1
|
Zumuk CP, Jones MK, Navarro S, Gray DJ, You H. Transmission-Blocking Vaccines against Schistosomiasis Japonica. Int J Mol Sci 2024; 25:1707. [PMID: 38338980 PMCID: PMC10855202 DOI: 10.3390/ijms25031707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Control of schistosomiasis japonica, endemic in Asia, including the Philippines, China, and Indonesia, is extremely challenging. Schistosoma japonicum is a highly pathogenic helminth parasite, with disease arising predominantly from an immune reaction to entrapped parasite eggs in tissues. Females of this species can generate 1000-2200 eggs per day, which is about 3- to 15-fold greater than the egg output of other schistosome species. Bovines (water buffalo and cattle) are the predominant definitive hosts and are estimated to generate up to 90% of parasite eggs released into the environment in rural endemic areas where these hosts and humans are present. Here, we highlight the necessity of developing veterinary transmission-blocking vaccines for bovines to better control the disease and review potential vaccine candidates. We also point out that the approach to producing efficacious transmission-blocking animal-based vaccines before moving on to human vaccines is crucial. This will result in effective and feasible public health outcomes in agreement with the One Health concept to achieve optimum health for people, animals, and the environment. Indeed, incorporating a veterinary-based transmission vaccine, coupled with interventions such as human mass drug administration, improved sanitation and hygiene, health education, and snail control, would be invaluable to eliminating zoonotic schistosomiasis.
Collapse
Affiliation(s)
- Chika P. Zumuk
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - Malcolm K. Jones
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Severine Navarro
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Centre for Childhood Nutrition Research, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Darren J. Gray
- Population Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia;
| | - Hong You
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| |
Collapse
|
2
|
Li Y, Guo S, Dang H, Zhang L, Xu J, Li S. Oncomelania hupensis Distribution and Schistosomiasis Transmission Risk in Different Environments under Field Conditions. Trop Med Infect Dis 2023; 8:tropicalmed8050242. [PMID: 37235290 DOI: 10.3390/tropicalmed8050242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 05/28/2023] Open
Abstract
The goal of schistosomiasis prevention and control in China is shifting from transmission interruption to elimination. However, the area inhabited by the intermediate host, the snail Oncomelania hupensis, has not changed much in recent years. Different environmental types have different impacts on snail breeding, and understanding these differences is conducive to improving the efficiency of snail monitoring and control and to saving resources. Based on previous epidemiological data, we selected 199 villages in 2020 and 269 villages in 2021 from transmission control, transmission interruption, and elimination areas of snail breeding. Snail surveys were conducted in selected villages using systematic sampling and/or environmental sampling methods in six types of snail-breeding environments (canals, ponds, paddy fields, dry lands, bottomlands, and undefined environments). All live snails collected from the field were evaluated for Schistosoma japonicum infection using the microscopic dissection method, and a subsample of snails was subjected to loop-mediated isothermal amplification (LAMP) to assess the presence of S. japonicum infection. Snail distribution data and infection rate and nucleic acid positive rate of schistosomes in snails were calculated and analyzed. The 2-year survey covered 29,493 ha of the environment, in which 12,313 ha of snail habitats were detected. In total, 51.16 ha of new snail habitats and 107.76 ha of re-emergent snail habitats were identified during the survey. The occurrence rate of snails in canals (10.04%, 95% CI: 9.88-10.20%) and undefined environments (20.66%, 95% CI: 19.64-21.67%) was relatively high in 2020, and the density of snails in bottomlands (0.39, 95% CI: 0.28-0.50) and undefined environments (0.43, 95% CI: 0.14-1.60) was relatively high in 2021. Of the 227,355 live snails collected in this study, none were S. japonicum-positive as determined by microscopy. Of the 20,131 pooled samples, however, 5 were S. japonicum-positive based on LAMP analysis, and they were distributed in three environmental types: 3 in bottomland, 1 in dry land, and 1 in a canal. The bottomland environment has a high risk of schistosomiasis transmission because it contains a large area of newly emerging and re-emerging snail habitats, and it also had the most breeding snails infected with S. japonicum. Thus, this habitat type should be the key target for snail monitoring and early warning and for the prevention and control of schistosomiasis.
Collapse
Affiliation(s)
- Yinlong Li
- National Institute of Parasitic Disease, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Disease Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Disease, National Center for International Research on Tropical Disease, Shanghai 200025, China
| | - Suying Guo
- National Institute of Parasitic Disease, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Disease Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Disease, National Center for International Research on Tropical Disease, Shanghai 200025, China
| | - Hui Dang
- National Institute of Parasitic Disease, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Disease Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Disease, National Center for International Research on Tropical Disease, Shanghai 200025, China
| | - Lijuan Zhang
- National Institute of Parasitic Disease, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Disease Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Disease, National Center for International Research on Tropical Disease, Shanghai 200025, China
| | - Jing Xu
- National Institute of Parasitic Disease, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Disease Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Disease, National Center for International Research on Tropical Disease, Shanghai 200025, China
| | - Shizhu Li
- National Institute of Parasitic Disease, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Disease Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Disease, National Center for International Research on Tropical Disease, Shanghai 200025, China
| |
Collapse
|
3
|
You H, Jones MK, Gordon CA, Arganda AE, Cai P, Al-Wassiti H, Pouton CW, McManus DP. The mRNA Vaccine Technology Era and the Future Control of Parasitic Infections. Clin Microbiol Rev 2023; 36:e0024121. [PMID: 36625671 PMCID: PMC10035331 DOI: 10.1128/cmr.00241-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Despite intensive long-term efforts, with very few exceptions, the development of effective vaccines against parasitic infections has presented considerable challenges, given the complexity of parasite life cycles, the interplay between parasites and their hosts, and their capacity to escape the host immune system and to regulate host immune responses. For many parasitic diseases, conventional vaccine platforms have generally proven ill suited, considering the complex manufacturing processes involved and the costs they incur, the inability to posttranslationally modify cloned target antigens, and the absence of long-lasting protective immunity induced by these antigens. An effective antiparasite vaccine platform is required to assess the effectiveness of novel vaccine candidates at high throughput. By exploiting the approach that has recently been used successfully to produce highly protective COVID mRNA vaccines, we anticipate a new wave of research to advance the use of mRNA vaccines to prevent parasitic infections in the near future. This article considers the characteristics that are required to develop a potent antiparasite vaccine and provides a conceptual foundation to promote the development of parasite mRNA-based vaccines. We review the recent advances and challenges encountered in developing antiparasite vaccines and evaluate the potential of developing mRNA vaccines against parasites, including those causing diseases such as malaria and schistosomiasis, against which vaccines are currently suboptimal or not yet available.
Collapse
Affiliation(s)
- Hong You
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Malcolm K. Jones
- School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - Catherine A. Gordon
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Alexa E. Arganda
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Pengfei Cai
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Harry Al-Wassiti
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Colin W. Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Donald P. McManus
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
4
|
Zhong H, Qin F, Ren Y, Li X, Hou L, Gu S, Jin Y. Functional characterization of differentially expressed proteins coming from unisexual and bisexual infected Schistosoma japonicum female worms. Exp Parasitol 2023; 248:108504. [PMID: 36914063 DOI: 10.1016/j.exppara.2023.108504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023]
Abstract
Schistosomiasis is an important zoonotic disease affecting up to 40 kinds of animals and is responsible for ∼250 million human cases per year. Due to the extensive use of praziquantel for the treatment of parasitic diseases, drug resistance has been reported. Consequently, novel drugs and effective vaccines are urgently needed for sustained control of schistosomiasis. Targeting reproductive development of Schistosoma japonicum could contribute to the control of schistosomiasis. In this study, five highly expressed proteins (S. japonicum large subunit ribosomal protein L7e, S. japonicum glutathione S-transferase class-mu 26 kDa isozyme, S. japonicum UDP-galactose-4-epimerase and two hypothetical proteins SjCAX70849 and SjCAX72486) in 18, 21, 23, and 25-day mature female worms compared to single-sex infected female worms were selected based on our previous proteomic analysis. Quantitative real-time polymerase chain reaction analysis and long-term interference with small interfering RNA were performed to identify the biological functions of these five proteins. The transcriptional profiles suggested that all five proteins participated in the maturation of S. japonicum. RNA interference against these proteins resulted in morphological changes to S. japonicum. The results of an immunoprotection assay revealed that immunization of mice with recombinant SjUL-30 and SjCAX72486 upregulated production of immunoglobulin G-specific antibodies. Collectively, the results demonstrated that these five differentially expressed proteins were vital to reproduction of S. japonicum and, thus, are potential candidate antigens for immune protection against schistosomiasis.
Collapse
Affiliation(s)
- Haoran Zhong
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China; Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Fanglin Qin
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China; Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China; College of Life Sciences, Shanghai Normal University, Shanghai, PR China
| | - Yuqi Ren
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China; Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Xiaochun Li
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China; Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China; College of Life Sciences, Shanghai Normal University, Shanghai, PR China
| | - Ling Hou
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China; Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China; College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Shanxi, PR China
| | - Shaopeng Gu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Shanxi, PR China
| | - Yamei Jin
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China; Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China.
| |
Collapse
|
5
|
Li YL, Dang H, Guo SY, Zhang LJ, Feng Y, Ding SJ, Shan XW, Li GP, Yuan M, Xu J, Li SZ. Molecular evidence on the presence of Schistosoma japonicum infection in snails along the Yangtze River, 2015-2019. Infect Dis Poverty 2022; 11:70. [PMID: 35717331 PMCID: PMC9206329 DOI: 10.1186/s40249-022-00995-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/05/2022] [Indexed: 12/12/2022] Open
Abstract
Background Due to sustained control activities, the prevalence of Schistosoma japonicum infection in humans, livestock and snails has decreased significantly in P. R. China, and the target has shifted from control to elimination according to the Outline of Healthy China 2030 Plan. Applying highly sensitive methods to explore the presence of S. japonicum infection in its intermediate host will benefit to assess the endemicity or verify the transmission interruption of schistosomiasis accurately. The aim of this study was to access the presence of S. japonicum infection by a loop-mediated isothermal amplification (LAMP) method through a 5-year longitudinal study in five lake provinces along the Yangtze River. Methods Based on previous epidemiological data, about 260 villages with potential transmission risk of schistosomiasis were selected from endemic counties in five lake provinces along the Yangtze River annually from 2015 to 2019. Snail surveys were conducted in selected villages by systematic sampling method and/or environmental sampling method each year. All live snails collected from field were detected by microscopic dissection method, and then about one third of them were detected by LAMP method to assess the presence of S. japonicum infection with a single blind manner. The infection rate and nucleic acid positive rate of schistosomes in snails, as well as the indicators reflecting the snails’ distribution were calculated and analyzed. Fisher's exact test was used to examine any change of positive rate of schistosomes in snails over time. Results The 5-year survey covered 94,241 ha of environment with 33,897 ha of snail habitats detected accumulatively. Totally 145.3 ha new snail habitats and 524.4 ha re-emergent snail habitats were found during 2015–2019. The percentage of frames with snails decreased from 5.93% [45,152/761,492, 95% confidence intervals (CI): 5.88–5.98%] in 2015 to 5.25% (30,947/589,583, 95% CI: 5.19–5.31%) in 2019, while the mean density of living snails fluctuated but presented a downward trend generally from 0.20 snails/frame (155,622/761,492, 95% CI: 0.17–0.37) in 2015 to 0.13 snails/frame (76,144/589,583, 95% CI: 0.11–0.39) in 2019. A total of 555,393 live snails were collected, none of them was positive by dissection method. Totally 17 pooling snail samples were determined as positives by LAMP method among 8716 pooling samples with 174,822 of living snails, distributed in 12 villages of Hubei, Hunan, Jiangxi and Anhui provinces. The annual average positive rate was 0.41% (95% CI: 0.13–0.69%) in 2015, 0% in 2016, 0.36% (95% CI: 0.09–0.63%) in 2017, 0.05% (95% CI: 0–0.16%) in 2018, 0.05% (95% CI: 0–0.15%) in 2019, respectively, presenting a downward trend from 2015 to 2019 with statistical significance (χ2 = 11.64, P < 0.05). Conclusions The results suggest that S. japonicum infection still persisted in nature along the Yangtze River and traditional techniques might underestimate the prevalence of schistosomiasis in its intermediate hosts. Exploring and integrating molecular techniques into national surveillance programme could improve the sensitivity of surveillance system and provide guidance on taking actions against schistosomiasis. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s40249-022-00995-9.
Collapse
Affiliation(s)
- Yin-Long Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, People's Republic of China.,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, 200025, People's Republic of China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, People's Republic of China.,National Center for International Research on Tropical Diseases, Shanghai, 200025, People's Republic of China
| | - Hui Dang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, People's Republic of China.,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, 200025, People's Republic of China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, People's Republic of China.,National Center for International Research on Tropical Diseases, Shanghai, 200025, People's Republic of China
| | - Su-Ying Guo
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, People's Republic of China.,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, 200025, People's Republic of China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, People's Republic of China.,National Center for International Research on Tropical Diseases, Shanghai, 200025, People's Republic of China
| | - Li-Juan Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, People's Republic of China.,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, 200025, People's Republic of China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, People's Republic of China.,National Center for International Research on Tropical Diseases, Shanghai, 200025, People's Republic of China
| | - Yun Feng
- Jiangsu Provincial Institute of Schistosomiasis Control, Wuxi, Jiangsu Province, 214064, People's Republic of China
| | - Song-Jun Ding
- Anhui Provincial Institute of Schistosomiasis Control, Hefei, Anhui Province, 230061, People's Republic of China
| | - Xiao-Wei Shan
- Hubei Provincial Institute of Schistosomiasis Control, Hubei Center for Disease Control, Wuhan, Hubei Province, 430079, People's Republic of China
| | - Guang-Ping Li
- Hunan Provincial Institute of Schistosomiasis Control, Hunan Province 414000, Yueyang, People's Republic of China
| | - Min Yuan
- Jiangxi Provincial Institute of Parasitic Disease, Nanchang, Jiangxi Province, 330006, People's Republic of China
| | - Jing Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, People's Republic of China. .,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, 200025, People's Republic of China. .,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, People's Republic of China. .,National Center for International Research on Tropical Diseases, Shanghai, 200025, People's Republic of China.
| | - Shi-Zhu Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, People's Republic of China.,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, 200025, People's Republic of China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, People's Republic of China.,National Center for International Research on Tropical Diseases, Shanghai, 200025, People's Republic of China
| |
Collapse
|
6
|
Jiz M, Mingala C, Fu ZQ, Adriatico M, Lu K, Jarilla B, Sagliba M, Moreno A, Park S, Lin JJ, Olveda R, Kurtis JD, Wu HW. High prevalence of Schistosoma japonicum by perfusion in naturally exposed water buffalo in a region of the Philippines endemic for human schistosomiasis. PLoS Negl Trop Dis 2021; 15:e0009796. [PMID: 34529663 PMCID: PMC8478178 DOI: 10.1371/journal.pntd.0009796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/28/2021] [Accepted: 09/08/2021] [Indexed: 11/21/2022] Open
Abstract
In the past decade, ecological surveys emphasized rats and dogs as the most significant animal reservoirs for Schistosoma japonicum (S.j) in the Philippines. However, recent studies demonstrated 51-91% prevalence of schistosomiasis among water buffalo using qPCR in the Sj endemic regions in the Philippines. In order to resolve the inconsistency of reported surveys regarding Sj endemicity among carabao, a domestic water buffalo that is the most important draught animal, we introduced 42 schistosome negative water buffalo to Macanip, Jaro municipality, Leyte, the Philippines, a subsistence rice-farming village that has been the focus of schistosomiasis japonica studies of our group for the past 20 years. We conducted perfusion to the remaining 34 buffalo that survived 10 months of nature exposure and Typhoon Haiyan. Thirty-three water buffalo were found to be positive with at least 1 pair of worms from the mesenteric vein. The infection rate is 97%, with the worm burden of 94 (95% confidence interval, 49-138 worms) worms. To our knowledge, this is the first report about S. japonicum worm burden in naturally infected water buffalo in the Philippines. The fact that with less than one-year of exposure, in this human schistosomiasis endemic area, only 1 out of 34 water buffalo was uninfected is striking. Urgent attention is needed for a cost-effective technique for monitoring Sj infection in animals and humans. Meanwhile, intervention implementation, including water buffalo treatment and vaccination, should be taken into consideration.
Collapse
Affiliation(s)
- Mario Jiz
- Department of Immunology, Research Institute of Tropical Medicine, Manila, Philippines
| | - Claro Mingala
- Philippine Carabao Center, Science City of Munoz, Nueva Ecija, Philippines
| | - Zhi-Qiang Fu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Melika Adriatico
- Department of Immunology, Research Institute of Tropical Medicine, Manila, Philippines
| | - Ke Lu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Blanca Jarilla
- Department of Immunology, Research Institute of Tropical Medicine, Manila, Philippines
| | - Marianne Sagliba
- Department of Immunology, Research Institute of Tropical Medicine, Manila, Philippines
| | - Ammabelle Moreno
- Department of Immunology, Research Institute of Tropical Medicine, Manila, Philippines
| | - Sangshin Park
- Graduate School of Urban Public Health & Department of Urban Big Data Convergence, University of Seoul, Seoul, Republic of Korea
| | - Jiao-Jiao Lin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Remigio Olveda
- Department of Immunology, Research Institute of Tropical Medicine, Manila, Philippines
| | - Jonathan D. Kurtis
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, United States of America
| | - Hannah W. Wu
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, United States of America
| |
Collapse
|
7
|
McManus DP. The Search for a Schistosomiasis Vaccine: Australia's Contribution. Vaccines (Basel) 2021; 9:vaccines9080872. [PMID: 34451997 PMCID: PMC8402410 DOI: 10.3390/vaccines9080872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 01/10/2023] Open
Abstract
Schistosomiasis, a neglected tropical disease caused by parasitic flatworms of the genus Schistosoma, results in considerable human morbidity in sub-Saharan Africa, in particular, but also parts of the Middle East, South America, and Southeast Asia. The anti-schistosome drug praziquantel is efficacious and safe against the adult parasites of all Schistosoma species infecting humans; however, it does not prevent reinfection and the development of drug resistance is a constant concern. The need to develop an effective vaccine is of great importance if the health of many in the developing world is to be improved. Indeed, vaccination, in combination with other public health measures, can provide an invaluable tool to achieve lasting control, leading to schistosomiasis elimination. Australia has played a leading role in schistosomiasis vaccine research over many years and this review presents an overview of some of the significant contributions made by Australian scientists in this important area.
Collapse
Affiliation(s)
- Donald P McManus
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| |
Collapse
|
8
|
The role of the adaptor molecule STING during Schistosoma mansoni infection. Sci Rep 2020; 10:7901. [PMID: 32404867 PMCID: PMC7220917 DOI: 10.1038/s41598-020-64788-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/22/2020] [Indexed: 01/06/2023] Open
Abstract
Schistosomiasis is a human parasitic disease responsible for serious consequences for public health, as well as severe socioeconomic impacts in developing countries. Here, we provide evidence that the adaptor molecule STING plays an important role in Schistosoma mansoni infection. S. mansoni DNA is sensed by cGAS leading to STING activation in murine embryonic fibroblasts (MEFs). Sting-/- and C57BL/6 (WT) mice were infected with schistosome cercariae in order to assess parasite burden and liver pathology. Sting-/- mice showed worm burden reduction but no change in the number of eggs or granuloma numbers and area when compared to WT animals. Immunologically, a significant increase in IFN-γ production by the spleen cells was observed in Sting-/- animals. Surprisingly, Sting-/- mice presented an elevated percentage of neutrophils in lungs, bronchoalveolar lavage, and spleens. Moreover, Sting-/- neutrophils exhibited increased survival rate, but similar ability to kill schistosomula in vitro when stimulated with IFN-γ when compared to WT cells. Finally, microbiota composition was altered in Sting-/- mice, revealing a more inflammatory profile when compared to WT animals. In conclusion, this study demonstrates that STING signaling pathway is important for S. mansoni DNA sensing and the lack of this adaptor molecule leads to enhanced resistance to infection.
Collapse
|
9
|
Schistosomiasis-from immunopathology to vaccines. Semin Immunopathol 2020; 42:355-371. [PMID: 32076812 PMCID: PMC7223304 DOI: 10.1007/s00281-020-00789-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/05/2020] [Indexed: 12/18/2022]
Abstract
Schistosomiasis (bilharzia) is a neglected tropical disease caused by trematode worms of the genus Schistosoma. The transmission cycle involves human (or other mammalian) water contact with surface water contaminated by faeces or urine, as well as specific freshwater snails acting as intermediate hosts. The main disease-causing species are S. haematobium, S. mansoni and S. japonicum. According to the World Health Organisation, over 250 million people are infected worldwide, leading to considerable morbidity and the estimated loss of 1.9 million disability-adjusted life years (DALYs), a likely underestimated figure. Schistosomiasis is characterised by focal epidemiology and an over-dispersed population distribution, with higher infection rates in children. Complex immune mechanisms lead to the slow acquisition of immune resistance, but innate factors also play a part. Acute schistosomiasis, a feverish syndrome, is most evident in travellers following a primary infection. Chronic schistosomiasis affects mainly individuals with long-standing infections residing in poor rural areas. Immunopathological reactions against schistosome eggs trapped in host tissues lead to inflammatory and obstructive disease in the urinary system (S. haematobium) or intestinal disease, hepatosplenic inflammation and liver fibrosis (S. mansoni and S. japonicum). An effective drug—praziquantel—is available for treatment but, despite intensive efforts, no schistosomiasis vaccines have yet been accepted for public use. In this review, we briefly introduce the schistosome parasites and the immunopathogenic manifestations resulting from schistosomiasis. We then explore aspects of the immunology and host-parasite interplay in schistosome infections paying special attention to the current status of schistosomiasis vaccine development highlighting the advancement of a new controlled human challenge infection model for testing schistosomiasis vaccines.
Collapse
|
10
|
Yeh HY, Zhan X, Qi W. A comparison of ancient parasites as seen from archeological contexts and early medical texts in China. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2019; 25:30-38. [PMID: 30986655 DOI: 10.1016/j.ijpp.2019.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/02/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
This paper integrates our knowledge from traditional Chinese medical texts and archeological findings to discuss parasitic loads in early China. Many studies have documented that several different species of eukaryotic endoparasites were present in early human populations throughout China. Nevertheless, comprehensive paleoparasitological records from China are patchy, largely due to taphonomic and environmental factors. An examination of early Chinese medical texts allows us to fill in some of the gaps and counteract apparent biases in the current archeoparasitological records. By integrating the findings of paleoparasitology with historic textual sources, we show that parasites have been affecting the lives of humans in China since ancient times. We discuss the presence and prevalence of three groups of parasites in ancient China: roundworm (Ascaris lumbricoides), Asian schistosoma (Schistosoma japonicum), and tapeworm (Taenia sp.). We also examine possible factors that favored the spread of these endoparasites among early humans. Therefore, this paper not only aims to reveal how humans have been affected by endoparasites, but also addresses how early medical knowledge developed to cope with the parasitic diseases.
Collapse
Affiliation(s)
- Hui-Yuan Yeh
- School of Humanities, Nanyang Technological University, 48 Nanyang Ave, 639818, Singapore.
| | - Xiaoya Zhan
- School of Humanities, Nanyang Technological University, 48 Nanyang Ave, 639818, Singapore
| | - Wuyun Qi
- Institute of Archaeology, Chinese Academy of Social Sciences, Beijing, 100732, China
| |
Collapse
|
11
|
You H, Cai P, Tebeje BM, Li Y, McManus DP. Schistosome Vaccines for Domestic Animals. Trop Med Infect Dis 2018; 3:tropicalmed3020068. [PMID: 30274464 PMCID: PMC6073927 DOI: 10.3390/tropicalmed3020068] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/05/2018] [Accepted: 06/14/2018] [Indexed: 01/10/2023] Open
Abstract
Schistosomiasis is recognized as a tropical disease of considerable public health importance, but domestic livestock infections due to Schistosoma japonicum, S. bovis, S. mattheei and S. curassoni are often overlooked causes of significant animal morbidity and mortality in Asia and Africa. In addition, whereas schistosomiasis japonica is recognized as an important zoonosis in China and the Philippines, reports of viable schistosome hybrids between animal livestock species and S. haematobium point to an underappreciated zoonotic component of transmission in Africa as well. Anti-schistosome vaccines for animal use have long been advocated as part of the solution to schistosomiasis control, benefitting humans and animals and improving the local economy, features aligning with the One Health concept synergizing human and animal health. We review the history of animal vaccines for schistosomiasis from the early days of irradiated larvae and then consider the recombinant DNA technology revolution and its impact in developing schistosome vaccines that followed. We evaluate the major candidates tested in livestock, including the glutathione S-transferases, paramyosin and triose-phosphate isomerase, and summarize some of the future challenges that need to be overcome to design and deliver effective anti-schistosome vaccines that will complement current control options to achieve and sustain future elimination goals.
Collapse
Affiliation(s)
- Hong You
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia.
| | - Pengfei Cai
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia.
| | - Biniam Mathewos Tebeje
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia.
| | - Yuesheng Li
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia.
| | - Donald P McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia.
| |
Collapse
|
12
|
Maezawa K, Furushima-Shimogawara R, Yasukawa A, Ohta N, Iwanaga S. Real-time observation of pathophysiological processes during murine experimental Schistosoma japonicum infection using high-resolution ultrasound imaging. Trop Med Health 2018; 46:1. [PMID: 29317853 PMCID: PMC5755264 DOI: 10.1186/s41182-017-0082-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/19/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hepatosplenic lesion formation is one of the typical clinical symptoms of schistosomiasis japonica. Although it is established that circum-oval granuloma formation mediated by T lymphocytes is the key event triggering the formation of hepatic lesions, the time-course kinetics of disease progression remains to be fully elucidated. METHODS The real-time process of the pathophysiology of schistosomiasis japonica from the early to late clinical phase was non-invasively observed in a murine experimental infection model using high-resolution ultrasonography. Together with clinical parameters, including body weight and the levels of serum markers of hepatic damage or fibrosis, ultrasonography was used to assess changes in the liver parenchyma and diameter of the portal vein and portal blood flow velocity. In parallel, parasitological parameters were observed, including egg number in the feces and maturation of parasites. RESULTS Abnormal high-echo spot patterns in the liver parenchyma, reflecting hepatic fibrosis in ultrasonography, appeared in the liver at 4 weeks post-infection and the pattern became more enlarged and severe over time. This finding was concordant with parasite maturation and initial egg excretion. The serum M2BPGi level markedly increased from 8 weeks post-infection, suggesting sharp deterioration of hepatic fibrosis. At the same time, the diameter of the portal vein, reflecting portal hypertension, became enlarged and reached the peak level at 8 weeks post-infection. Ascites were apparent around the spleen at 9 weeks post-infection, and dilatation of the splenic vein was noted at 10 weeks post-infection. Live adult worms seemed to be detected in the portal vein at 4 weeks post-infection by ultrasonography. CONCLUSIONS We obtained real-time imaging of the development of hepatosplenic lesions of schistosomiasis japonica in mice. The time-course kinetics of the onset, development, and modulation of each symptom was uncovered. These results are expected to provide new clues for understanding the pathophysiology of human schistosomiasis japonica.
Collapse
Affiliation(s)
- Katsumi Maezawa
- Department of Environmental Parasitology, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113–8519 Japan
| | - Rieko Furushima-Shimogawara
- Department of Environmental Parasitology, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113–8519 Japan
| | - Akio Yasukawa
- Nishiogi Veterinary Medical Hospital, 4-9-2 Nishiogikita, Suginami-ku, Tokyo, 167–0042 Japan
| | - Nobuo Ohta
- Department of Environmental Parasitology, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113–8519 Japan
- Depertment of Clinical Nutrition, Faculty of Health Science, Suzuka University of Medical Science, 1001-1, Kishioka-cyo, Suzuka-shi, Mie 510-0293 Japan
| | - Shiro Iwanaga
- Department of Environmental Parasitology, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113–8519 Japan
| |
Collapse
|
13
|
Tang CL, Yang J, Cheng LY, Cheng LF, Liu ZM. Anti-CD25 monoclonal antibody enhances the protective efficacy of Schistosoma japonicum GST vaccine via inhibition of CD4+CD25+Foxp3+ regulatory T cells. Parasitol Res 2017; 116:2727-2732. [DOI: 10.1007/s00436-017-5581-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/02/2017] [Indexed: 01/23/2023]
|
14
|
Wu HW, Fu ZQ, Lu K, Pond-Tor S, Meng R, Hong Y, Chu K, Li H, Jiz M, Liu JM, Hou M, Park S, Lin JJ, Kurtis JD. Vaccination with recombinant paramyosin in Montanide ISA206 protects against Schistosoma japonicum infection in water buffalo. Vaccine 2017; 35:3409-3415. [PMID: 28504194 PMCID: PMC5508600 DOI: 10.1016/j.vaccine.2017.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/11/2017] [Accepted: 05/03/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Schistosomiasis japonica is a zoonosis and presents significant public health problems in China and the Philippines. Vaccines targeting domestic animals constitute attractive control measures. METHODS We conducted three vaccine trials to evaluate the protective efficacy of recombinant full-length paramyosin (rSj97) in water buffalo. Animals were immunized with 3 doses of rSj97 adjuvanted with ISA206 at 250μg/dose or 500μg/dose at 4wk intervals before challenge with 1000 Schistosoma japonicum cercariae. The primary outcome was worm burden assessed by portal perfusion 8-10weeks post challenge. Safety measures included weight, temperature, body condition score, hemogram and routine assays for hepatic and renal function. RESULTS The three-dose regimen was well tolerated in all three trials. In the first trial, vaccinated buffalo had 51.5% lower worm burden post challenge compared to controls. In the second trial, buffalo immunized with 500μg/dose of rSj97 had 57.8% lower worm burden compared to controls (p=0.026). A similar but not significant reduction (60.9%) was observed with animals administered with 250ug rSj97/dose. In the third trial, buffalo immunized with a 500μg/dose of rSj97 had 57.8% lower worm burden compared to controls (p=0.014). CONCLUSIONS These findings indicated that rSj97 is a safe and promising vaccine candidate for schistosomiasis japonica in water buffalo.
Collapse
Affiliation(s)
- Hannah Wei Wu
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, RI 02903, USA.
| | - Zhi-Qiang Fu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Minhang, Shanghai 200241, China
| | - Ke Lu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Minhang, Shanghai 200241, China
| | - Sunthorn Pond-Tor
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, RI 02903, USA
| | - Rui Meng
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, China
| | - Yang Hong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Minhang, Shanghai 200241, China
| | - Kai Chu
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, China
| | - Hao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Minhang, Shanghai 200241, China
| | - Mario Jiz
- Department of Immunology, Research Institute of Tropical Medicine, Manila, Philippines
| | - Jin-Ming Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Minhang, Shanghai 200241, China
| | - Ming Hou
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, China
| | - Sangshin Park
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, RI 02903, USA
| | - Jiao-Jiao Lin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Minhang, Shanghai 200241, China
| | - Jonathan D Kurtis
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, RI 02903, USA.
| |
Collapse
|
15
|
Sun LP, Wang W, Zuo YP, Hong QB, Du GL, Ma YC, Wang J, Yang GJ, Zhu DJ, Liang YS. A multidisciplinary, integrated approach for the elimination of schistosomiasis: a longitudinal study in a historically hyper-endemic region in the lower reaches of the Yangtze River, China from 2005 to 2014. Infect Dis Poverty 2017; 6:56. [PMID: 28288689 PMCID: PMC5348877 DOI: 10.1186/s40249-017-0270-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/27/2017] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Although great success has been achieved, schistosomiasis remains a major public health concern in China, and the remaining core endemic regions are concentrated along the middle and lower reaches of the Yangtze River. In this longitudinal study, we evaluated the effectiveness of a multidisciplinary, integrated approach for schistosomiasis elimination in a historically hyper-endemic region in the lower reaches of the Yangtze River, China over the 10-year period from 2005 through 2014. METHODS A three-step roadmap for schistosomiasis elimination was designed in the study site, and multidisciplinary, integrated interventions were implemented by the health, agriculture, water resources development, land and resources, and forestry sectors from 2005 to 2014, including chemotherapy for infected individuals, health education, management of the source of Schistosoma japonicum infection, and intermediate host snail control. The annual number of schistosomiasis patients, S. japonicum infection in humans, bovines and Oncomelania hupensis snails, and water infectivity were observed to assess the effectiveness of the multidisciplinary, integrated approach for the elimination of schistosomiasis. RESULTS There was a tendency towards a gradual decline in both the number of schistosomiasis cases and the prevalence of S. japonicum human infection across the study period from 2005 through 2014. No S. japonicum human infection was detected since 2012, and no acute infection was seen since 2006. During the study period, no infection was found in bovines, and a 0.03% overall infection rate was observed in O. hupensis snails. Since 2009, no infected snails were identified, and the area of both snail habitats and infected snail habitats appeared a reduction over the study period. Following the 3-year multidisciplinary, integrated control, infection control was achieved, and transmission control was achieved after 6-year implementation, with all infected snails and water infectivity eliminated; in addition, the 10-year implementation resulted in interruption of schistosomiasis transmission in the study site in 2014. CONCLUSIONS The results of the present 10-year longitudinal study demonstrate that the multidisciplinary, integrated approach is effective for the elimination of schistosomiasis as a public health problem in the lower reaches of the Yangtze River, China.
Collapse
Affiliation(s)
- Le-Ping Sun
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province 214064 China
- Jiangsu Provincial Key Laboratory on Parasites and Vector Control Technology, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province 214064 China
- Jiangsu Institute of Parasitic Diseases, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province 214064 China
| | - Wei Wang
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province 214064 China
- Jiangsu Provincial Key Laboratory on Parasites and Vector Control Technology, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province 214064 China
- Jiangsu Institute of Parasitic Diseases, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province 214064 China
| | - Yin-Ping Zuo
- Yangzhou Municipal Center for Disease Control and Prevention, No. 36 Yanfu East Road, Yangzhou City, Jiangsu Province 225000 China
| | - Qing-Biao Hong
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province 214064 China
- Jiangsu Provincial Key Laboratory on Parasites and Vector Control Technology, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province 214064 China
- Jiangsu Institute of Parasitic Diseases, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province 214064 China
| | - Guang-Lin Du
- Yangzhou Municipal Center for Disease Control and Prevention, No. 36 Yanfu East Road, Yangzhou City, Jiangsu Province 225000 China
| | - Yu-Cai Ma
- Hanjiang District Center for Disease Control and Prevention, Wenhui West Road, Yangzhou City, Jiangsu Province 225000 China
| | - Jian Wang
- Yangzhou Municipal Center for Disease Control and Prevention, No. 36 Yanfu East Road, Yangzhou City, Jiangsu Province 225000 China
| | - Guo-Jing Yang
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province 214064 China
- Jiangsu Provincial Key Laboratory on Parasites and Vector Control Technology, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province 214064 China
- Jiangsu Institute of Parasitic Diseases, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province 214064 China
| | - Dao-Jian Zhu
- Yangzhou Municipal Center for Disease Control and Prevention, No. 36 Yanfu East Road, Yangzhou City, Jiangsu Province 225000 China
| | - You-Sheng Liang
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province 214064 China
- Jiangsu Provincial Key Laboratory on Parasites and Vector Control Technology, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province 214064 China
- Jiangsu Institute of Parasitic Diseases, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province 214064 China
| |
Collapse
|
16
|
Tebeje BM, Harvie M, You H, Loukas A, McManus DP. Schistosomiasis vaccines: where do we stand? Parasit Vectors 2016; 9:528. [PMID: 27716365 PMCID: PMC5045607 DOI: 10.1186/s13071-016-1799-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/14/2016] [Indexed: 12/20/2022] Open
Abstract
Schistosomiasis, caused mainly by S. mansoni, S. haematobium and S. japonicum, continues to be a serious tropical disease and public health problem resulting in an unacceptably high level of morbidity in countries where it is endemic. Praziquantel, the only drug currently available for treatment, is unable to kill developing schistosomes, it does not prevent re-infection and its continued extensive use may result in the future emergence of drug-resistant parasites. This scenario provides impetus for the development and deployment of anti-schistosome vaccines to be used as part of an integrated approach for the prevention, control and eventual elimination of schistosomiasis. This review considers the present status of candidate vaccines for schistosomiasis, and provides some insight on future vaccine discovery and design.
Collapse
Affiliation(s)
- Biniam Mathewos Tebeje
- QIMR Berghofer Medical Research Institute, Brisbane, Australia. .,School of Public Health, University of Queensland, Brisbane, Australia. .,Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
| | - Marina Harvie
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Hong You
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | | |
Collapse
|
17
|
Hotez PJ, Strych U, Lustigman S, Bottazzi ME. Human anthelminthic vaccines: Rationale and challenges. Vaccine 2016; 34:3549-55. [DOI: 10.1016/j.vaccine.2016.03.112] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/23/2016] [Accepted: 03/31/2016] [Indexed: 12/29/2022]
|
18
|
Molehin AJ, Rojo JU, Siddiqui SZ, Gray SA, Carter D, Siddiqui AA. Development of a schistosomiasis vaccine. Expert Rev Vaccines 2016; 15:619-27. [PMID: 26651503 PMCID: PMC5070536 DOI: 10.1586/14760584.2016.1131127] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Schistosomiasis is a neglected tropical disease (NTD) of public health importance. Despite decades of implementation of mass praziquantel therapy programs and other control measures, schistosomiasis has not been contained and continues to spread to new geographic areas. A schistosomiasis vaccine could play an important role as part of a multifaceted control approach. With regards to vaccine development, many biological bottlenecks still exist: the lack of reliable surrogates of protection in humans; immune interactions in co-infections with other diseases in endemic areas; the potential risk of IgE responses to antigens in endemic populations; and paucity of appropriate vaccine efficacy studies in nonhuman primate models. Research is also needed on the role of modern adjuvants targeting specific parts of the innate immune system to tailor a potent and protective immune response for lead schistosome vaccine candidates with the long-term aim to achieve curative worm reduction. This review summarizes the current status of schistosomiasis vaccine development.
Collapse
Affiliation(s)
- Adebayo J. Molehin
- Department of Internal Medicine, Texas Tech University School of Medicine, Lubbock, Texas, USA
- Center of Tropical Medicine and Infectious Diseases, Texas Tech University School of Medicine, Lubbock, Texas, USA
| | - Juan U. Rojo
- Department of Internal Medicine, Texas Tech University School of Medicine, Lubbock, Texas, USA
- Center of Tropical Medicine and Infectious Diseases, Texas Tech University School of Medicine, Lubbock, Texas, USA
| | - Sabrina Z. Siddiqui
- Department of Internal Medicine, Texas Tech University School of Medicine, Lubbock, Texas, USA
- Center of Tropical Medicine and Infectious Diseases, Texas Tech University School of Medicine, Lubbock, Texas, USA
| | | | - Darrick Carter
- PAI Life Sciences, Washington, USA
- Infectious Disease Research Institute, Seattle, Washington, USA
| | - Afzal A. Siddiqui
- Department of Internal Medicine, Texas Tech University School of Medicine, Lubbock, Texas, USA
- Center of Tropical Medicine and Infectious Diseases, Texas Tech University School of Medicine, Lubbock, Texas, USA
| |
Collapse
|
19
|
The omic approach to parasitic trematode research—a review of techniques and developments within the past 5 years. Parasitol Res 2016; 115:2523-43. [DOI: 10.1007/s00436-016-5079-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 12/26/2022]
|
20
|
Hotez PJ, Pecoul B, Rijal S, Boehme C, Aksoy S, Malecela M, Tapia-Conyer R, Reeder JC. Eliminating the Neglected Tropical Diseases: Translational Science and New Technologies. PLoS Negl Trop Dis 2016; 10:e0003895. [PMID: 26934395 PMCID: PMC4774924 DOI: 10.1371/journal.pntd.0003895] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Today, the World Health Organization recognizes 17 major parasitic and related infections as the neglected tropical diseases (NTDs). Despite recent gains in the understanding of the nature and prevalence of NTDs, as well as successes in recent scaled-up preventive chemotherapy strategies and other health interventions, the NTDs continue to rank among the world’s greatest global health problems. For virtually all of the NTDs (including those slated for elimination under the auspices of a 2012 London Declaration for NTDs and a 2013 World Health Assembly resolution [WHA 66.12]), additional control mechanisms and tools are needed, including new NTD drugs, vaccines, diagnostics, and vector control agents and strategies. Elimination will not be possible without these new tools. Here we summarize some of the key challenges in translational science to develop and introduce these new technologies in order to ensure success in global NTD elimination efforts.
Collapse
Affiliation(s)
- Peter J Hotez
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Bernard Pecoul
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, Switzerland
| | - Suman Rijal
- Drugs for Neglected Diseases Initiative (DNDi), Delhi, India
| | - Catharina Boehme
- Foundation for Innovative new Diagnostics (FIND), Geneva, Switzerland
| | - Serap Aksoy
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | | | | | - John C Reeder
- UNICEF/UNDP/ World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR), Geneva, Switzerland
| |
Collapse
|
21
|
Chen SB, Ai L, Hu W, Xu J, Bergquist R, Qin ZQ, Chen JH. New Anti-Schistosoma Approaches in The People's Republic of China: Development of Diagnostics, Vaccines and Other New Techniques Belonging to the 'Omics' Group. ADVANCES IN PARASITOLOGY 2016; 92:385-408. [PMID: 27137453 DOI: 10.1016/bs.apar.2016.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A new national schistosomiasis elimination programme will be implemented for the period 2016-20. To support this approach, we have performed a systematic review to assess anti-schistosome approaches in The People's Republic of China and defined research priorities for the coming years. A systematic search was conducted for articles published from January 2000 to March 2015 in international journals. Totally 410 references were published in English between 2000 and 2015 related to schistosomiasis after unrelated references and reviews or comments were further excluded. A set of research priorities has been identified for the near future that would improve the progress toward schistosomiasis elimination in The People's Republic of China. In particular, there is a lack of sensitive and specific tests for the detection of schistosomiasis cases with low parasite burdens, as well as an effective vaccine against schistosomiasis, and there is a need for surveillance tools that can evaluate the epidemic status for guiding the elimination strategy. Hence, we think that schistosomiasis control and elimination will be improved in The People's Republic of China through development of new tools.
Collapse
Affiliation(s)
- S-B Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, The People's Republic of China; Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai, The People's Republic of China; WHO Collaborating Center for Tropical Diseases, Shanghai, The People's Republic of China
| | - L Ai
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, The People's Republic of China; Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai, The People's Republic of China; WHO Collaborating Center for Tropical Diseases, Shanghai, The People's Republic of China
| | - W Hu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, The People's Republic of China; Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai, The People's Republic of China; WHO Collaborating Center for Tropical Diseases, Shanghai, The People's Republic of China; Fudan University, Shanghai, The People's Republic of China
| | - J Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, The People's Republic of China; Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai, The People's Republic of China; WHO Collaborating Center for Tropical Diseases, Shanghai, The People's Republic of China
| | - R Bergquist
- Geospatial Health, University of Naples Federico II, Naples, Italy
| | - Z-Q Qin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, The People's Republic of China; Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai, The People's Republic of China; WHO Collaborating Center for Tropical Diseases, Shanghai, The People's Republic of China
| | - J-H Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, The People's Republic of China; Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai, The People's Republic of China; WHO Collaborating Center for Tropical Diseases, Shanghai, The People's Republic of China
| |
Collapse
|
22
|
Hosking CG, McWilliam HEG, Driguez P, Piedrafita D, Li Y, McManus DP, Ilag LL, Meeusen ENT, de Veer MJ. Generation of a Novel Bacteriophage Library Displaying scFv Antibody Fragments from the Natural Buffalo Host to Identify Antigens from Adult Schistosoma japonicum for Diagnostic Development. PLoS Negl Trop Dis 2015; 9:e0004280. [PMID: 26684756 PMCID: PMC4686158 DOI: 10.1371/journal.pntd.0004280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/13/2015] [Indexed: 12/27/2022] Open
Abstract
The development of effective diagnostic tools will be essential in the continuing fight to reduce schistosome infection; however, the diagnostic tests available to date are generally laborious and difficult to implement in current parasite control strategies. We generated a series of single-chain antibody Fv domain (scFv) phage display libraries from the portal lymph node of field exposed water buffaloes, Bubalus bubalis, 11–12 days post challenge with Schistosoma japonicum cercariae. The selected scFv-phages showed clear enrichment towards adult schistosomes and excretory-secretory (ES) proteins by immunofluorescence, ELISA and western blot analysis. The enriched libraries were used to probe a schistosome specific protein microarray resulting in the recognition of a number of proteins, five of which were specific to schistosomes, with RNA expression predominantly in the adult life-stage based on interrogation of schistosome expressed sequence tags (EST). As the libraries were enriched by panning against ES products, these antigens may be excreted or secreted into the host vasculature and hence may make good targets for a diagnostic assay. Further selection of the scFv library against infected mouse sera identified five soluble scFv clones that could selectively recognise soluble whole adult preparations (SWAP) relative to an irrelevant protein control (ovalbumin). Furthermore, two of the identified scFv clones also selectively recognised SWAP proteins when spiked into naïve mouse sera. These host B-cell derived scFvs that specifically bind to schistosome protein preparations will be valuable reagents for further development of a cost effective point-of-care diagnostic test. Mass drug administration using the highly effective drug praziquantel (PZQ) is currently the method of choice to combat schistosomiasis. However, this treatment regime has limitations; in particular, it does not prevent re-infection and sporadic parasite resistance against PZQ is a continuing threat. The path to the successful control of schistosomiasis is highly challenging and must consider, not only the complex nature of the host-parasite interaction, but also the capacity to assess disease burden and parasite re-emergence in communities where successful control has been achieved. Furthermore, control programs must be economically sustainable in endemic countries and despite significant recent advancements the elimination of schistosomiasis may still be some time away. Accordingly, there is a definitive need to formulate innovative approaches for the development of improved diagnostic tools to accurately assess the disease burden associated with active schistosome infections. Here we describe the usefulness of a phage display library to mature antibody fragments derived from lymph node RNA of the natural buffalo host of the Asian schistosome, Schistosoma japonicum, following an experimental infection. These mature antibody fragments were able to bind native parasite proteins and could thus be used to develop a low cost and accurate point-of-care diagnostic test.
Collapse
Affiliation(s)
| | - Hamish E. G. McWilliam
- Department of Microbiology and Immunology, The University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Patrick Driguez
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - David Piedrafita
- School of Applied Sciences and Engineering, Federation University, Churchill, Victoria, Australia
| | - Yuesheng Li
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Donald P. McManus
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Leodevico L. Ilag
- Bio21 Molecular Sciences and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Els N. T. Meeusen
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Michael J. de Veer
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|