1
|
Cabello-Donayre M, Cabello-Donayre I, Guerra D, Orrego LM, Morales JC, Cautain B, Vicente F, Pérez-Victoria JM. A yeast-based high-throughput screen identifies inhibitors of trypanosomatid HRG heme transporters with potent leishmanicidal and trypanocidal activity. Int J Antimicrob Agents 2024; 63:107092. [PMID: 38242251 DOI: 10.1016/j.ijantimicag.2024.107092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
OBJECTIVES New drugs are required to treat neglected diseases caused by trypanosomatid parasites such as Leishmania, Trypanosoma brucei and Trypanosoma cruzi. An Achilles' heel of these parasites is their heme auxotrophy; they have an absolute dependence on scavenging this molecule from the host, and trypanosomatid HRG heme transporters (TrypHRG) play an important role in this process. As these proteins are essential for the parasites and have low similarity with their human orthologue, they have been proposed as attractive therapeutic targets. Here, we have developed two yeast-based assays that allow an inexpensive high-throughput screening of TrypHRG inhibitors within a cellular context. METHODS We first assessed that Leishmania major, Leishmania donovani and T. brucei HRG proteins were heterologously expressed in the digestive vacuole membrane of a mutant heme auxotrophic yeast strain. Here, TrypHRG imports hemoglobinderived heme into the cytosol, allowing mutant yeast to grow in the presence of low hemoglobin concentrations and promoting the activity of hemeproteins such as catalase, which was used as a reporter of cytosolic heme levels. RESULTS In the presence of a TrypHRG inhibitor, both catalase activity (test 1) and yeast growth (test 2) were diminished, being easily monitored. The assays were then tested on a pilot scale for HTS purposes using a collection of repurposing drugs and food antioxidants. Some of the TrypHRG inhibitors identified in yeast presented strong trypanocidal and leishmanicidal activity in the submicromolar range, proving the potential of this approach. CONCLUSIONS Cumulatively, it was shown that the inhibition bioassays developed were robust and applicable to large-scale HTS.
Collapse
Affiliation(s)
- María Cabello-Donayre
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Granada, Spain; Universidad Internacional de La Rioja, Logroño, La Rioja, Spain
| | - Irene Cabello-Donayre
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Granada, Spain
| | - Diego Guerra
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Granada, Spain; Programa de Estudio y Control de Enfermedades Tropicales PECET, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | - Lina M Orrego
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Granada, Spain
| | - Juan C Morales
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Granada, Spain
| | - Bastien Cautain
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, PTS Granada, Granada, Spain
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, PTS Granada, Granada, Spain
| | - José M Pérez-Victoria
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Granada, Spain.
| |
Collapse
|
2
|
Alpizar-Sosa EA, Kumordzi Y, Wei W, Whitfield PD, Barrett MP, Denny PW. Genome deletions to overcome the directed loss of gene function in Leishmania. Front Cell Infect Microbiol 2022; 12:988688. [PMID: 36211960 PMCID: PMC9539739 DOI: 10.3389/fcimb.2022.988688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
With the global reach of the Neglected Tropical Disease leishmaniasis increasing, coupled with a tiny armory of therapeutics which all have problems with resistance, cost, toxicity and/or administration, the validation of new drug targets in the causative insect vector borne protozoa Leishmania spp is more important than ever. Before the introduction of CRISPR Cas9 technology in 2015 genetic validation of new targets was carried out largely by targeted gene knockout through homologous recombination, with the majority of genes targeted (~70%) deemed non-essential. In this study we exploit the ready availability of whole genome sequencing technology to reanalyze one of these historic cell lines, a L. major knockout in the catalytic subunit of serine palmitoyltransferase (LCB2), which causes a complete loss of sphingolipid biosynthesis but remains viable and infective. This revealed a number of Single Nucleotide Polymorphisms, but also the complete loss of several coding regions including a gene encoding a putative ABC3A orthologue, a putative sterol transporter. Hypothesizing that the loss of such a transporter may have facilitated the directed knockout of the catalytic subunit of LCB2 and the complete loss of de novo sphingolipid biosynthesis, we re-examined LCB2 in a L. mexicana line engineered for straightforward CRISPR Cas9 directed manipulation. Strikingly, LCB2 could not be knocked out indicating essentiality. However, simultaneous deletion of LCB2 and the putative ABC3A was possible. This indicated that the loss of the putative ABC3A facilitated the loss of sphingolipid biosynthesis in Leishmania, and suggested that we should re-examine the many other Leishmania knockout lines where genes were deemed non-essential.
Collapse
Affiliation(s)
| | - Yasmine Kumordzi
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Wenbin Wei
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Phillip D. Whitfield
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Michael P. Barrett
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom,Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Paul W. Denny
- Department of Biosciences, Durham University, Durham, United Kingdom,*Correspondence: Paul W. Denny,
| |
Collapse
|
3
|
High-throughput platform for yeast morphological profiling predicts the targets of bioactive compounds. NPJ Syst Biol Appl 2022; 8:3. [PMID: 35087094 PMCID: PMC8795194 DOI: 10.1038/s41540-022-00212-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/05/2022] [Indexed: 01/03/2023] Open
Abstract
Morphological profiling is an omics-based approach for predicting intracellular targets of chemical compounds in which the dose-dependent morphological changes induced by the compound are systematically compared to the morphological changes in gene-deleted cells. In this study, we developed a reliable high-throughput (HT) platform for yeast morphological profiling using drug-hypersensitive strains to minimize compound use, HT microscopy to speed up data generation and analysis, and a generalized linear model to predict targets with high reliability. We first conducted a proof-of-concept study using six compounds with known targets: bortezomib, hydroxyurea, methyl methanesulfonate, benomyl, tunicamycin, and echinocandin B. Then we applied our platform to predict the mechanism of action of a novel diferulate-derived compound, poacidiene. Morphological profiling of poacidiene implied that it affects the DNA damage response, which genetic analysis confirmed. Furthermore, we found that poacidiene inhibits the growth of phytopathogenic fungi, implying applications as an effective antifungal agent. Thus, our platform is a new whole-cell target prediction tool for drug discovery.
Collapse
|
4
|
Domin M, Hoffman CS. Methods to Assess Phosphodiesterase and/or Adenylyl Cyclase Activity Via Heterologous Expression in Fission Yeast. Methods Mol Biol 2022; 2483:93-104. [PMID: 35286671 DOI: 10.1007/978-1-0716-2245-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Heterologous expression of cyclic nucleotide phosphodiesterases (PDEs) and adenylyl cyclases (ACs) in the fission yeast Schizosaccharomyces pombe can be used in combination with PKA-repressed reporters to either carry out high throughput screens for small molecule inhibitors of these target enzymes or to assess hit compounds and their analogs from such screens. Here, we describe two methods for testing panels of such compounds. The first uses a growth assay for which growth in medium containing the pyrimidine analog 5-fluoro orotic acid (5FOA) occurs in response to inhibiting PDE activity to activate PKA. The second uses mass spectrometry to directly measure the impact of compound treatment to study compounds that modulate either PDE or AC activity.
Collapse
Affiliation(s)
- Marek Domin
- Mass Spectrometry Center, Chemistry Department, Boston College, Chestnut Hill, MA, USA
| | | |
Collapse
|
5
|
Escrivani DO, Charlton RL, Caruso MB, Burle-Caldas GA, Borsodi MPG, Zingali RB, Arruda-Costa N, Palmeira-Mello MV, de Jesus JB, Souza AMT, Abrahim-Vieira B, Freitag-Pohl S, Pohl E, Denny PW, Rossi-Bergmann B, Steel PG. Chalcones identify cTXNPx as a potential antileishmanial drug target. PLoS Negl Trop Dis 2021; 15:e0009951. [PMID: 34780470 PMCID: PMC8664226 DOI: 10.1371/journal.pntd.0009951] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/10/2021] [Accepted: 10/26/2021] [Indexed: 12/31/2022] Open
Abstract
With current drug treatments failing due to toxicity, low efficacy and resistance; leishmaniasis is a major global health challenge that desperately needs new validated drug targets. Inspired by activity of the natural chalcone 2’,6’-dihydroxy-4’-methoxychalcone (DMC), the nitro-analogue, 3-nitro-2’,4’,6’- trimethoxychalcone (NAT22, 1c) was identified as potent broad spectrum antileishmanial drug lead. Structural modification provided an alkyne containing chemical probe that labelled a protein within the parasite that was confirmed as cytosolic tryparedoxin peroxidase (cTXNPx). Crucially, labelling is observed in both promastigote and intramacrophage amastigote life forms, with no evidence of host macrophage toxicity. Incubation of the chalcone in the parasite leads to ROS accumulation and parasite death. Deletion of cTXNPx, by CRISPR-Cas9, dramatically impacts upon the parasite phenotype and reduces the antileishmanial activity of the chalcone analogue. Molecular docking studies with a homology model of in-silico cTXNPx suggest that the chalcone is able to bind in the putative active site hindering access to the crucial cysteine residue. Collectively, this work identifies cTXNPx as an important target for antileishmanial chalcones. Leishmaniasis is an insect vector-borne parasitic disease. With >350 million people world wide considered at risk, 12 million people currently infected and an economic cost that can be estimated in terms of >3.3 million working life years lost, leishmaniasis is a major global health challenge. The disease is of particular importance in Brazil. Current treatment of leishmaniasis is difficult requiring a long, costly course of drug treatment using old drugs with poor safety indications requiring close medical supervision. Moreover, resistance to current antileishmanials is growing, emphasising a major need for new drug targets. In earlier work we had identified a naturally inspired chalcone which had promising antileishmanial activity but with no known mode of action. In this work we use an analogue of this molecule as an activity based probe to identify a protein target of the chalcone. This protein, cTXNPx, has a major role in protecting the parasite against attack by reactive oxygen species in the host cell. By inhibiting this protein the parasite can no longer survive in the host. Collectively this work validates cTXNPx as a drug target with the chalcone as a lead structure for future drug discovery programmes.
Collapse
Affiliation(s)
- Douglas O. Escrivani
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, United Kingdom
| | - Rebecca L. Charlton
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, United Kingdom
| | - Marjolly B. Caruso
- Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela A. Burle-Caldas
- Department of Biosciences, Durham University, Science Laboratories, South Road, Durham, United Kingdom
| | - Maria Paula G. Borsodi
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Russolina B. Zingali
- Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natalia Arruda-Costa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Jéssica B. de Jesus
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Stefanie Freitag-Pohl
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, United Kingdom
| | - Ehmke Pohl
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, United Kingdom
- Department of Biosciences, Durham University, Science Laboratories, South Road, Durham, United Kingdom
| | - Paul W. Denny
- Department of Biosciences, Durham University, Science Laboratories, South Road, Durham, United Kingdom
| | - Bartira Rossi-Bergmann
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (BR-B); (PGS)
| | - Patrick G. Steel
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, United Kingdom
- * E-mail: (BR-B); (PGS)
| |
Collapse
|
6
|
Kaur P, Goyal N. Pathogenic role of mitogen activated protein kinases in protozoan parasites. Biochimie 2021; 193:78-89. [PMID: 34706251 DOI: 10.1016/j.biochi.2021.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/29/2021] [Accepted: 10/21/2021] [Indexed: 01/18/2023]
Abstract
Protozoan parasites with complex life cycles have high mortality rates affecting billions of human lives. Available anti-parasitic drugs are inadequate due to variable efficacy, toxicity, poor patient compliance and drug-resistance. Hence, there is an urgent need for the development of safer and better chemotherapeutics. Mitogen Activated Protein Kinases (MAPKs) have drawn much attention as potential drug targets. This review summarizes unique structural and functional features of MAP kinases and their possible role in pathogenesis of obligate intracellular protozoan parasites namely, Leishmania, Trypanosoma, Plasmodium and Toxoplasma. It also provides an overview of available knowledge concerning the target proteins of parasite MAPKs and the need to understand and unravel unknown interaction network(s) of MAPK(s).
Collapse
Affiliation(s)
- Pavneet Kaur
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Neena Goyal
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India.
| |
Collapse
|
7
|
Jin X, Zhang J, An T, Zhao H, Fu W, Li D, Liu S, Cao X, Liu B. A Genome-Wide Screen in Saccharomyces cerevisiae Reveals a Critical Role for Oxidative Phosphorylation in Cellular Tolerance to Lithium Hexafluorophosphate. Cells 2021; 10:cells10040888. [PMID: 33924665 PMCID: PMC8070311 DOI: 10.3390/cells10040888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Lithium hexafluorophosphate (LiPF6) is one of the leading electrolytes in lithium-ion batteries, and its usage has increased tremendously in the past few years. Little is known, however, about its potential environmental and biological impacts. In order to improve our understanding of the cytotoxicity of LiPF6 and the specific cellular response mechanisms to it, we performed a genome-wide screen using a yeast (Saccharomyces cerevisiae) deletion mutant collection and identified 75 gene deletion mutants that showed LiPF6 sensitivity. Among these, genes associated with mitochondria showed the most enrichment. We also found that LiPF6 is more toxic to yeast than lithium chloride (LiCl) or sodium hexafluorophosphate (NaPF6). Physiological analysis showed that a high concentration of LiPF6 caused mitochondrial damage, reactive oxygen species (ROS) accumulation, and ATP content changes. Compared with the results of previous genome-wide screening for LiCl-sensitive mutants, we found that oxidative phosphorylation-related mutants were specifically hypersensitive to LiPF6. In these deletion mutants, LiPF6 treatment resulted in higher ROS production and reduced ATP levels, suggesting that oxidative phosphorylation-related genes were important for counteracting LiPF6-induced toxicity. Taken together, our results identified genes specifically involved in LiPF6-modulated toxicity, and demonstrated that oxidative stress and ATP imbalance maybe the driving factors in governing LiPF6-induced toxicity.
Collapse
Affiliation(s)
- Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (X.J.); (J.Z.); (T.A.); (H.Z.); (W.F.); (D.L.); (S.L.)
| | - Jie Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (X.J.); (J.Z.); (T.A.); (H.Z.); (W.F.); (D.L.); (S.L.)
| | - Tingting An
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (X.J.); (J.Z.); (T.A.); (H.Z.); (W.F.); (D.L.); (S.L.)
| | - Huihui Zhao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (X.J.); (J.Z.); (T.A.); (H.Z.); (W.F.); (D.L.); (S.L.)
| | - Wenhao Fu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (X.J.); (J.Z.); (T.A.); (H.Z.); (W.F.); (D.L.); (S.L.)
| | - Danqi Li
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (X.J.); (J.Z.); (T.A.); (H.Z.); (W.F.); (D.L.); (S.L.)
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (X.J.); (J.Z.); (T.A.); (H.Z.); (W.F.); (D.L.); (S.L.)
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (X.J.); (J.Z.); (T.A.); (H.Z.); (W.F.); (D.L.); (S.L.)
- Correspondence: (X.C.); (B.L.)
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (X.J.); (J.Z.); (T.A.); (H.Z.); (W.F.); (D.L.); (S.L.)
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, SE-413 90 Goteborg, Sweden
- Center for Large-Scale Cell-Based Screening, Faculty of Science, University of Gothenburg, Medicinaregatan 9C, SE-413 90 Goteborg, Sweden
- Correspondence: (X.C.); (B.L.)
| |
Collapse
|
8
|
Exploring Yeast as a Study Model of Pantothenate Kinase-Associated Neurodegeneration and for the Identification of Therapeutic Compounds. Int J Mol Sci 2020; 22:ijms22010293. [PMID: 33396642 PMCID: PMC7795310 DOI: 10.3390/ijms22010293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
Mutations in the pantothenate kinase 2 gene (PANK2) are the cause of pantothenate kinase-associated neurodegeneration (PKAN), the most common form of neurodegeneration with brain iron accumulation. Although different disease models have been created to investigate the pathogenic mechanism of PKAN, the cascade of molecular events resulting from CoA synthesis impairment is not completely understood. Moreover, for PKAN disease, only symptomatic treatments are available. Despite the lack of a neural system, Saccharomyces cerevisiae has been successfully used to decipher molecular mechanisms of many human disorders including neurodegenerative diseases as well as iron-related disorders. To gain insights into the molecular basis of PKAN, a yeast model of this disease was developed: a yeast strain with the unique gene encoding pantothenate kinase CAB1 deleted, and expressing a pathological variant of this enzyme. A detailed functional characterization demonstrated that this model recapitulates the main phenotypes associated with human disease: mitochondrial dysfunction, altered lipid metabolism, iron overload, and oxidative damage suggesting that the yeast model could represent a tool to provide information on pathophysiology of PKAN. Taking advantage of the impaired oxidative growth of this mutant strain, a screening for molecules able to rescue this phenotype was performed. Two molecules in particular were able to restore the multiple defects associated with PKAN deficiency and the rescue was not allele-specific. Furthermore, the construction and characterization of a set of mutant alleles, allowing a quick evaluation of the biochemical consequences of pantothenate kinase (PANK) protein variants could be a tool to predict genotype/phenotype correlation.
Collapse
|
9
|
Aleo SJ, Del Dotto V, Fogazza M, Maresca A, Lodi T, Goffrini P, Ghelli A, Rugolo M, Carelli V, Baruffini E, Zanna C. Drug repositioning as a therapeutic strategy for neurodegenerations associated with OPA1 mutations. Hum Mol Genet 2020; 29:3631-3645. [PMID: 33231680 PMCID: PMC7823107 DOI: 10.1093/hmg/ddaa244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/19/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022] Open
Abstract
OPA1 mutations are the major cause of dominant optic atrophy (DOA) and the syndromic form DOA plus, pathologies for which there is no established cure. We used a ‘drug repurposing’ approach to identify FDA-approved molecules able to rescue the mitochondrial dysfunctions induced by OPA1 mutations. We screened two different chemical libraries by using two yeast strains carrying the mgm1I322M and the chim3P646L mutations, identifying 26 drugs able to rescue their oxidative growth phenotype. Six of them, able to reduce the mitochondrial DNA instability in yeast, have been then tested in Opa1 deleted mouse embryonic fibroblasts expressing the human OPA1 isoform 1 bearing the R445H and D603H mutations. Some of these molecules were able to ameliorate the energetic functions and/or the mitochondrial network morphology, depending on the type of OPA1 mutation. The final validation has been performed in patients’ fibroblasts, allowing to select the most effective molecules. Our current results are instrumental to rapidly translating the findings of this drug repurposing approach into clinical trial for DOA and other neurodegenerations caused by OPA1 mutations.
Collapse
Affiliation(s)
- Serena J Aleo
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna 40126, Italy
| | - Valentina Del Dotto
- Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna 40139, Italy
| | - Mario Fogazza
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna 40126, Italy
| | - Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna 40139, Italy
| | - Tiziana Lodi
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Paola Goffrini
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Anna Ghelli
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna 40126, Italy
| | - Michela Rugolo
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna 40126, Italy
| | - Valerio Carelli
- Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna 40139, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna 40139, Italy
| | - Enrico Baruffini
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Claudia Zanna
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna 40126, Italy
| |
Collapse
|
10
|
Anderson O, Beckett J, Briggs CC, Natrass LA, Cranston CF, Wilkinson EJ, Owen JH, Mir Williams R, Loukaidis A, Bouillon ME, Pritchard D, Lahmann M, Baird MS, Denny PW. An investigation of the antileishmanial properties of semi-synthetic saponins. RSC Med Chem 2020; 11:833-842. [PMID: 33479679 PMCID: PMC7651632 DOI: 10.1039/d0md00123f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/21/2020] [Indexed: 12/25/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease caused by insect-vector borne protozoan parasites of the, Leishmania species. Whilst infection threatens and affects millions of the global poor, vaccines are absent and drug therapy limited. Extensive efforts have recently been made to discover new leads from small molecule synthetic compound libraries held by industry; however, the number of new chemical entities identified and entering development as anti-leishmanials has been very low. This has led to increased interest in the possibility of discovering naturally derived compounds with potent antileishmanial activity which may be developed towards clinical applications. Plant-derived triterpenoid and steroidal saponins have long been considered as anti-microbials and here we describe an investigation of a library of 137 natural (9) and semi-synthetic saponins (128) for activity against Leishmania mexicana, a causative agent of cutaneous leishmaniasis. The triterpenoid sapogenin, hederagenin, readily obtained in large quantities from Hedera helix (common ivy), was converted into a range of 128 derivatives. These semi-synthetic compounds, as well as saponins isolated from ivy, were examined with a phenotypic screening approach to identify potent and selective anti-leishmanial hits. This led to the identification of 12 compounds, including the natural saponin gypsogenin, demonstrating high potency (ED50 < 10.5 μM) against axenic L. mexicana amastigotes, the mammalian pathogenic form. One of these, hederagenin disuccinate, was sufficiently non-toxic to the macrophage host cell to facilitate further analyses, selectivity index (SI) > 10. Whilst this was not active in an infected cell model, the anti-leishmanial properties of hederagenin-derivatives have been demonstrated, and the possibility of improving the selectivity of natural hederagenin through chemical modification has been established.
Collapse
Affiliation(s)
- Orlagh Anderson
- Department of Biosciences and Centre for Global Infectious Diseases , Durham University , Stockton Road , Durham , DH1 3LE , UK . ; Tel: +44 (0)191 3343983
| | - Joseph Beckett
- Department of Biosciences and Centre for Global Infectious Diseases , Durham University , Stockton Road , Durham , DH1 3LE , UK . ; Tel: +44 (0)191 3343983
| | - Carla C Briggs
- Department of Biosciences and Centre for Global Infectious Diseases , Durham University , Stockton Road , Durham , DH1 3LE , UK . ; Tel: +44 (0)191 3343983
| | - Liam A Natrass
- Department of Biosciences and Centre for Global Infectious Diseases , Durham University , Stockton Road , Durham , DH1 3LE , UK . ; Tel: +44 (0)191 3343983
- Department of Chemistry and Centre for Global Infectious Diseases , Durham University , Stockton Road , Durham , DH1 3LE , UK
| | - Charles F Cranston
- Department of Biosciences and Centre for Global Infectious Diseases , Durham University , Stockton Road , Durham , DH1 3LE , UK . ; Tel: +44 (0)191 3343983
| | - Elizabeth J Wilkinson
- Department of Chemistry , School of Natural Science , Bangor University , Gwynedd LL57 2UW , UK
| | - Jack H Owen
- Department of Chemistry , School of Natural Science , Bangor University , Gwynedd LL57 2UW , UK
| | - Rhodri Mir Williams
- Department of Chemistry , School of Natural Science , Bangor University , Gwynedd LL57 2UW , UK
| | - Angelos Loukaidis
- Department of Chemistry , School of Natural Science , Bangor University , Gwynedd LL57 2UW , UK
| | - Marc E Bouillon
- Department of Chemistry , School of Natural Science , Bangor University , Gwynedd LL57 2UW , UK
| | - Deiniol Pritchard
- Naturiol Bangor Ltd , Alun Roberts Building , Bangor University , Gwynedd LL57 2UW , UK
| | - Martina Lahmann
- Department of Chemistry , School of Natural Science , Bangor University , Gwynedd LL57 2UW , UK
| | - Mark S Baird
- Naturiol Bangor Ltd , Alun Roberts Building , Bangor University , Gwynedd LL57 2UW , UK
| | - Paul W Denny
- Department of Biosciences and Centre for Global Infectious Diseases , Durham University , Stockton Road , Durham , DH1 3LE , UK . ; Tel: +44 (0)191 3343983
| |
Collapse
|
11
|
Thomas CM, Timson DJ. The Mechanism of Action of Praziquantel: Can New Drugs Exploit Similar Mechanisms? Curr Med Chem 2020; 27:676-696. [DOI: 10.2174/0929867325666180926145537] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/06/2018] [Accepted: 08/20/2018] [Indexed: 11/22/2022]
Abstract
Praziquantel (PZQ) is the drug of choice for treating infection with worms from the
genus Schistosoma. The drug is effective, cheap and has few side effects. However, despite its
use in millions of patients for over 40 years its molecular mechanism of action remains elusive.
Early studies demonstrated that PZQ disrupts calcium ion homeostasis in the worm and
the current consensus is that it antagonises voltage-gated calcium channels. It is hypothesised
that disruption of these channels results in uncontrolled calcium ion influx leading to uncontrolled
muscle contraction and paralysis. However, other experimental studies have suggested
a role for myosin regulatory light chains and adenosine uptake in the drug’s mechanism of
action. Assuming voltage-gated calcium channels do represent the main molecular target of
PZQ, the precise binding site for the drug remains to be identified. Unlike other commonly
used anti-parasitic drugs, there are few definitive reports of resistance to PZQ in the literature.
The lack of knowledge about PZQ’s molecular mechanism(s) undermines our ability to predict
how resistance might arise and also hinder our attempts to develop alternative antischistosomal
drugs which exploit the same target(s). Some PZQ derivatives have been identified
which also kill or paralyse schistosomes in culture. However, none of these are in widespread
clinical use. There is a pressing need for fundamental research into the molecular mechanism(
s) of action of PZQ. Such research would enable new avenues for antischsistosomal
drug discovery.
Collapse
Affiliation(s)
- Charlotte M. Thomas
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - David J. Timson
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| |
Collapse
|
12
|
Moosavi B, Liu S, Wang NN, Zhu XL, Yang GF. The anti-fungal β-sitosterol targets the yeast oxysterol-binding protein Osh4. PEST MANAGEMENT SCIENCE 2020; 76:704-711. [PMID: 31347760 DOI: 10.1002/ps.5568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND β-Sitosterol is a plant metabolite with a broad range of anti-fungal activity, however, this compound is not toxic against a few fungal species. The target of β-sitosterol and the nature of its selective toxicity are not yet clear. Using a yeast model system and taking advantage of molecular biology and computational approaches, we identify the target and explain why β-sitosterol is not toxic against some fungal pathogens. RESULTS β-Sitosterol (200 μg mL-1 ) is toxic against yeast cells expressing only Osh4 (an oxysterol-binding protein) and harbouring a upc2-1 mutation (which enables sterol uptake), but not against yeast strains expressing all seven Osh proteins and harbouring a upc2-1 mutation. Furthermore, β-sitosterol is not toxic against yeast strains without the upc2-1 mutation irrespective of the number of Osh proteins being expressed. The deletion of COQ1 (a gene known to be highly induced upon deletion of OSH4) enhances the toxicity of β-sitosterol in yeast cells expressing only Osh4 and harbouring the upc2-1 mutation. Molecular modelling suggests that β-sitosterol binds to Osh4 and the binding mode is similar to the binding of cholesterol to Osh4. CONCLUSION Our results indicate that the concentrations of β-sitosterol, and Osh4, as well as its homologues within cells, are most likely the main determinants of β-sitosterol toxicity. Furthermore, some fungal species do not take up sterols, e.g. Saccharomyces cerevisiae, under aerobic conditions. Therefore, sterol uptake may also contribute to the β-sitosterol anti-fungal effect. These findings enable predicting the toxicity of β-sitosterol against plant fungal pathogens. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Behrooz Moosavi
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, People's Republic of China
| | - Shuting Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, People's Republic of China
| | - Nan-Nan Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, People's Republic of China
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, People's Republic of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, People's Republic of China
| |
Collapse
|
13
|
Denny PW. Yeast: bridging the gap between phenotypic and biochemical assays for high-throughput screening. Expert Opin Drug Discov 2018; 13:1153-1160. [DOI: 10.1080/17460441.2018.1534826] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Paul W. Denny
- Department of Biosciences and Centre for Global Infectious Disease, Durham University, Durham, UK
| |
Collapse
|
14
|
Norcliffe JL, Mina JG, Alvarez E, Cantizani J, de Dios-Anton F, Colmenarejo G, Valle SGD, Marco M, Fiandor JM, Martin JJ, Steel PG, Denny PW. Identifying inhibitors of the Leishmania inositol phosphorylceramide synthase with antiprotozoal activity using a yeast-based assay and ultra-high throughput screening platform. Sci Rep 2018; 8:3938. [PMID: 29500420 PMCID: PMC5834442 DOI: 10.1038/s41598-018-22063-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/16/2018] [Indexed: 01/07/2023] Open
Abstract
Leishmaniasis is a Neglected Tropical Disease caused by the insect-vector borne protozoan parasite, Leishmania species. Infection affects millions of the world’s poorest, however vaccines are absent and drug therapy limited. Recently, public-private partnerships have developed to identify new modes of controlling leishmaniasis. Drug discovery is a significant part of these efforts and here we describe the development and utilization of a novel assay to identify antiprotozoal inhibitors of the Leishmania enzyme, inositol phosphorylceramide (IPC) synthase. IPC synthase is a membrane-bound protein with multiple transmembrane domains, meaning that a conventional in vitro assay using purified protein in solution is highly challenging. Therefore, we utilized Saccharomyces cerevisiae as a vehicle to facilitate ultra-high throughput screening of 1.8 million compounds. Antileishmanial benzazepanes were identified and shown to inhibit the enzyme at nanomolar concentrations. Further chemistry produced a benzazepane that demonstrated potent and specific inhibition of IPC synthase in the Leishmania cell.
Collapse
Affiliation(s)
- Jennifer L Norcliffe
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK.,Department of Chemistry, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - John G Mina
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK.,Department of Chemistry, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Emilio Alvarez
- GlaxoSmithKline Investigacion y Desarrollo, Parque Tecnologico de Madrid, 28760, Tres Cantos, Madrid, Spain
| | - Juan Cantizani
- GlaxoSmithKline Investigacion y Desarrollo, Parque Tecnologico de Madrid, 28760, Tres Cantos, Madrid, Spain
| | - Francisco de Dios-Anton
- GlaxoSmithKline Investigacion y Desarrollo, Parque Tecnologico de Madrid, 28760, Tres Cantos, Madrid, Spain
| | - Gonzalo Colmenarejo
- GlaxoSmithKline Investigacion y Desarrollo, Parque Tecnologico de Madrid, 28760, Tres Cantos, Madrid, Spain.,Biostatistics and Bioinformatics Unit, IMDEA Food Institute, CEI UAM and CSIC, Carretera de Cantoblanco 8, 28049, Madrid, Spain
| | - Silva Gonzalez-Del Valle
- GlaxoSmithKline Investigacion y Desarrollo, Parque Tecnologico de Madrid, 28760, Tres Cantos, Madrid, Spain
| | - Maria Marco
- GlaxoSmithKline Investigacion y Desarrollo, Parque Tecnologico de Madrid, 28760, Tres Cantos, Madrid, Spain
| | - José M Fiandor
- GlaxoSmithKline Investigacion y Desarrollo, Parque Tecnologico de Madrid, 28760, Tres Cantos, Madrid, Spain
| | - Julio J Martin
- GlaxoSmithKline Investigacion y Desarrollo, Parque Tecnologico de Madrid, 28760, Tres Cantos, Madrid, Spain
| | - Patrick G Steel
- Department of Chemistry, Durham University, Stockton Road, Durham, DH1 3LE, UK.
| | - Paul W Denny
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK.
| |
Collapse
|
15
|
Denny PW. Microbial protein targets: towards understanding and intervention. Parasitology 2018; 145:111-115. [PMID: 29143719 PMCID: PMC5817423 DOI: 10.1017/s0031182017002037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 10/06/2017] [Accepted: 10/06/2017] [Indexed: 12/11/2022]
Abstract
The rise of antimicrobial resistance, coupled with a lack of industrial focus on antimicrobial discovery over preceding decades, has brought the world to a crisis point. With both human and animal health set to decline due to increased disease burdens caused by near untreatable microbial pathogens, there is an urgent need to identify new antimicrobials. Central to this is the elucidation of new, robustly validated, drug targets. Informed by industrial practice and concerns, the use of both biological and chemical tools in validation is key. In parallel, repurposing approved drugs for use as antimicrobials may provide both new treatments and identify new targets, whilst improved understanding of pharmacology will help develop and progress good 'hits' with the required rapidity. In recognition of the need to increase research efforts in these areas, in 14-16 September 2017, the British Society for Parasitology (BSP) Autumn Symposium was hosted at Durham University with the title: Microbial Protein Targets: towards understanding and intervention. Staged in collaboration with the Royal Society of Chemistry (RSC) Chemistry Biology Interface Division (CBID), the core aim was to bring together leading researchers working across disciplines to imagine novel approaches towards combating infection and antimicrobial resistance. Sessions were held on: 'Anti-infective discovery, an overview'; 'Omic approaches to target validation'; 'Genetic approaches to target validation'; 'Drug target structure and drug discovery'; 'Fragment-based approaches to drug discovery'; and 'Chemical approaches to target validation'. Here, we introduce a series of review and primary research articles from selected contributors to the Symposium, giving an overview of progress in understanding antimicrobial targets and developing new drugs. The Symposium was organized by Paul Denny (Durham) for the BSP and Patrick Steel (Durham) for RSC CBID.
Collapse
Affiliation(s)
- Paul W Denny
- Department of Biosciences,Durham University,Lower Mountjoy, Stockton Road, Durham DH1 3LE,UK
| |
Collapse
|
16
|
Mina JGM, Denny PW. Everybody needs sphingolipids, right! Mining for new drug targets in protozoan sphingolipid biosynthesis. Parasitology 2018; 145:134-147. [PMID: 28637533 PMCID: PMC5964470 DOI: 10.1017/s0031182017001081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 12/18/2022]
Abstract
Sphingolipids (SLs) are an integral part of all eukaryotic cellular membranes. In addition, they have indispensable functions as signalling molecules controlling a myriad of cellular events. Disruption of either the de novo synthesis or the degradation pathways has been shown to have detrimental effects. The earlier identification of selective inhibitors of fungal SL biosynthesis promised potent broad-spectrum anti-fungal agents, which later encouraged testing some of those agents against protozoan parasites. In this review we focus on the key enzymes of the SL de novo biosynthetic pathway in protozoan parasites of the Apicomplexa and Kinetoplastidae, outlining the divergence and interconnection between host and pathogen metabolism. The druggability of the SL biosynthesis is considered, alongside recent technology advances that will enable the dissection and analyses of this pathway in the parasitic protozoa. The future impact of these advances for the development of new therapeutics for both globally threatening and neglected infectious diseases is potentially profound.
Collapse
Affiliation(s)
- John G M Mina
- Department of Biosciences,Lower Mountjoy,Stockton Road,Durham DH1 3LE,UK
| | - P W Denny
- Department of Biosciences,Lower Mountjoy,Stockton Road,Durham DH1 3LE,UK
| |
Collapse
|
17
|
Abstract
The apicomplexan protozoan parasites include the causative agents of animal and human diseases ranging from malaria (Plasmodium spp.) to toxoplasmosis (Toxoplasma gondii). The complex life cycle of T. gondii is regulated by a unique family of calcium-dependent protein kinases (CDPKs) that have become the target of intensive efforts to develop new therapeutics. In this review, we will summarize structure-based strategies, recent successes and future directions in the pursuit of specific and selective inhibitors of T. gondii CDPK1.
Collapse
|
18
|
Balaña-Fouce R, Reguera RM. Yeast-based systems for tropical disease drug discovery. Expert Opin Drug Discov 2016; 11:429-32. [DOI: 10.1517/17460441.2016.1160052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Universidad de León, León, Spain
- Instituto de Biotecnología de León (INBIOTEC) Avda, León, Spain
| | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas, Universidad de León, León, Spain
| |
Collapse
|
19
|
Detection of marine microalgal biotoxins using bioassays based on functional expression of tunicate xenobiotic receptors in yeast. Toxicon 2015; 95:13-22. [DOI: 10.1016/j.toxicon.2014.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/22/2014] [Accepted: 12/27/2014] [Indexed: 12/20/2022]
|
20
|
Richter I, Fidler AE. Marine invertebrate xenobiotic-activated nuclear receptors: their application as sensor elements in high-throughput bioassays for marine bioactive compounds. Mar Drugs 2014; 12:5590-618. [PMID: 25421319 PMCID: PMC4245547 DOI: 10.3390/md12115590] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 10/31/2014] [Accepted: 11/11/2014] [Indexed: 02/07/2023] Open
Abstract
Developing high-throughput assays to screen marine extracts for bioactive compounds presents both conceptual and technical challenges. One major challenge is to develop assays that have well-grounded ecological and evolutionary rationales. In this review we propose that a specific group of ligand-activated transcription factors are particularly well-suited to act as sensors in such bioassays. More specifically, xenobiotic-activated nuclear receptors (XANRs) regulate transcription of genes involved in xenobiotic detoxification. XANR ligand-binding domains (LBDs) may adaptively evolve to bind those bioactive, and potentially toxic, compounds to which organisms are normally exposed to through their specific diets. A brief overview of the function and taxonomic distribution of both vertebrate and invertebrate XANRs is first provided. Proof-of-concept experiments are then described which confirm that a filter-feeding marine invertebrate XANR LBD is activated by marine bioactive compounds. We speculate that increasing access to marine invertebrate genome sequence data, in combination with the expression of functional recombinant marine invertebrate XANR LBDs, will facilitate the generation of high-throughput bioassays/biosensors of widely differing specificities, but all based on activation of XANR LBDs. Such assays may find application in screening marine extracts for bioactive compounds that could act as drug lead compounds.
Collapse
Affiliation(s)
- Ingrid Richter
- Environmental Technology Group, Cawthron Institute, Private Bag 2, Nelson 7012, New Zealand.
| | - Andrew E Fidler
- Environmental Technology Group, Cawthron Institute, Private Bag 2, Nelson 7012, New Zealand.
| |
Collapse
|
21
|
Denny PW, Steel PG. Yeast as a potential vehicle for neglected tropical disease drug discovery. ACTA ACUST UNITED AC 2014; 20:56-63. [PMID: 25121554 DOI: 10.1177/1087057114546552] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
High-throughput screening (HTS) efforts for neglected tropical disease (NTD) drug discovery have recently received increased attention because several initiatives have begun to attempt to reduce the deficit in new and clinically acceptable therapies for this spectrum of infectious diseases. HTS primarily uses two basic approaches, cell-based and in vitro target-directed screening. Both of these approaches have problems; for example, cell-based screening does not reveal the target or targets that are hit, whereas in vitro methodologies lack a cellular context. Furthermore, both can be technically challenging, expensive, and difficult to miniaturize for ultra-HTS [(u)HTS]. The application of yeast-based systems may overcome some of these problems and offer a cost-effective platform for target-directed screening within a eukaryotic cell context. Here, we review the advantages and limitations of the technologies that may be used in yeast cell-based, target-directed screening protocols, and we discuss how these are beginning to be used in NTD drug discovery.
Collapse
Affiliation(s)
- P W Denny
- Biophysical Sciences Institute, Department of Chemistry and School of Biological Sciences, University Science Laboratories, Durham, UK School of Medicine, Pharmacy and Health, Durham University, Durham, UK
| | - P G Steel
- Biophysical Sciences Institute, Department of Chemistry and School of Biological Sciences, University Science Laboratories, Durham, UK
| |
Collapse
|
22
|
Abstract
ABSTRACTThe need for new drugs to treat microbial infections is pressing. The great progress made in the middle part of the twentieth Century was followed by a period of relative inactivity as the medical needs relating to infectious disease in the wealthier nations receded. Growing realisation that anti-infectives are needed in many parts of the world, to treat neglected diseases as well as to combat the burgeoning risk of resistance to existing drugs, has galvanised a new wave of research into anti-microbial drugs. The transfer of knowledge from the Pharmaceutical industry relating to the importance of understanding how to target drugs successfully within the body, and improved understanding of how pathogens interact with their hosts, is driving a series of new paradigms in anti-infective drug design. Here we provide an overview of those processes as an introduction to a series of articles from experts in this area that emerged from a meeting entitled “Emerging Paradigms in Anti-Infective Drug Design” held in London on the 17th and 18th September 2012. The symposium was organised jointly by British Society for Parasitology (BSP) and the Biological & Medicinal Chemistry sector of the Royal Society of Chemistry (RSC) and held at the London School of Hygiene & Tropical Medicine. The symposium set out to cover all aspects of the identification of new therapeutic modalities for the treatment of neglected and tropical diseases. We aimed to bring together leading scientists from all the disciplines working in this field and cover the pharmacology, medicinal chemistry and drug delivery of potential new medicines. Sessions were held on: “Target diseases and targets for drugs”, “Target based medicinal chemistry”, “Bioavailability and chemistry”, “Targeting intracellular microbes”, “Alternative approaches and models”, and “New anti-infectives – how do we get there?”This symposium was organised by Simon Croft (LSHTM) and Mike Barrett (University of Glasgow) for the BSP, and David Alker (David Alker Associates) and Andrew Stachulski (University of Liverpool) for the Biological & Medicinal Chemistry sector of the RSC.
Collapse
|
23
|
Henrich CJ, Beutler JA. Matching the power of high throughput screening to the chemical diversity of natural products. Nat Prod Rep 2013; 30:1284-98. [PMID: 23925671 PMCID: PMC3801163 DOI: 10.1039/c3np70052f] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Covering up to 2013. Application of high throughput screening technologies to natural product samples demands alterations in assay design as well as sample preparation in order to yield meaningful hit structures at the end of the campaign.
Collapse
Affiliation(s)
- Curtis J. Henrich
- Basic Science Program, SAIC-Frederick, Inc. Frederick National Lab
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702 USA
| | - John A. Beutler
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702 USA
| |
Collapse
|
24
|
Identification and functional analysis of Trypanosoma cruzi genes that encode proteins of the glycosylphosphatidylinositol biosynthetic pathway. PLoS Negl Trop Dis 2013; 7:e2369. [PMID: 23951384 PMCID: PMC3738449 DOI: 10.1371/journal.pntd.0002369] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/01/2013] [Indexed: 12/03/2022] Open
Abstract
Background Trypanosoma cruzi is a protist parasite that causes Chagas disease. Several proteins that are essential for parasite virulence and involved in host immune responses are anchored to the membrane through glycosylphosphatidylinositol (GPI) molecules. In addition, T. cruzi GPI anchors have immunostimulatory activities, including the ability to stimulate the synthesis of cytokines by innate immune cells. Therefore, T. cruzi genes related to GPI anchor biosynthesis constitute potential new targets for the development of better therapies against Chagas disease. Methodology/Principal Findings In silico analysis of the T. cruzi genome resulted in the identification of 18 genes encoding proteins of the GPI biosynthetic pathway as well as the inositolphosphorylceramide (IPC) synthase gene. Expression of GFP fusions of some of these proteins in T. cruzi epimastigotes showed that they localize in the endoplasmic reticulum (ER). Expression analyses of two genes indicated that they are constitutively expressed in all stages of the parasite life cycle. T. cruzi genes TcDPM1, TcGPI10 and TcGPI12 complement conditional yeast mutants in GPI biosynthesis. Attempts to generate T. cruzi knockouts for three genes were unsuccessful, suggesting that GPI may be an essential component of the parasite. Regarding TcGPI8, which encodes the catalytic subunit of the transamidase complex, although we were able to generate single allele knockout mutants, attempts to disrupt both alleles failed, resulting instead in parasites that have undergone genomic recombination and maintained at least one active copy of the gene. Conclusions/Significance Analyses of T. cruzi sequences encoding components of the GPI biosynthetic pathway indicated that they are essential genes involved in key aspects of host-parasite interactions. Complementation assays of yeast mutants with these T. cruzi genes resulted in yeast cell lines that can now be employed in high throughput screenings of drugs against this parasite. Chagas disease, considered one of the most neglected tropical diseases, is caused by the blood-borne parasite Trypanosoma cruzi and currently affects about 8 million people in Latin America. T. cruzi can be transmitted by insect vectors, blood transfusion, organ transplantation and mother-to-baby as well as through ingestion of contaminated food. Although T. cruzi causes life-long infections that can result in serious damage to the heart, the two drugs currently available to treat Chagas disease, benznidazole and nifurtimox, which have been used for more than 40 years, have proven efficacy only during the acute phase of the disease. Thus, there is an urgent need to develop new drugs that are more targeted, less toxic, and more effective against this parasite. Here we described the characterization of T. cruzi genes involved in the biosynthesis of GPI anchors, a molecule responsible for holding different types of glycoproteins on the parasite membrane. Since GPI anchored proteins are essential molecules T. cruzi uses during infection, besides helping understand how this parasite interacts with its host, this work may contribute to the development of better therapies against Chagas disease.
Collapse
|