl Bioinform Chem 2013; 6:15-27. [PMID: 23696708 PMCID: PMC3656623 DOI: 10.2147/aabc.s37191] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Human schistosomiasis is a freshwater snail-transmitted disease caused by parasitic flatworms of the Schistosoma genus. Schistosoma haematobium, Schistosoma mansoni, and Schistosoma japonicum are the three major species infecting humans. These parasites undergo a complex developmental life cycle, in which they encounter a plethora of environmental signals. The presence of genes encoding the universal stress protein (USP) domain in the genomes of Schistosoma spp. suggests these flatworms are equipped to respond to unfavorable conditions. Though data on gene expression is available for USP genes, their biochemical and environmental regulation are incompletely understood. The identification of additional regulatory molecules for Schistosoma. USPs, which may be present in the human, snail, or water environments, could also be useful for schistosomiasis interventions. METHODS We developed a protocol that includes a visual analytics stage to facilitate integration, visualization, and decision making, from the results of sequence analyses and data collection on a set of 13 USPs from S. mansoni and S. japonicum. RESULTS Multiple sequence alignment identified conserved sites that could be key residues regulating the function of USPs of the Schistosoma spp. Based on the consistency and completeness of sequence annotation, we prioritized for further research the gene for a 184-amino-acid-long USP that is present in the genomes of the three human-infecting Schistosoma spp. Calcium, zinc, and magnesium ions were predicted to interact with the protein product of the gene. CONCLUSION Given that the initial effects of praziquantel on schistosomes include the influx of calcium ions, additional investigations are required to (1) functionally characterize the interactions of calcium ions with the amino acid residues of Schistosoma USPs; and (2) determine the transcriptional response of Schistosoma. USP genes to praziquantel. The data sets produced, and the visual analytics views that were developed, can be easily reused to develop new hypotheses.
Collapse
Affiliation(s)
- Andreas N Mbah
- Center for Bioinformatics and Computational Biology, Department of Biology, Jackson State University, Jackson, MS, USA ; Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Pretoria, South Africa
| | | | | | | |
Collapse
|
16
|
Interaction of Schistosoma mansoni Sporocysts and Hemocytes of Biomphalaria. J Parasitol Res 2012; 2012:743920. [PMID: 22811885 PMCID: PMC3395257 DOI: 10.1155/2012/743920] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/18/2012] [Indexed: 12/11/2022] Open
Abstract
Human infection by Schistosoma mansoni affects more than 100 million people worldwide, most often in populations of developing countries of Africa, Asia, and Latin America. The transmission of S. mansoni in human populations depends on the presence of some species of Biomphalaria that act as an intermediate host. The compatibility between S. mansoni and its intermediate host is influenced by behavioral, physiological, and genetical factors of the mollusc and the parasite. The susceptibility level of the mollusc has been attributed to the capacity of internal defense system (IDS)—hemocytes and soluble components of the hemolymph—to recognize and destroy the parasite, and this will be the center of interest of this paper. The schistosome-resistant Biomphalaria can be an alternative strategy for the control of schistosomiasis.
Collapse
|
17
|
Isokpehi RD, Mahmud O, Mbah AN, Simmons SS, Avelar L, Rajnarayanan RV, Udensi UK, Ayensu WK, Cohly HH, Brown SD, Dates CR, Hentz SD, Hughes SJ, Smith-McInnis DR, Patterson CO, Sims JN, Turner KT, Williams BS, Johnson MO, Adubi T, Mbuh JV, Anumudu CI, Adeoye GO, Thomas BN, Nashiru O, Oliveira G. Developmental Regulation of Genes Encoding Universal Stress Proteins in Schistosoma mansoni. GENE REGULATION AND SYSTEMS BIOLOGY 2011; 5:61-74. [PMID: 22084571 PMCID: PMC3201111 DOI: 10.4137/grsb.s7491] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The draft nuclear genome sequence of the snail-transmitted, dimorphic, parasitic, platyhelminth Schistosoma mansoni revealed eight genes encoding proteins that contain the Universal Stress Protein (USP) domain. Schistosoma mansoni is a causative agent of human schistosomiasis, a severe and debilitating Neglected Tropical Disease (NTD) of poverty, which is endemic in at least 76 countries. The availability of the genome sequences of Schistosoma species presents opportunities for bioinformatics and genomics analyses of associated gene families that could be targets for understanding schistosomiasis ecology, intervention, prevention and control. Proteins with the USP domain are known to provide bacteria, archaea, fungi, protists and plants with the ability to respond to diverse environmental stresses. In this research investigation, the functional annotations of the USP genes and predicted nucleotide and protein sequences were initially verified. Subsequently, sequence clusters and distinctive features of the sequences were determined. A total of twelve ligand binding sites were predicted based on alignment to the ATP-binding universal stress protein from Methanocaldococcus jannaschii. In addition, six USP sequences showed the presence of ATP-binding motif residues indicating that they may be regulated by ATP. Public domain gene expression data and RT-PCR assays confirmed that all the S. mansoni USP genes were transcribed in at least one of the developmental life cycle stages of the helminth. Six of these genes were up-regulated in the miracidium, a free-swimming stage that is critical for transmission to the snail intermediate host. It is possible that during the intra-snail stages, S. mansoni gene transcripts for universal stress proteins are low abundant and are induced to perform specialized functions triggered by environmental stressors such as oxidative stress due to hydrogen peroxide that is present in the snail hemocytes. This report serves to catalyze the formation of a network of researchers to understand the function and regulation of the universal stress proteins encoded in genomes of schistosomes and their snail intermediate hosts.
Collapse
Affiliation(s)
- Raphael D. Isokpehi
- Center for Bioinformatics & Computational Biology, Department of Biology, Jackson State University, Jackson, Mississippi, USA
- Department of Biology, Jackson State University, Jackson, Mississippi, USA
| | - Ousman Mahmud
- Center for Bioinformatics & Computational Biology, Department of Biology, Jackson State University, Jackson, Mississippi, USA
- Department of Biology, Jackson State University, Jackson, Mississippi, USA
| | - Andreas N. Mbah
- Center for Bioinformatics & Computational Biology, Department of Biology, Jackson State University, Jackson, Mississippi, USA
| | - Shaneka S. Simmons
- Center for Bioinformatics & Computational Biology, Department of Biology, Jackson State University, Jackson, Mississippi, USA
- Department of Biology, Jackson State University, Jackson, Mississippi, USA
| | - Lívia Avelar
- Genetics and Computational Biology Group, Centro de Pesquisas René Rachou/FIOCRUZ-MG, Av. Augusto de Lima, 1715, Barro Preto, CEP 30190-002, Belo Horizonte-MG, Brazil
- Universidade Federal de Minas Gerais/Departamento de Genética, Av.Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte-MG, Brazil
| | - Rajendram V. Rajnarayanan
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, New York, USA
| | - Udensi K. Udensi
- Center for Bioinformatics & Computational Biology, Department of Biology, Jackson State University, Jackson, Mississippi, USA
| | - Wellington K. Ayensu
- Center for Bioinformatics & Computational Biology, Department of Biology, Jackson State University, Jackson, Mississippi, USA
- Department of Biology, Jackson State University, Jackson, Mississippi, USA
| | - Hari H. Cohly
- Center for Bioinformatics & Computational Biology, Department of Biology, Jackson State University, Jackson, Mississippi, USA
- Department of Biology, Jackson State University, Jackson, Mississippi, USA
| | - Shyretha D. Brown
- Center for Bioinformatics & Computational Biology, Department of Biology, Jackson State University, Jackson, Mississippi, USA
- Department of Biology, Jackson State University, Jackson, Mississippi, USA
| | - Centdrika R. Dates
- Center for Bioinformatics & Computational Biology, Department of Biology, Jackson State University, Jackson, Mississippi, USA
- Department of Biology, Jackson State University, Jackson, Mississippi, USA
| | - Sonya D. Hentz
- Department of Biology, Jackson State University, Jackson, Mississippi, USA
| | - Shawntae J. Hughes
- Center for Bioinformatics & Computational Biology, Department of Biology, Jackson State University, Jackson, Mississippi, USA
- Department of Biology, Jackson State University, Jackson, Mississippi, USA
| | - Dominique R. Smith-McInnis
- Center for Bioinformatics & Computational Biology, Department of Biology, Jackson State University, Jackson, Mississippi, USA
- Department of Biology, Jackson State University, Jackson, Mississippi, USA
| | | | - Jennifer N. Sims
- Center for Bioinformatics & Computational Biology, Department of Biology, Jackson State University, Jackson, Mississippi, USA
- Department of Biology, Jackson State University, Jackson, Mississippi, USA
| | - Kelisha T. Turner
- Department of Biology, Jackson State University, Jackson, Mississippi, USA
| | - Baraka S. Williams
- Center for Bioinformatics & Computational Biology, Department of Biology, Jackson State University, Jackson, Mississippi, USA
- Department of Biology, Jackson State University, Jackson, Mississippi, USA
| | - Matilda O. Johnson
- Department of Environmental Sciences, University of South Africa, Pretoria, South Africa
| | - Taiwo Adubi
- Participant, International Center for Genetic Engineering and Biotechnology/National Biotechnology Development Agency/West African Biotechnology Workshop Series, Ibadan Nigeria
- Department of Zoology, University of Lagos, Akoka, Yaba, Lagos, Nigeria
| | - Judith V. Mbuh
- Participant, International Center for Genetic Engineering and Biotechnology/National Biotechnology Development Agency/West African Biotechnology Workshop Series, Ibadan Nigeria
- Department of Life Sciences, University of Buea, Buea, Cameroon
| | - Chiaka I. Anumudu
- Participant, International Center for Genetic Engineering and Biotechnology/National Biotechnology Development Agency/West African Biotechnology Workshop Series, Ibadan Nigeria
- Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Grace O. Adeoye
- Participant, International Center for Genetic Engineering and Biotechnology/National Biotechnology Development Agency/West African Biotechnology Workshop Series, Ibadan Nigeria
- Department of Zoology, University of Lagos, Akoka, Yaba, Lagos, Nigeria
| | - Bolaji N. Thomas
- Department of Biological and Medical Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Oyekanmi Nashiru
- Department of Molecular Biology and Bioinformatics, National Biotechnology Development Agency (NABDA) Abuja, Nigeria and West African Biotechnology Workshop Series (WABWS)
| | - Guilherme Oliveira
- Genetics and Computational Biology Group, Centro de Pesquisas René Rachou/FIOCRUZ-MG, Av. Augusto de Lima, 1715, Barro Preto, CEP 30190-002, Belo Horizonte-MG, Brazil
| |
Collapse
|
18
|
Allienne JF, Théron A, Gourbal B. Recovery of primary sporocysts in vivo in the Schistosoma mansoni/Biomphalaria glabrata model using a simple fixation method suitable for extraction of genomic DNA and RNA. Exp Parasitol 2011; 129:11-6. [PMID: 21726555 DOI: 10.1016/j.exppara.2011.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 06/08/2011] [Accepted: 06/14/2011] [Indexed: 11/26/2022]
Abstract
Detailed studies of host/parasite interactions are currently limited because in situ gene sequencing or monitoring of parasite gene expression is so far limited to genes presenting a high loci copy number in the Schistosome genome or a high level of expression. Indeed, how to investigate the host parasite molecular interplay when parasites are not directly accessible in vivo? Here we describe a method to circumvent this problem and to analyze DNA and RNA of Schistosoma mansoni during the interaction with its intermediate snail host Biomphalaria glabrata. We propose a technique for improved DNA and RNA extraction from the intra-molluscan stage of the parasite recovered after fixation of infected snails in Raillet-Henry solution. The extractions can be used for genetic analysis, transcription studies and microsatellite genotyping.
Collapse
|
19
|
Taft AS, Yoshino TP. Cloning and functional characterization of two calmodulin genes during larval development in the parasitic flatworm Schistosoma mansoni. J Parasitol 2010; 97:72-81. [PMID: 21348610 DOI: 10.1645/ge-2586.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Schistosomiasis is endemic in over 70 countries, in which more than 200 million people are infected with the various schistosome species. Understanding the physiological processes underlying key developmental events could be useful in developing novel chemotherapeutic reagents or infection intervention strategies. Calmodulin is a small, calcium-sensing protein found in all eukaryotes and, although the protein has been previously identified in various Schistosoma mansoni stages and implicated in egg hatching and miracidia transformation, few molecular and functional data are available for this essential protein. Herein, we report the molecular cloning, expression, and functional characterization of calmodulin in the miracidia and primary sporocyst stages of S. mansoni. Two transcripts, SmCaM1 and SmCaM2, were cloned and sequenced, and a recombinant SmCaM1 protein was expressed in Escherichia coli and used to generate anti-CaM antibodies. The 2 protein sequences were highly conserved when compared to other model organisms. The alignment of the predicted proteins of both SmCaM1 and SmCaM2 exhibited 99% identity to each other and 97-98% identity with mammalian calmodulins. Analysis of steady-state transcript abundance indicate that the 2 calmodulin transcripts differ in their stage-associated expression patterns, although the CaM protein isotype appears to be constitutively expressed during early larval development. Application of RNAi to larval parasites results in a "stunted growth" phenotype in sporocysts with 30 and 35% reduction in transcript abundance for SmCaM1 and SmCaM2, respectively, and a corresponding 35% reduction in protein level after incubation in double-stranded RNA. Differential expression of CaM transcripts during early larval development and a growth defect-inducing effect associated with partial transcript and protein inhibition as a result of RNAi suggest a potentially important role of calmodulin during early larval development.
Collapse
Affiliation(s)
- Andrew S Taft
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
20
|
Gobert GN. Applications for profiling the schistosome transcriptome. Trends Parasitol 2010; 26:434-9. [DOI: 10.1016/j.pt.2010.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 04/16/2010] [Accepted: 04/26/2010] [Indexed: 01/30/2023]
|
21
|
Schistosomiasis in the People's Republic of China: the era of the Three Gorges Dam. Clin Microbiol Rev 2010; 23:442-66. [PMID: 20375361 DOI: 10.1128/cmr.00044-09] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The potential impact of the Three Gorges Dam (TGD) on schistosomiasis transmission in China has invoked considerable global concern. The TGD will result in changes in the water level and silt deposition downstream, favoring the reproduction of Oncomelania snails. Combined with blockages of the Yangtze River's tributaries, these changes will increase the schistosomiasis transmission season within the marshlands along the middle and lower reaches of the Yangtze River. The changing schistosome transmission dynamics necessitate a comprehensive strategy to control schistosomiasis. This review discusses aspects of the epidemiology and transmission of Schistosoma japonicum in China and considers the pathology, clinical outcomes, diagnosis, treatment, immunobiology, and genetics of schistosomiasis japonica together with an overview of current progress in vaccine development, all of which will have an impact on future control efforts. The use of synchronous praziquantel (PZQ) chemotherapy for humans and domestic animals is only temporarily effective, as schistosome reinfection occurs rapidly. Drug delivery requires a substantial infrastructure to regularly cover all parts of an area of endemicity. This makes chemotherapy expensive and, as compliance is often low, a less than satisfactory control option. There is increasing disquiet about the possibility that PZQ-resistant schistosomes will develop. Consequently, as mathematical modeling predicts, vaccine strategies represent an essential component in the future control of schistosomiasis in China. With the inclusion of focal mollusciciding, improvements in sanitation, and health education into the control scenario, China's target of reducing the level of schistosome infection to less than 1% by 2015 may be achievable.
Collapse
|
22
|
Macagno ER, Gaasterland T, Edsall L, Bafna V, Soares MB, Scheetz T, Casavant T, Da Silva C, Wincker P, Tasiemski A, Salzet M. Construction of a medicinal leech transcriptome database and its application to the identification of leech homologs of neural and innate immune genes. BMC Genomics 2010; 11:407. [PMID: 20579359 PMCID: PMC2996935 DOI: 10.1186/1471-2164-11-407] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 06/25/2010] [Indexed: 11/17/2022] Open
Abstract
Background The medicinal leech, Hirudo medicinalis, is an important model system for the study of nervous system structure, function, development, regeneration and repair. It is also a unique species in being presently approved for use in medical procedures, such as clearing of pooled blood following certain surgical procedures. It is a current, and potentially also future, source of medically useful molecular factors, such as anticoagulants and antibacterial peptides, which may have evolved as a result of its parasitizing large mammals, including humans. Despite the broad focus of research on this system, little has been done at the genomic or transcriptomic levels and there is a paucity of openly available sequence data. To begin to address this problem, we constructed whole embryo and adult central nervous system (CNS) EST libraries and created a clustered sequence database of the Hirudo transcriptome that is available to the scientific community. Results A total of ~133,000 EST clones from two directionally-cloned cDNA libraries, one constructed from mRNA derived from whole embryos at several developmental stages and the other from adult CNS cords, were sequenced in one or both directions by three different groups: Genoscope (French National Sequencing Center), the University of Iowa Sequencing Facility and the DOE Joint Genome Institute. These were assembled using the phrap software package into 31,232 unique contigs and singletons, with an average length of 827 nt. The assembled transcripts were then translated in all six frames and compared to proteins in NCBI's non-redundant (NR) and to the Gene Ontology (GO) protein sequence databases, resulting in 15,565 matches to 11,236 proteins in NR and 13,935 matches to 8,073 proteins in GO. Searching the database for transcripts of genes homologous to those thought to be involved in the innate immune responses of vertebrates and other invertebrates yielded a set of nearly one hundred evolutionarily conserved sequences, representing all known pathways involved in these important functions. Conclusions The sequences obtained for Hirudo transcripts represent the first major database of genes expressed in this important model system. Comparison of translated open reading frames (ORFs) with the other openly available leech datasets, the genome and transcriptome of Helobdella robusta, shows an average identity at the amino acid level of 58% in matched sequences. Interestingly, comparison with other available Lophotrochozoans shows similar high levels of amino acid identity, where sequences match, for example, 64% with Capitella capitata (a polychaete) and 56% with Aplysia californica (a mollusk), as well as 58% with Schistosoma mansoni (a platyhelminth). Phylogenetic comparisons of putative Hirudo innate immune response genes present within the Hirudo transcriptome database herein described show a strong resemblance to the corresponding mammalian genes, indicating that this important physiological response may have older origins than what has been previously proposed.
Collapse
Affiliation(s)
- Eduardo R Macagno
- Division of Biological Sciences, University of California, San Diego, CA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Taft AS, Norante FA, Yoshino TP. The identification of inhibitors of Schistosoma mansoni miracidial transformation by incorporating a medium-throughput small-molecule screen. Exp Parasitol 2010; 125:84-94. [PMID: 20060828 DOI: 10.1016/j.exppara.2009.12.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 12/21/2009] [Accepted: 12/30/2009] [Indexed: 10/20/2022]
Abstract
In Schistosoma mansoni, the miracidium-to-primary sporocyst transformation process is associated with many physiological, morphological, transcriptional and biochemical changes. In the present study, we use a medium-throughput small-molecule screen to identify chemical compounds inhibiting or delaying the in vitro transformation of miracidia to the sporocyst stage. The Sigma-Aldrich Library of Pharmacologically Active Compounds (LOPAC) contains 1280 well-characterized chemical compounds with various modes of action including enzyme inhibitors, antibiotics, cell-cycle regulators, apoptosis inducers and GPCR ligands. We identified 47 compounds that greatly reduce or delay this transformation process during a primary screen of live miracidia. The majority of compounds inhibiting larval transformation were from dopaminergic, serotonergic, ion channel and phosphorylation classes. Specifically, we found that dopamine D2-type antagonists, serotonin reuptake inhibitors, voltage-gated calcium channel antagonists and a PKC activator significantly reduced in vitro miracidial transformation rates. Many of the targets of these compounds regulate adenylyl cyclase activity, with the inhibition or activation of these targets resulting in increased cAMP levels in miracidia and concomitant blocking/delaying of larval transformation.
Collapse
Affiliation(s)
- Andrew S Taft
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA.
| | | | | |
Collapse
|
24
|
In vitro manipulation of gene expression in larval Schistosoma: a model for postgenomic approaches in Trematoda. Parasitology 2009; 137:463-83. [PMID: 19961646 DOI: 10.1017/s0031182009991302] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
With rapid developments in DNA and protein sequencing technologies, combined with powerful bioinformatics tools, a continued acceleration of gene identification in parasitic helminths is predicted, potentially leading to discovery of new drug and vaccine targets, enhanced diagnostics and insights into the complex biology underlying host-parasite interactions. For the schistosome blood flukes, with the recent completion of genome sequencing and comprehensive transcriptomic datasets, there has accumulated massive amounts of gene sequence data, for which, in the vast majority of cases, little is known about actual functions within the intact organism. In this review we attempt to bring together traditional in vitro cultivation approaches and recent emergent technologies of molecular genomics, transcriptomics and genetic manipulation to illustrate the considerable progress made in our understanding of trematode gene expression and function during development of the intramolluscan larval stages. Using several prominent trematode families (Schistosomatidae, Fasciolidae, Echinostomatidae), we have focused on the current status of in vitro larval isolation/cultivation as a source of valuable raw material supporting gene discovery efforts in model digeneans that include whole genome sequencing, transcript and protein expression profiling during larval development, and progress made in the in vitro manipulation of genes and their expression in larval trematodes using transgenic and RNA interference (RNAi) approaches.
Collapse
|
25
|
Mourão MDM, Dinguirard N, Franco GR, Yoshino TP. Role of the endogenous antioxidant system in the protection of Schistosoma mansoni primary sporocysts against exogenous oxidative stress. PLoS Negl Trop Dis 2009; 3:e550. [PMID: 19924224 PMCID: PMC2771906 DOI: 10.1371/journal.pntd.0000550] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 10/15/2009] [Indexed: 12/02/2022] Open
Abstract
Antioxidants produced by the parasite Schistosoma mansoni are believed to be involved in the maintenance of cellular redox balance, thus contributing to larval survival in their intermediate snail host, Biomphalaria glabrata. Here, we focused on specific antioxidant enzymes, including glutathione-S-transferases 26 and 28 (GST26 and 28), glutathione peroxidase (GPx), peroxiredoxin 1 and 2 (Prx1 and 2) and Cu/Zn superoxide dismutase (SOD), known to be involved in cellular redox reactions, in an attempt to evaluate their endogenous antioxidant function in the early-developing primary sporocyst stage of S. mansoni. Previously we demonstrated a specific and consistent RNA interference (RNAi)-mediated knockdown of GST26 and 28, Prx1 and 2, and GPx transcripts, and an unexpected elevation of SOD transcripts in sporocysts treated with gene-specific double-stranded (ds)RNA. In the present followup study, in vitro transforming sporocysts were exposed to dsRNAs for GST26 and 28, combined Prx1/2, GPx, SOD or green-fluorescent protein (GFP, control) for 7 days in culture, followed by assessment of the effects of specific dsRNA treatments on protein levels using semi-quantitative Western blot analysis (GST26, Prx1/2 only), and larval susceptibility to exogenous oxidative stress in in vitro killing assays. Significant decreases (80% and 50%) in immunoreactive GST26 and Prx1/2, respectively, were observed in sporocysts treated with specific dsRNA, compared to control larvae treated with GFP dsRNA. Sporocysts cultured with dsRNAs for GST26, GST28, Prx1/2 and GPx, but not SOD dsRNA, were significantly increased in their susceptibility to H2O2 oxidative stress (60–80% mortalities at 48 hr) compared to GFP dsRNA controls (∼18% mortality). H2O2-mediated killing was abrogated by bovine catalase, further supporting a protective role for endogenous sporocyst antioxidants. Finally, in vitro killing of S. mansoni sporocysts by hemocytes of susceptible NMRI B. glabrata snails was increased in larvae treated with Prx1/2, GST26 and GST28 dsRNA, compared to those treated with GFP or SOD dsRNAs. Results of these experiments strongly support the hypothesis that endogenous expression and regulation of larval antioxidant enzymes serve a direct role in protection against external oxidative stress, including immune-mediated cytotoxic reactions. Moreover, these findings illustrate the efficacy of a RNAi-type approach in investigating gene function in larval schistosomes. Species of the human blood fluke Schistosoma are estimated to infect approximately 200 million people worldwide, resulting in loss of health, vitality and productivity mainly among the world's poorest inhabitants. Since snail intermediate hosts represent an essential part of the flukes' life cycle, an understanding of the strategies used by the intramolluscan schistosome larvae to survive within this host may provide novel approaches for disrupting larval development and thus transmission to humans. Anti-oxidant enzymes produced by the parasite Schistosoma mansoni are believed to play a critical role in the maintenance of cellular redox balance, contributing to larval survival in their snail host, Biomphalaria glabrata. In this study, we have incorporated a RNA interference approach attempting to knock down specific anti-oxidant enzymes, including gluthatione-S-transferases 26 and 28 (GST26 and 28), gluthatione peroxidase (GPx), peroxiredoxins 1 and 2 (Prx1/2) and superoxide dismutase (SOD), and to evaluate their endogenous anti-oxidant function in the sporocyst stage of S. mansoni. Results clearly demonstrated a significantly higher susceptibility of antioxidant double-stranded (ds)RNA-treated larvae to in vitro H2O2 treatment or hemocytic encapsulation compared to GFP dsRNA controls. Taken together, our findings support the hypothesis that endogenous expression and regulation of larval antioxidant enzymes serve a direct role in protection against external oxidative stress, including immune-mediated cytotoxic reactions.
Collapse
Affiliation(s)
- Marina de Moraes Mourão
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Nathalie Dinguirard
- Department of Pathobiological Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Glória R. Franco
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Timothy P. Yoshino
- Department of Pathobiological Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
26
|
Abstract
More than two billion people (one-third of humanity) are infected with parasitic roundworms or flatworms, collectively known as helminth parasites. These infections cause diseases that are responsible for enormous levels of morbidity and mortality, delays in the physical development of children, loss of productivity among the workforce, and maintenance of poverty. Genomes of the major helminth species that affect humans, and many others of agricultural and veterinary significance, are now the subject of intensive genome sequencing and annotation. Draft genome sequences of the filarial worm Brugia malayi and two of the human schistosomes, Schistosoma japonicum and S. mansoni, are now available, among others. These genome data will provide the basis for a comprehensive understanding of the molecular mechanisms involved in helminth nutrition and metabolism, host-dependent development and maturation, immune evasion, and evolution. They are likely also to predict new potential vaccine candidates and drug targets. In this review, we present an overview of these efforts and emphasize the potential impact and importance of these new findings.
Collapse
Affiliation(s)
- Paul J Brindley
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University Medical Center, Washington, D. C., USA.
| | | | | | | |
Collapse
|
27
|
Ittiprasert W, Nene R, Miller A, Raghavan N, Lewis F, Hodgson J, Knight M. Schistosoma mansoni infection of juvenile Biomphalaria glabrata induces a differential stress response between resistant and susceptible snails. Exp Parasitol 2009; 123:203-11. [PMID: 19660454 DOI: 10.1016/j.exppara.2009.07.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 06/20/2009] [Accepted: 07/03/2009] [Indexed: 10/20/2022]
Abstract
Schistosomes develop successfully in susceptible snails but are encapsulated and killed in resistant ones. Mechanism(s) shaping these outcomes involves the parasites ability to evade the snail's defenses. RNA analysis from resistant (BS-90), non-susceptible (LAC2) and susceptible (NMRI) juvenile Biomphalaria glabrata to Schistosoma mansoni revealed that stress-related genes, heat shock protein 70 (Hsp 70) and reverse transcriptase (RT), were dramatically co-induced early in susceptible snails, but not in resistant/non-susceptible ones. These transcripts were, however, down regulated upon exposure to irradiated parasites although penetration behavior of irradiated vs. normal parasites were the same, indicating that Hsp 70 and RT regulation was elicited by infection and not injury. Understanding molecular events involved in stress response transcriptional regulation of Hsp 70 in juvenile snails could pave a way towards the identification of genes involved in schistosome/snail interactions.
Collapse
|