1
|
Gulia K, Hassan AHE, Lenhard JR, Farahat AA. Escaping ESKAPE resistance: in vitro and in silico studies of multifunctional carbamimidoyl-tethered indoles against antibiotic-resistant bacteria. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230020. [PMID: 37090961 PMCID: PMC10113819 DOI: 10.1098/rsos.230020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Combining the hybridization and repurposing strategies, six compounds from our in-house library and having a designed hybrid structure of MBX-1162, pentamidine and MMV688271 were repurposed as potential antibacterial agents. Among, compounds 1a and 1d elicited potential sub-µg ml-1 activity against the high-priority antibiotic-resistant Gram-positive members of ESKAPE bacteria as well as antibiotic-susceptible Gram-positive bacteria. Furthermore, they showed potential low µg ml-1 activity against the explored critical-priority antibiotic-resistant Gram-negative members of ESKAPE bacteria. In time-kill assay, compound 1a has effective 0.5 and 0.25 µg ml-1 antibacterial lethal concentrations against MRSA in exponential growth phase. In silico investigations predicted compounds 1a and 1d as inhibitors of the open conformation of undecaprenyl diphosphate synthase involved in bacterial isoprenoid synthesis. In addition, compounds 1a and 1d were predicted as inhibitors of NADPH-free but not NADPH-bound form of ketol-acid reductoisomerase and may also serve as potential B-DNA minor groove binders with possible differences in the molecular sequence recognition. Overall, compounds 1a and 1d are presented as multifunctional potential antibacterial agents for further development against high- and critical-priority Gram-positive and Gram-negative antibiotic-resistant ESKAPE bacterial pathogens as well as antibiotic-susceptible Gram-positive bacterial pathogens.
Collapse
Affiliation(s)
- Kanika Gulia
- Master of Pharmaceutical Sciences Program, California Northstate University, 9700 W Taron Dr., Elk Grove, CA 95757, USA
- College of Medicine, California Northstate University, 9700 W Taron Dr., Elk Grove, CA 95757, USA
| | - Ahmed H. E. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Justin R. Lenhard
- Department of Clinical and Administrative Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| | - Abdelbasset A. Farahat
- Master of Pharmaceutical Sciences Program, California Northstate University, 9700 W Taron Dr., Elk Grove, CA 95757, USA
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
2
|
Cardoso-Santos C, Ferreira de Almeida Fiuza L, França da Silva C, Mazzeti AL, Donola Girão R, Melo de Oliveira G, da Gama Jaen Batista D, Cruz Moreira O, Lins da Silva Gomes N, Maes L, Caljon G, Hulpia F, Calenbergh SV, Correia Soeiro MDN. 7-Aryl-7-deazapurine 3'-deoxyribonucleoside derivative as a novel lead for Chagas' disease therapy: in vitro and in vivo pharmacology. JAC Antimicrob Resist 2021; 3:dlab168. [PMID: 34806007 PMCID: PMC8599808 DOI: 10.1093/jacamr/dlab168] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022] Open
Abstract
Background The protozoan Trypanosoma cruzi is auxotrophic for purines and causes Chagas’ disease (CD), a neglected illness affecting >6 million people. Combining the 3-deoxyribofuranose part of cordycepin with the modified purine ring of a nucleoside ‘hit’ led to the discovery of 4-amino-5-(4-chlorophenyl)-N7-(3′-deoxy-β-d-ribofuranosyl)-pyrrolo[2,3-d]pyrimidine (Cpd1), revealing promising anti-T. cruzi activity. Objectives To further evaluate Cpd1 in vitro and in vivo to fully assess its therapeutic potential against CD, covering cell culture sterilization through washout assays, drug combination with benznidazole and long-term administration in T. cruzi-infected mice. Results Although less susceptible to Cpd1 than amastigotes, trypomastigotes present an impaired capacity to successfully establish intracellular infection of cardiac cultures. Combination of benznidazole with Cpd1 indicated no interaction (additive effect) (FIC index = 0.72) while administration to mice at one-tenth of the optimal dose (2.5 mg/kg and 10 mg/kg for Cpd1 and benznidazole, respectively) suppressed parasitaemia but failed to avoid mortality. Long-term treatment (60 days) gave a rapid drop of the parasitaemia (>98% decline) and 100% mice survival but only 16% cure. In vitro washout experiments demonstrated that although parasite release into the supernatant of infected cardiac cultures was reduced by >94%, parasite recrudescence did occur after treatment. Conclusions Parasite recrudescence did occur after treatment corroborating the hypothesis of therapeutic failure due to subpopulations of dormant forms and/or genetic factors in persister parasites involved in natural drug resistance.
Collapse
Affiliation(s)
- Camila Cardoso-Santos
- Laboratory of Cellular Biology (LBC), Oswaldo Cruz Institute (IOC/FIOCRUZ), 21040-360 Rio de Janeiro, RJ, Brazil.,Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Antwerp, Belgium
| | | | - Cristiane França da Silva
- Laboratory of Cellular Biology (LBC), Oswaldo Cruz Institute (IOC/FIOCRUZ), 21040-360 Rio de Janeiro, RJ, Brazil
| | - Ana Lia Mazzeti
- Laboratory of Cellular Biology (LBC), Oswaldo Cruz Institute (IOC/FIOCRUZ), 21040-360 Rio de Janeiro, RJ, Brazil
| | - Roberson Donola Girão
- Laboratory of Cellular Biology (LBC), Oswaldo Cruz Institute (IOC/FIOCRUZ), 21040-360 Rio de Janeiro, RJ, Brazil
| | - Gabriel Melo de Oliveira
- Laboratory of Cellular Biology (LBC), Oswaldo Cruz Institute (IOC/FIOCRUZ), 21040-360 Rio de Janeiro, RJ, Brazil
| | - Denise da Gama Jaen Batista
- Laboratory of Cellular Biology (LBC), Oswaldo Cruz Institute (IOC/FIOCRUZ), 21040-360 Rio de Janeiro, RJ, Brazil
| | - Otacilio Cruz Moreira
- Real Time PCR Platform RPT09A, Laboratory of Molecular Biology and Endemic Diseases, Oswaldo Cruz Institute (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Natália Lins da Silva Gomes
- Real Time PCR Platform RPT09A, Laboratory of Molecular Biology and Endemic Diseases, Oswaldo Cruz Institute (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Antwerp, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Antwerp, Belgium
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Serge V Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | | |
Collapse
|
3
|
Martinez-Peinado N, Cortes-Serra N, Sherman J, Rodriguez A, Bustamante JM, Gascon J, Pinazo MJ, Alonso-Padilla J. Identification of Trypanosoma cruzi Growth Inhibitors with Activity In Vivo within a Collection of Licensed Drugs. Microorganisms 2021; 9:microorganisms9020406. [PMID: 33669310 PMCID: PMC7920067 DOI: 10.3390/microorganisms9020406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/08/2021] [Accepted: 02/13/2021] [Indexed: 11/17/2022] Open
Abstract
Chagas disease, caused by the parasite Trypanosoma cruzi (T. cruzi), affects more than six million people worldwide, with its greatest burden in Latin America. Available treatments present frequent toxicity and variable efficacy at the chronic phase of the infection, when the disease is usually diagnosed. Hence, development of new therapeutic strategies is urgent. Repositioning of licensed drugs stands as an attractive fast-track low-cost approach for the identification of safer and more effective chemotherapies. With this purpose we screened 32 licensed drugs for different indications against T. cruzi. We used a primary in vitro assay of Vero cells infection by T. cruzi. Five drugs showed potent activity rates against it (IC50 < 4 µmol L−1), which were also specific (selectivity index >15) with respect to host cells. T. cruzi inhibitory activity of four of them was confirmed by a secondary anti-parasitic assay based on NIH-3T3 cells. Then, we assessed toxicity to human HepG2 cells and anti-amastigote specific activity of those drugs progressed. Ultimately, atovaquone-proguanil, miltefosine, and verapamil were tested in a mouse model of acute T. cruzi infection. Miltefosine performance in vitro and in vivo encourages further investigating its use against T. cruzi.
Collapse
Affiliation(s)
- Nieves Martinez-Peinado
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (N.C.-S.); (J.G.)
| | - Nuria Cortes-Serra
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (N.C.-S.); (J.G.)
| | - Julian Sherman
- Department of Microbiology, New York University School of Medicine, New York, NY 10010, USA; (J.S.); (A.R.)
| | - Ana Rodriguez
- Department of Microbiology, New York University School of Medicine, New York, NY 10010, USA; (J.S.); (A.R.)
| | - Juan M. Bustamante
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA;
| | - Joaquim Gascon
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (N.C.-S.); (J.G.)
| | - Maria-Jesus Pinazo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (N.C.-S.); (J.G.)
- Correspondence: (M.-J.P.); (J.A.-P.); Tel.: +1-0034-932275400 (ext. 1802) (M.-J.P.); +1-0034-932275400 (ext. 4569) (J.A.-P.)
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (N.C.-S.); (J.G.)
- Correspondence: (M.-J.P.); (J.A.-P.); Tel.: +1-0034-932275400 (ext. 1802) (M.-J.P.); +1-0034-932275400 (ext. 4569) (J.A.-P.)
| |
Collapse
|
4
|
de Almeida JM, Nunes FO, Ceole LF, Klimeck TDF, da Cruz LA, Tófoli D, Borges BS, Garcez WS, Tozetti IA, Medeiros LCS, Garcez FR, Ferreira AMT. Synergistic effect and ultrastructural changes in Trypanosoma cruzi caused by isoobtusilactone A in short exposure of time. PLoS One 2021; 16:e0245882. [PMID: 33507972 PMCID: PMC7842926 DOI: 10.1371/journal.pone.0245882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Butanolides have shown a variety of biological effects including anti-inflammatory, antibacterial, and antiprotozoal effects against certain strains of Trypanosoma cruzi. Considering the lack of an effective drug to treat T. cruzi infections and the prominent results obtained in literature with this class of lactones, we investigated the anti-T. cruzi activity of five butanolides isolated from two species of Lauraceae, Aiouea trinervis and Mezilaurus crassiramea. Initially, the activity of these compounds was evaluated on epimastigote forms of the parasite, after a treatment period of 4 h, followed by testing on amastigotes, trypomastigotes, and mammalian cells. Next, the synergistic effect of active butanolides against amastigotes was evaluated. Further, metacyclogenesis inhibition and infectivity assays were performed for the most active compound, followed by ultrastructural analysis of the treated amastigotes and trypomastigotes. Among the five butanolides studied, majoranolide and isoobtusilactone A were active against all forms of the parasite, with good selectivity indexes in Vero cells. Both butanolides were more active than the control drug against trypomastigote and epimastigote forms and also had a synergic effect on amastigotes. The most active compound, isoobtusilactone A, which showed activity against all tested strains inhibited metacyclogenesis and infection of new host cells. In addition, ultrastructural analysis revealed that this butanolide caused extensive damage to the mitochondria of both amastigotes and trypomastigotes, resulting in severe morphological changes in the infective forms of the parasite. Altogether, our results highlight the potential of butanolides against the etiologic agent of Chagas disease and the relevance of isoobtusilactone A as a strong anti-T. cruzi drug, affecting different events of the life cycle and all evolutionary forms of parasite after a short period of exposure.
Collapse
Affiliation(s)
- Júlio Menta de Almeida
- Laboratório de Imunologia, Biologia Molecular e Bioensaios do Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Felipe Oliveira Nunes
- Laboratório de Pesquisa de Produtos Naturais Bioativos do Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Lígia Fernanda Ceole
- Laboratório de Biologia Celular, Instituto Carlos Chagas (Fiocruz-Paraná), Curitiba, PR, Brazil
| | | | - Letícia Alves da Cruz
- Laboratório de Imunologia, Biologia Molecular e Bioensaios do Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Danilo Tófoli
- Laboratório de Pesquisa de Produtos Naturais Bioativos do Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Beatriz Santana Borges
- Laboratório de Biologia Celular, Instituto Carlos Chagas (Fiocruz-Paraná), Curitiba, PR, Brazil
| | - Walmir Silva Garcez
- Laboratório de Pesquisa de Produtos Naturais Bioativos do Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Inês Aparecida Tozetti
- Laboratório de Imunologia, Biologia Molecular e Bioensaios do Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | | | - Fernanda Rodrigues Garcez
- Laboratório de Pesquisa de Produtos Naturais Bioativos do Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Alda Maria Teixeira Ferreira
- Laboratório de Imunologia, Biologia Molecular e Bioensaios do Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| |
Collapse
|
5
|
Repurposing strategies for Chagas disease therapy: the effect of imatinib and derivatives against Trypanosoma cruzi. Parasitology 2019; 146:1006-1012. [PMID: 30859917 DOI: 10.1017/s0031182019000234] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chagas disease (CD) is a neglected parasitic condition endemic in the Americas caused by Trypanosoma cruzi. Patients present an acute phase that may or not be symptomatic, followed by lifelong chronic stage, mostly indeterminate, or with cardiac and/or digestive progressive lesions. Benznidazole (BZ) and nifurtimox are the only drugs approved for treatment but not effective in the late chronic phase and many strains of the parasite are naturally resistant. New alternative therapy is required to address this serious public health issue. Repositioning and combination represent faster, and cheaper trial strategies encouraged for neglected diseases. The effect of imatinib (IMB), a tyrosine kinase inhibitor designed for use in neoplasias, was assessed in vitro on T. cruzi and mammalian host cells. In comparison with BZ, IMB was moderately active against different strains and forms of the parasite. The combination IMB + BZ in fixed-ratio proportions was additive. Novel 14 derivatives of IMB were screened and a 3,2-difluoro-2-phenylacetamide (3e) was as potent as BZ on T. cruzi but had low selectivity index. The results demonstrate the importance of phenotypic assays, encourage the improvement of IMB derivatives to reach selectivity and testify to the use of repurposing and combination in drug screening for CD.
Collapse
|
6
|
Sangenito LS, d'Avila-Levy CM, Branquinha MH, Santos ALS. Nelfinavir and lopinavir impair Trypanosoma cruzi trypomastigote infection in mammalian host cells and show anti-amastigote activity. Int J Antimicrob Agents 2016; 48:703-711. [PMID: 27838277 DOI: 10.1016/j.ijantimicag.2016.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/08/2016] [Accepted: 09/15/2016] [Indexed: 02/08/2023]
Abstract
There is an urgent need to implement new strategies and to search for new chemotherapeutic targets to combat Chagas' disease. In this context, repositioning of clinically approved drugs appears as a viable tool to combat this and several other neglected pathologies. An example is the use of aspartic peptidase inhibitors (PIs) currently applied in human immunodeficiency virus (HIV) treatment against different infectious agents. Therefore, the main objective of this work was to verify the effects of the HIV-PIs nelfinavir and lopinavir against Trypanosoma cruzi using in vitro models of infection. Cytotoxicity assays with LLC-MK2 epithelial cells and RAW macrophages allowed an evaluation of the effects of HIV-PIs on the interaction between trypomastigotes and these cells as well as the survival of intracellular amastigotes. Pre-treatment of trypomastigotes with nelfinavir and lopinavir inhibited the association index with LLC-MK2 cells and RAW macrophages in a dose- and time-dependent manner. In addition, nelfinavir and lopinavir also significantly reduced the number of intracellular amastigotes in both mammalian cell lineages, particularly when administered in daily doses. Both compounds had no effect on nitric oxide production in infected RAW macrophages. These results open the possibility for the use of HIV-PIs as a tangible alternative in the treatment of Chagas' disease. However, the main mechanism of action of nelfinavir and lopinavir has yet to be elucidated, and more studies using in vivo models must be conducted.
Collapse
Affiliation(s)
- Leandro S Sangenito
- Departamento de Microbiologia Geral, Laboratório de Investigação de Peptidases, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Claudia M d'Avila-Levy
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Marta H Branquinha
- Departamento de Microbiologia Geral, Laboratório de Investigação de Peptidases, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | - André L S Santos
- Departamento de Microbiologia Geral, Laboratório de Investigação de Peptidases, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Programa de Pós-Graduação em Bioquímica, Instituto de Química, UFRJ, Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Phenotypic Screening In Vitro of Novel Aromatic Amidines against Trypanosoma cruzi. Antimicrob Agents Chemother 2016; 60:4701-7. [PMID: 27216059 DOI: 10.1128/aac.01788-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 05/16/2016] [Indexed: 01/15/2023] Open
Abstract
The current treatment of Chagas disease (CD), based on nifurtimox and benznidazole (Bz), is unsatisfactory. In this context, we performed the phenotypic in vitro screening of novel mono- and diamidines and drug interaction assays with selected compounds. Ten novel amidines were tested for their activities against bloodstream trypomastigote (BT) and amastigote forms of Trypanosoma cruzi (Y and Tulahuen strains) and their toxicities for mammalian host cells (L929 cells and cardiac cells). Seven of 10 molecules were more active than Bz against BT, with the most active compound being the diamidine DB2267 (50% effective concentration [EC50] = 0.23 μM; selectivity index = 417), which was 28-fold more active and about 3 times more selective than the standard drug. Five of the six monoamidines were also more active than Bz. The combination of DB2267 and DB2236 in fixed-ratio proportions showed an additive effect (sum of fractional inhibitory concentrations < 4) on BT. Interestingly, when intracellular forms were exposed to DB2267, its activity was dependent on the parasite strain, being effective (EC50 = 0.87 ± 0.05 μM) against a discrete typing unit (DTU) II strain (strain Y) but not against a representative DTU VI strain (strain Tulahuen) even when different vehicles (β-cyclodextrin and dimethyl sulfoxide) were used. The intrinsic fluorescence of several diamidines allowed their uptake to be studied. Testing of the uptake of DB2236 (inactive) and DB2267 (active) by amastigotes of the Y strain showed that the two compounds were localized intracellularly in different compartments: DB2236 in the cytoplasm and DB2267 in the nucleus. Our present data encourage further studies regarding the activities of amidines and provide information which will help with the identification of novel agents for the treatment of CD.
Collapse
|
8
|
Crovirin, a snake venom cysteine-rich secretory protein (CRISP) with promising activity against Trypanosomes and Leishmania. PLoS Negl Trop Dis 2014; 8:e3252. [PMID: 25330220 PMCID: PMC4199522 DOI: 10.1371/journal.pntd.0003252] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/08/2014] [Indexed: 11/24/2022] Open
Abstract
Background The neglected human diseases caused by trypanosomatids are currently treated with toxic therapy with limited efficacy. In search for novel anti-trypanosomatid agents, we showed previously that the Crotalus viridis viridis (Cvv) snake venom was active against infective forms of Trypanosoma cruzi. Here, we describe the purification of crovirin, a cysteine-rich secretory protein (CRISP) from Cvv venom with promising activity against trypanosomes and Leishmania. Methodology/Principal Findings Crude venom extract was loaded onto a reverse phase analytical (C8) column using a high performance liquid chromatographer. A linear gradient of water/acetonitrile with 0.1% trifluoroacetic acid was used. The peak containing the isolated protein (confirmed by SDS-PAGE and mass spectrometry) was collected and its protein content was measured. T. cruzi trypomastigotes and amastigotes, L. amazonensis promastigotes and amastigotes and T. brucei rhodesiense procyclic and bloodstream trypomastigotes were challenged with crovirin, whose toxicity was tested against LLC-MK2 cells, peritoneal macrophages and isolated murine extensor digitorum longus muscle. We purified a single protein from Cvv venom corresponding, according to Nano-LC MS/MS sequencing, to a CRISP of 24,893.64 Da, henceforth referred to as crovirin. Human infective trypanosomatid forms, including intracellular amastigotes, were sensitive to crovirin, with low IC50 or LD50 values (1.10–2.38 µg/ml). A considerably higher concentration (20 µg/ml) of crovirin was required to elicit only limited toxicity on mammalian cells. Conclusions This is the first report of CRISP anti-protozoal activity, and suggests that other members of this family might have potential as drugs or drug leads for the development of novel agents against trypanosomatid-borne neglected diseases. The pathogenic trypanosomatid parasites of the genera Leishmania and Trypanosoma infect over 20 million people worldwide, with an annual incidence of ∼3 million new infections. An additional 400 million people are at risk of infection by exposure to parasite-infected insects which act as disease vectors. Trypanosomatid-borne diseases predominant in poorer nation and are considered neglected, having failed to attract the attention of the pharmaceutical industry. However, novel therapy is sorely needed for Trypanosoma and Leishmania infections, currently treated with ‘dated’ drugs that are often difficult to administer in resource-limiting conditions, have high toxicity and are by no means always successful, partly due to the emergence of drug resistance. The last few decades have witnessed a growing interest in examining the potential of bioactive toxins and poisons as drugs or drug leads, as well as for diagnostic applications. In this context, we isolated and purified crovirin, a protein from the Crotalus viridis viridis (Cvv) snake venom capable to inhibiting and/or lysing infective forms of trypanosomatid parasites, at concentrations that are not toxic to host cells. This feature makes crovirin a promising candidate protein for the development of novel therapy against neglected diseases caused by trypanosomatid pathogens.
Collapse
|