1
|
da Silva-Gomes NL, Ruivo LADS, Moreira C, Meuser-Batista M, da Silva CF, Batista DDGJ, Fragoso S, de Oliveira GM, Soeiro MDNC, Moreira OC. Overexpression of TcNTPDase-1 Gene Increases Infectivity in Mice Infected with Trypanosoma cruzi. Int J Mol Sci 2022; 23:ijms232314661. [PMID: 36498985 PMCID: PMC9736689 DOI: 10.3390/ijms232314661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022] Open
Abstract
Ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) are enzymes located on the surface of the T. cruzi plasma membrane, which hydrolyze a wide range of tri-/-diphosphate nucleosides. In this work, we used previously developed genetically modified strains of Trypanosoma cruzi (T. cruzi), hemi-knockout (KO +/−) and overexpressing (OE) the TcNTPDase-1 gene to evaluate the parasite infectivity profile in a mouse model of acute infection (n = 6 mice per group). Our results showed significantly higher parasitemia and mortality, and lower weight in animals infected with parasites OE TcNTPDase-1, as compared to the infection with the wild type (WT) parasites. On the other hand, animals infected with (KO +/−) parasites showed no mortality during the 30-day trial and mouse weight was more similar to the non-infected (NI) animals. In addition, they had low parasitemia (45.7 times lower) when compared with parasites overexpressing TcNTPDase-1 from the hemi-knockout (OE KO +/−) group. The hearts of animals infected with the OE KO +/− and OE parasites showed significantly larger regions of cardiac inflammation than those infected with the WT parasites (p < 0.001). Only animals infected with KO +/− did not show individual electrocardiographic changes during the period of experimentation. Together, our results expand the knowledge on the role of NTPDases in T. cruzi infectivity, reenforcing the potential of this enzyme as a chemotherapy target to treat Chagas disease (CD).
Collapse
Affiliation(s)
- Natália Lins da Silva-Gomes
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Virologia Molecular-IOC/FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | | | - Claudia Moreira
- Laboratório de Biologia Molecular de Tripanossomatídeos-ICC/FIOCRUZ, Curitiba 81350-010, Brazil
| | - Marcelo Meuser-Batista
- Laboratório de Educação Profissional em Técnicas Laboratoriais em Saúde, EPSJV/FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | | | | | - Stênio Fragoso
- Laboratório de Biologia Molecular de Tripanossomatídeos-ICC/FIOCRUZ, Curitiba 81350-010, Brazil
| | | | | | - Otacilio C. Moreira
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Virologia Molecular-IOC/FIOCRUZ, Rio de Janeiro 21040-360, Brazil
- Correspondence:
| |
Collapse
|
2
|
da Silva W, Ribeiro IC, Agripino JDM, da Silva VHF, de Souza LÂ, Oliveira TA, Bressan GC, Vasconcellos RDS, Dumas C, Pelletier J, Sévigny J, Papadopoulou B, Fietto JLR. Leishmania infantum NTPDase1 and NTPDase2 play an important role in infection and nitric oxide production in macrophages. Acta Trop 2022; 237:106732. [DOI: 10.1016/j.actatropica.2022.106732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
|
3
|
Paes-Vieira L, Gomes-Vieira AL, Meyer-Fernandes JR. E-NTPDases: Possible Roles on Host-Parasite Interactions and Therapeutic Opportunities. Front Cell Infect Microbiol 2021; 11:769922. [PMID: 34858878 PMCID: PMC8630654 DOI: 10.3389/fcimb.2021.769922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022] Open
Abstract
Belonging to the GDA1/CD39 protein superfamily, nucleoside triphosphate diphosphohydrolases (NTPDases) catalyze the hydrolysis of ATP and ADP to the monophosphate form (AMP) and inorganic phosphate (Pi). Several NTPDase isoforms have been described in different cells, from pathogenic organisms to animals and plants. Biochemical characterization of nucleotidases/NTPDases has revealed the existence of isoforms with different specificities regarding divalent cations (such as calcium and magnesium) and substrates. In mammals, NTPDases have been implicated in the regulation of thrombosis and inflammation. In parasites, such as Trichomonas vaginalis, Trypanosoma spp., Leishmania spp., Schistosoma spp. and Toxoplasma gondii, NTPDases were found on the surface of the cell, and important processes like growth, infectivity, and virulence seem to depend on their activity. For instance, experimental evidence has indicated that parasite NTPDases can regulate the levels of ATP and Adenosine (Ado) of the host cell, leading to the modulation of the host immune response. In this work, we provide a comprehensive review showing the involvement of the nucleotidases/NTPDases in parasites infectivity and virulence, and how inhibition of NTPDases contributes to parasite clearance and the development of new antiparasitic drugs.
Collapse
Affiliation(s)
- Lisvane Paes-Vieira
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luiz Gomes-Vieira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - José Roberto Meyer-Fernandes
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Paes-Vieira L, Rocco-Machado N, Freitas-Mesquita AL, Dos Santos Emiliano YS, Gomes-Vieira AL, de Almeida-Amaral EE, Meyer-Fernandes JR. Differential regulation of E-NTPdases during Leishmania amazonensis lifecycle and effect of their overexpression on parasite infectivity and virulence. Parasitol Int 2021; 85:102423. [PMID: 34298165 DOI: 10.1016/j.parint.2021.102423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/28/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
Infections caused by Leishmania amazonensis are characterized by a persistent parasitemia due to the ability of the parasite to modulate the immune response of macrophages. It has been proposed that ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDases) could be able to suppress the host immune defense by reducing the ATP and ADP levels. The AMP generated from E-NTPDase activity can be subsequently hydrolyzed by ecto-nucleotidases, increasing the levels of adenosine, which can reduce the inflammatory response. In the present work, we provide new information about the role of E-NTPDases on infectivity and virulence of L. amazonensis. Our data demonstrate that not only the E-NTPDase activity is differentially regulated during the parasite development but also the expression of the genes ntpd1 and ntpd2. E-NTPDase activity increases significantly in axenic amastigotes and metacyclic promastigotes, both infective forms in mammalian host. A similar profile was found for mRNA levels of the ntpd1 and ntpd2 genes. Using parasites overexpressing the genes ntpd1 and ntpd2, we could demonstrate that L. amazonensis promastigotes overexpressing ntpd2 gene show a remarkable increase in their ability to interact with macrophages compared to controls. In addition, both ntpd1 and ntpd2-overexpressing parasites were more infective to macrophages than controls. The kinetics of lesion formation by transfected parasites were similar to controls until the second week. However, twenty days post-infection, mice infected with ntpd1 and ntpd2-overexpressing parasites presented significantly reduced lesions compared to controls. Interestingly, parasite load reached similar levels among the different experimental groups. Thus, our data show a non-linear relationship between higher E-NTPDase activity and lesion formation. Previous studies have correlated increased ecto-NTPDase activity with virulence and infectivity of Leishmania parasites. Based in our results, we are suggesting that the induced overexpression of E-NTPDases in L. amazonensis could increase extracellular adenosine levels, interfering with the balance of the immune response to promote the pathogen clearance and maintain the host protection.
Collapse
Affiliation(s)
- Lisvane Paes-Vieira
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Nathália Rocco-Machado
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Anita Leocadio Freitas-Mesquita
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Yago Sousa Dos Santos Emiliano
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz-FIOCRUZ, Pavilhão Leônidas Deane, 4° andar, sala 405A, Manguinhos, 21045-900 Rio de Janeiro, RJ, Brazil
| | - André Luiz Gomes-Vieira
- Instituto de Química, Departamento de Bioquímica, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Elmo Eduardo de Almeida-Amaral
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz-FIOCRUZ, Pavilhão Leônidas Deane, 4° andar, sala 405A, Manguinhos, 21045-900 Rio de Janeiro, RJ, Brazil
| | - José Roberto Meyer-Fernandes
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
5
|
Silva-Gomes NL, Rampazzo RDCP, Moreira CMDN, Porcino GN, Dos Santos CMB, Krieger MA, Vasconcelos EG, Fragoso SP, Moreira OC. Knocking Down TcNTPDase-1 Gene Reduces in vitro Infectivity of Trypanosoma cruzi. Front Microbiol 2020; 11:434. [PMID: 32256481 PMCID: PMC7094052 DOI: 10.3389/fmicb.2020.00434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/02/2020] [Indexed: 01/06/2023] Open
Abstract
Ecto-Nucleoside Triphosphate Diphosphohydrolases are enzymes that hydrolyze tri- and/or diphosphate nucleosides. Evidences pointed out to their participation in Trypanosoma cruzi virulence, infectivity, and purine acquisition. In this study, recombinant T. cruzi knocking out or overexpressing the TcNTPDase-1 gene were built, and the role of TcNTPDase-1 in the in vitro interaction with VERO cells was investigated. Results show that epimastigote forms of hemi-knockout parasites showed about 50% lower level of TcNTPDase-1 gene expression when compared to the wild type, while the T. cruzi overexpressing this gene reach 20 times higher gene expression. In trypomastigote forms, the same decreasing in TcNTPDase-1 gene expression was observed to the hemi-knockout parasites. The in vitro infection assays showed a reduction to 51.6 and 59.9% at the adhesion and to 25.2 and 26.4% at the endocytic indexes to the parasites knockout to one or other allele (Hygro and Neo hemi-knockouts), respectively. In contrast, the infection assays with T. cruzi overexpressing TcNTPDase-1 from the WT or Neo hemi-knockout parasites showed an opposite result, with the increasing to 287.7 and 271.1% at the adhesion and to 220.4 and 186.7% at the endocytic indexes, respectively. The parasitic load estimated in infected VERO cells by quantitative real time PCR corroborated these findings. Taken together, the partial silencing and overexpression of the TcNTPDase-1 gene generated viable parasites with low and high infectivity rates, respectively, corroborating that the enzyme encoded for this gene plays an important role to the T. cruzi infectivity.
Collapse
Affiliation(s)
- Natália Lins Silva-Gomes
- Laboratory of Molecular Biology and Endemic Diseases, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | - Gabriane Nascimento Porcino
- Laboratory of Structure and Function of Proteins, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | | | - Marco Aurélio Krieger
- Laboratory of Functional Genomics, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Brazil
| | - Eveline Gomes Vasconcelos
- Laboratory of Structure and Function of Proteins, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Stenio Perdigão Fragoso
- Laboratory of Molecular Biology of Trypanosomatids, Carlos Chagas Institute, Curitiba, Brazil
| | - Otacilio C Moreira
- Laboratory of Molecular Biology and Endemic Diseases, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Paes-Vieira L, Gomes-Vieira AL, Meyer-Fernandes JR. NTPDase activities: possible roles onLeishmania sppinfectivity and virulence. Cell Biol Int 2018; 42:670-682. [DOI: 10.1002/cbin.10944] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/27/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Lisvane Paes-Vieira
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde; Universidade Federal do Rio de Janeiro; Rio de Janeiro RJ 21941-590 Brazil
| | - André Luiz Gomes-Vieira
- Instituto de Ciências Exatas, Departamento de Química; Universidade Federal Rural do Rio de Janeiro; Seropédica RJ Brazil
| | - José Roberto Meyer-Fernandes
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde; Universidade Federal do Rio de Janeiro; Rio de Janeiro RJ 21941-590 Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem; Rio de Janeiro RJ Brazil
| |
Collapse
|
7
|
Sansom FM, Ralton JE, Sernee MF, Cohen AM, Hooker DJ, Hartland EL, Naderer T, McConville MJ. Golgi-located NTPDase1 of Leishmania major is required for lipophosphoglycan elongation and normal lesion development whereas secreted NTPDase2 is dispensable for virulence. PLoS Negl Trop Dis 2014; 8:e3402. [PMID: 25521752 PMCID: PMC4270689 DOI: 10.1371/journal.pntd.0003402] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 11/10/2014] [Indexed: 12/27/2022] Open
Abstract
Parasitic protozoa, such as Leishmania species, are thought to express a number of surface and secreted nucleoside triphosphate diphosphohydrolases (NTPDases) which hydrolyze a broad range of nucleoside tri- and diphosphates. However, the functional significance of NTPDases in parasite virulence is poorly defined. The Leishmania major genome was found to contain two putative NTPDases, termed LmNTPDase1 and 2, with predicted NTPDase catalytic domains and either an N-terminal signal sequence and/or transmembrane domain, respectively. Expression of both proteins as C-terminal GFP fusion proteins revealed that LmNTPDase1 was exclusively targeted to the Golgi apparatus, while LmNTPDase2 was predominantly secreted. An L. major LmNTPDase1 null mutant displayed increased sensitivity to serum complement lysis and exhibited a lag in lesion development when infections in susceptible BALB/c mice were initiated with promastigotes, but not with the obligate intracellular amastigote stage. This phenotype is characteristic of L. major strains lacking lipophosphoglycan (LPG), the major surface glycoconjugate of promastigote stages. Biochemical studies showed that the L. major NTPDase1 null mutant synthesized normal levels of LPG that was structurally identical to wild type LPG, with the exception of having shorter phosphoglycan chains. These data suggest that the Golgi-localized NTPase1 is involved in regulating the normal sugar-nucleotide dependent elongation of LPG and assembly of protective surface glycocalyx. In contrast, deletion of the gene encoding LmNTPDase2 had no measurable impact on parasite virulence in BALB/c mice. These data suggest that the Leishmania major NTPDase enzymes have potentially important roles in the insect stage, but only play a transient or non-major role in pathogenesis in the mammalian host. Nucleoside triphosphate diphosphohydrolases (NTPDases) are a family of enzymes expressed in many eukaryotes, ranging from single-celled parasites to mammals. In mammals, NTPDases can have an immunomodulatory role, while in pathogenic protists cell-surface and secreted NTPDases are thought to be important virulence factors, although this has never been explicitly tested. In this study we have investigated the function of two NTPDases, termed LmNTPDase1 and LmNTPDase2, in Leishmania major parasites. We show that LmNTPDase 1 and LmNTPDase 2 are differentially targeted to the Golgi apparatus and secreted, respectively. A Leishmania major mutant lacking the Golgi LmNTPDase1 exhibited a delayed capacity to induce lesions in susceptible mice when promastigote (insect) stages were used to initiate infection, but not when amastigote (mammalian-infective) stages were used. Loss of promastigote infectivity in the LmNTPDase1 null mutant was associated with the synthesis and surface expression of lipophosphoglycan (LPG), with shorter glycan chains and increased sensitivity to complement-mediated lysis. In contrast, a null mutant lacking the secreted LmNTPDase2 did not exhibit any difference in virulence. Our results suggest that Leishmania major NTPDases have specific roles in regulating Golgi glycosylation pathways, and nucleoside salvage pathways in the insect stages, but do not appear to be required for virulence of the mammalian-infective stages.
Collapse
Affiliation(s)
- Fiona M. Sansom
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| | - Julie E. Ralton
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - M. Fleur Sernee
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - Alice M. Cohen
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - David J. Hooker
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Elizabeth L. Hartland
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Thomas Naderer
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - Malcolm J. McConville
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
8
|
Silva-Gomes NL, Ennes-Vidal V, Carolo JCF, Batista MM, Soeiro MN, Menna-Barreto R, Moreira OC. Nucleoside triphosphate diphosphohydrolase1 (TcNTPDase-1) gene expression is increased due to heat shock and in infective forms of Trypanosoma cruzi. Parasit Vectors 2014; 7:463. [PMID: 25287580 PMCID: PMC4210531 DOI: 10.1186/s13071-014-0463-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 09/27/2014] [Indexed: 01/11/2023] Open
Abstract
Background Ecto-Nucleoside Triphosphate Diphosphohydrolases (Ecto-NTPDases) are enzymes that hydrolyze tri- and/or di-phosphate nucleotides. Evidences point to their participation in Trypanosoma cruzi virulence and infectivity. In this work, we evaluate TcNTPDase-1 gene expression in comparison with ecto-NTPDase activity, in order to study the role of TcNTPDase-1 in parasite virulence, infectivity and adaptation to heat shock. Findings Comparison between distinct T. cruzi isolates (Y, 3663 and 4167 strains, and Dm28c, LL014 and CL-14 clones) showed that TcNTPDase-1 expression was 7.2 ± 1.5 times higher in the Dm28c than the CL-14 avirulent clone. A remarkable expression increase was also observed in the trypomastigote and amastigote forms (22.5 ± 5.6 and 16.3 ± 3.8 times higher than epimastigotes, respectively), indicating that TcNTPDase-1 is overexpressed in T. cruzi infective forms. Moreover, heat shock and long-term cultivation also induced a significant increment on TcNTPDase-1 expression. Conclusions Our results suggest that TcNTPDase-1 plays an important role on T. cruzi infectivity and adaptation to stress conditions, such as long-term cultivation and heat shock. Electronic supplementary material The online version of this article (doi:10.1186/s13071-014-0463-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natália Lins Silva-Gomes
- Laboratorio de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz/ FIOCRUZ, Av. Brasil, 4365. Pavilhão Leônidas Deane, sala 209. Manguinhos, Rio de Janeiro, Brazil.
| | - Vitor Ennes-Vidal
- Laboratorio de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz/ FIOCRUZ, Av. Brasil, 4365. Pavilhão Leônidas Deane, sala 209. Manguinhos, Rio de Janeiro, Brazil.
| | - Julliane Castro Ferreira Carolo
- Laboratorio de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz/ FIOCRUZ, Av. Brasil, 4365. Pavilhão Leônidas Deane, sala 209. Manguinhos, Rio de Janeiro, Brazil.
| | - Marcos Meuser Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz/ FIOCRUZ, Rio de Janeiro, Brazil.
| | - Maria Nazaré Soeiro
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz/ FIOCRUZ, Rio de Janeiro, Brazil.
| | - Rubem Menna-Barreto
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz/ FIOCRUZ, Rio de Janeiro, Brazil.
| | - Otacilio Cruz Moreira
- Laboratorio de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz/ FIOCRUZ, Av. Brasil, 4365. Pavilhão Leônidas Deane, sala 209. Manguinhos, Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
Figliuolo VR, Chaves SP, Santoro GF, Coutinho CMLM, Meyer-Fernandes JR, Rossi-Bergmann B, Coutinho-Silva R. Periodate-oxidized ATP modulates macrophage functions during infection with Leishmania amazonensis. Cytometry A 2014; 85:588-600. [PMID: 24804957 DOI: 10.1002/cyto.a.22449] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 11/30/2013] [Accepted: 01/27/2014] [Indexed: 12/11/2022]
Abstract
Previously, we showed that treating macrophages with ATP impairs the intracellular growth of Leishmania amazonensis, and that the P2X7 purinergic receptor is overexpressed during leishmaniasis. In the present study, we directly evaluated the effect of periodate-oxidized ATP (oATP) on parasite control in Leishmania-infected macrophages. We found that oATP impaired the attachment/entrance of L. amazonensis promastigotes to C57BL/6 mouse macrophages in a P2X7 receptor-independent manner, as macrophages from P2X7(-/-) mice were similarly affected. Although oATP directly inhibited the growth of axenic promastigotes in culture, promoted rapid ultrastructural alterations, and impaired Leishmania internalization by macrophages, it did not affect intracellular parasite multiplication. Upon infection, phagosomal acidification was diminished in oATP-treated macrophages, accompanied by reduced endosomal proteolysis. Likewise, MHC class II molecules expression and ectoATPase activity was decreased by oATP added to macrophages at the time of parasite infection. These inhibitory effects were not due to a cytotoxic effect, as no additional release of lactate dehydrogenase was detected in culture supernatants. Moreover, the capacity of macrophages to produce nitric oxide and reactive oxygen species was not affected by the presence of oATP during infection. We conclude that oATP directly affects extracellular parasite integrity and macrophage functioning.
Collapse
Affiliation(s)
- V R Figliuolo
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho-IBCCF, Universidade Federal do Rio de Janeiro, RJ, Brazil; Instituto Nacional para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCT, Brasil
| | | | | | | | | | | | | |
Collapse
|
10
|
Freitas-Mesquita AL, Meyer-Fernandes JR. Ecto-nucleotidases and Ecto-phosphatases from Leishmania and Trypanosoma parasites. Subcell Biochem 2014; 74:217-252. [PMID: 24264248 DOI: 10.1007/978-94-007-7305-9_10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Ecto-enzymes can be defined as membrane-bound proteins that have their active site facing the extracellular millieu. In trypanosomatids, the physiological roles of these enzymes remain to be completed elucidated; however, many important events have already been related to them, such as the survival of parasites during their complex life cycle and the successful establishment of host infection. This chapter focuses on two remarkable classes of ecto-enzymes: ecto-nucleotidases and ecto-phosphatases, summarizing their occurrence and possible physiological roles in Leishmania and Trypanosoma genera. Ecto-nucleotidases are characterized by their ability to hydrolyze extracellular nucleotides, playing an important role in purinergic signaling. By the action of these ecto-enzymes, parasites are capable of modulating the host immune system, which leads to a successful parasite infection. Furthermore, ecto-nucleotidases are also involved in the purine salvage pathway, acting in the generation of nucleosides that are able to cross plasma membrane via specialized transporters. Another important ecto-enzyme present in a vast number of pathogenic organisms is the ecto-phosphatase. These enzymes are able to hydrolyze extracellular phosphorylated substrates, releasing free inorganic phosphate that can be internalized by the cell, crossing the plasma membrane through a Pi-transporter. Ecto-phosphatases are also involved in the invasion and survival of parasite in the host cells. Several alternative functions have been suggested for these enzymes in parasites, such as participation in their proliferation, differentiation, nutrition and protection. In this context, the present chapter provides an overview of recent discoveries related to the occurrence of ecto-nucleotidase and ecto-phosphatase activities in Leishmania and Trypanosoma parasites.
Collapse
|
11
|
The role of the NTPDase enzyme family in parasites: what do we know, and where to from here? Parasitology 2012; 139:963-80. [DOI: 10.1017/s003118201200025x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SUMMARYNucleoside triphosphate diphosphohydrolases (NTPDases, GDA1_CD39 protein superfamily) play a diverse range of roles in a number of eukaryotic organisms. In humans NTPDases function in regulating the inflammatory and immune responses, control of vascular haemostasis and purine salvage. In yeast NTPDases are thought to function primarily in the Golgi, crucially involved in nucleotide sugar transport into the Golgi apparatus and subsequent protein glycosylation. Although rare in bacteria, in Legionella pneumophila secreted NTPDases function as virulence factors. In the last 2 decades it has become clear that a large number of parasites encode putative NTPDases, and the functions of a number of these have been investigated. In this review, the available evidence for NTPDases in parasites and the role of these NTPDases is summarized and discussed. Furthermore, the processes by which NTPDases could function in pathogenesis, purine salvage, thromboregulation, inflammation and glycoconjugate formation are considered, and the data supporting such putative roles reviewed. Potential future research directions to further clarify the role and importance of NTPDases in parasites are proposed. An attempt is also made to clarify the nomenclature used in the parasite field for the GDA1_CD39 protein superfamily, and a uniform system suggested.
Collapse
|