1
|
Scanlan JL, Robin C, Mirth CK. Rethinking the ecdysteroid source during Drosophila pupal-adult development. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 152:103891. [PMID: 36481381 DOI: 10.1016/j.ibmb.2022.103891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Ecdysteroids, typified by 20-hydroxyecdysone (20E), are essential hormones for the development, reproduction and physiology of insects and other arthropods. For over half a century, the vinegar fly Drosophila melanogaster (Ephydroidea: Diptera) has been used as a model of ecdysteroid biology. Many aspects of the biosynthesis and regulation of ecdysteroids in this species are understood at the molecular level, particularly with respect to their secretion from the prothoracic gland (PG) cells of the ring gland, widely considered the dominant biosynthetic tissue during development. Discrete pulses of 20E orchestrate transitions during the D. melanogaster life cycle, the sources of which are generally well understood, apart from the large 20E pulse at the onset of pharate adult development, which has received little recent attention. As the source of this pharate adult pulse (PAP) is a curious blind spot in Drosophila endocrinology, we evaluate published biochemical and genetic data as they pertain to three hypotheses for the source of PAP 20E: the PG; an alternative biosynthetic tissue; or the recycling of stored 20E. Based on multiple lines of evidence, we contend the PAP cannot be derived from biosynthesis, with other data consistent with D. melanogaster able to recycle ecdysteroids before and during metamorphosis. Published data also suggest the PAP is conserved across Diptera, with evidence for pupal-adult ecdysteroid recycling occurring in other cyclorrhaphan flies. Further experimental work is required to test the ecdysteroid recycling hypothesis, which would establish fundamental knowledge of the function, regulation, and evolution of metamorphic hormones in dipterans and other insects.
Collapse
Affiliation(s)
- Jack L Scanlan
- School of BioSciences, The University of Melbourne, Parkville Campus, Melbourne, Victoria, 3010, Australia.
| | - Charles Robin
- School of BioSciences, The University of Melbourne, Parkville Campus, Melbourne, Victoria, 3010, Australia
| | - Christen K Mirth
- School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| |
Collapse
|
2
|
Vigneron A, Jehan C, Rigaud T, Moret Y. Immune Defenses of a Beneficial Pest: The Mealworm Beetle, Tenebrio molitor. Front Physiol 2019; 10:138. [PMID: 30914960 PMCID: PMC6422893 DOI: 10.3389/fphys.2019.00138] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/07/2019] [Indexed: 12/04/2022] Open
Abstract
The mealworm beetle, Tenebrio molitor, is currently considered as a pest when infesting stored grains or grain products. However, mealworms are now being promoted as a beneficial insect because their high nutrient content makes them a viable food source and because they are capable of degrading polystyrene and plastic waste. These attributes make T. molitor attractive for mass rearing, which may promote disease transmission within the insect colonies. Disease resistance is of paramount importance for both the control and the culture of mealworms, and several biotic and abiotic environmental factors affect the success of their anti-parasitic defenses, both positively and negatively. After providing a detailed description of T. molitor's anti-parasitic defenses, we review the main biotic and abiotic environmental factors that alter their presentation, and we discuss their implications for the purpose of controlling the development and health of this insect.
Collapse
Affiliation(s)
- Aurélien Vigneron
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States
| | - Charly Jehan
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Thierry Rigaud
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Yannick Moret
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| |
Collapse
|
3
|
Cable J, Barber I, Boag B, Ellison AR, Morgan ER, Murray K, Pascoe EL, Sait SM, Wilson AJ, Booth M. Global change, parasite transmission and disease control: lessons from ecology. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160088. [PMID: 28289256 PMCID: PMC5352815 DOI: 10.1098/rstb.2016.0088] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2016] [Indexed: 02/06/2023] Open
Abstract
Parasitic infections are ubiquitous in wildlife, livestock and human populations, and healthy ecosystems are often parasite rich. Yet, their negative impacts can be extreme. Understanding how both anticipated and cryptic changes in a system might affect parasite transmission at an individual, local and global level is critical for sustainable control in humans and livestock. Here we highlight and synthesize evidence regarding potential effects of 'system changes' (both climatic and anthropogenic) on parasite transmission from wild host-parasite systems. Such information could inform more efficient and sustainable parasite control programmes in domestic animals or humans. Many examples from diverse terrestrial and aquatic natural systems show how abiotic and biotic factors affected by system changes can interact additively, multiplicatively or antagonistically to influence parasite transmission, including through altered habitat structure, biodiversity, host demographics and evolution. Despite this, few studies of managed systems explicitly consider these higher-order interactions, or the subsequent effects of parasite evolution, which can conceal or exaggerate measured impacts of control actions. We call for a more integrated approach to investigating transmission dynamics, which recognizes these complexities and makes use of new technologies for data capture and monitoring, and to support robust predictions of altered parasite dynamics in a rapidly changing world.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'.
Collapse
Affiliation(s)
- Joanne Cable
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Iain Barber
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester LE1 7RH, UK
| | - Brian Boag
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Amy R Ellison
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Eric R Morgan
- School of Veterinary Sciences, University of Bristol, Bristol BS40 5DU, UK
| | - Kris Murray
- Grantham Institute - Climate Change and the Environment, Faculty of Natural Sciences, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Emily L Pascoe
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
- Department of Biodiversity and Molecular Ecology, Centre for Research and Innovation, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trentino, Italy
| | - Steven M Sait
- School of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Anthony J Wilson
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK
| | - Mark Booth
- School of Medicine, Pharmacy and Health, Durham University, Durham TS17 6BH, UK
| |
Collapse
|
4
|
Summer time predation on the obligatory off-host stage of an invasive ectoparasite. Parasitology 2016; 143:1960-1973. [DOI: 10.1017/s0031182016001748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYPredation can regulate populations and strongly affect invasion success of novel prey. The deer ked (Lipoptena cervi; Linnaeus 1758) is an invasive ectoparasite of cervids that spends a long period of its life cycle outside the host. Prior to this study, virtually nothing was known about natural summer time predation on the deer ked. We aimed to evaluate the magnitude of summer time predation onL. cervipupae in different habitats and to identify potential predators. We conducted a set of field experiments, where we exposedL. cervipupae to various ground-dwelling vertebrate and invertebrate predators. The loss of pupae was monitored for different predator guilds. Three habitats of the moose, the main host species, were studied: (1) moist heath forest; (2) dry, logged heath forest; and (3) moist meadow. The results indicate notable summer time predation onL. cervipupae, and the pupal predation varied within and between habitats, being lowest in the meadow habitat. We found a positive correlation between pupal loss and abundance of the common lizard (Zootoca vivipara), harvestmen (Opiliones), ground spiders (Gnaphosidae) and Formicinae-ants. We conclude that summer time predation during the pupal phase can have a notable local importance for theL. cerviabundance.
Collapse
|
5
|
Barber I, Berkhout BW, Ismail Z. Thermal Change and the Dynamics of Multi-Host Parasite Life Cycles in Aquatic Ecosystems. Integr Comp Biol 2016; 56:561-72. [PMID: 27252219 PMCID: PMC5035383 DOI: 10.1093/icb/icw025] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Altered thermal regimes associated with climate change are impacting significantly on the physical, chemical, and biological characteristics of the Earth's natural ecosystems, with important implications for the biology of aquatic organisms. As well as impacting the biology of individual species, changing thermal regimes have the capacity to mediate ecological interactions between species, and the potential for climate change to impact host-parasite interactions in aquatic ecosystems is now well recognized. Predicting what will happen to the prevalence and intensity of infection of parasites with multiple hosts in their life cycles is especially challenging because the addition of each additional host dramatically increases the potential permutations of response. In this short review, we provide an overview of the diverse routes by which altered thermal regimes can impact the dynamics of multi-host parasite life cycles in aquatic ecosystems. In addition, we examine how experimentally amenable host-parasite systems are being used to determine the consequences of changing environmental temperatures for these different types of mechanism. Our overarching aim is to examine the potential of changing thermal regimes to alter not only the biology of hosts and parasites, but also the biology of interactions between hosts and parasites. We also hope to illustrate the complexity that is likely to be involved in making predictions about the dynamics of infection by multi-host parasites in thermally challenged aquatic ecosystems.
Collapse
Affiliation(s)
- Iain Barber
- Department of Neuroscience, Psychology & Behaviour, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, LE1 7RH, UK
| | - Boris W Berkhout
- Department of Neuroscience, Psychology & Behaviour, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, LE1 7RH, UK
| | - Zalina Ismail
- Department of Neuroscience, Psychology & Behaviour, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, LE1 7RH, UK
| |
Collapse
|
6
|
Hillyer JF. Insect immunology and hematopoiesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:102-18. [PMID: 26695127 PMCID: PMC4775421 DOI: 10.1016/j.dci.2015.12.006] [Citation(s) in RCA: 314] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 05/08/2023]
Abstract
Insects combat infection by mounting powerful immune responses that are mediated by hemocytes, the fat body, the midgut, the salivary glands and other tissues. Foreign organisms that have entered the body of an insect are recognized by the immune system when pathogen-associated molecular patterns bind host-derived pattern recognition receptors. This, in turn, activates immune signaling pathways that amplify the immune response, induce the production of factors with antimicrobial activity, and activate effector pathways. Among the immune signaling pathways are the Toll, Imd, Jak/Stat, JNK, and insulin pathways. Activation of these and other pathways leads to pathogen killing via phagocytosis, melanization, cellular encapsulation, nodulation, lysis, RNAi-mediated virus destruction, autophagy and apoptosis. This review details these and other aspects of immunity in insects, and discusses how the immune and circulatory systems have co-adapted to combat infection, how hemocyte replication and differentiation takes place (hematopoiesis), how an infection prepares an insect for a subsequent infection (immune priming), how environmental factors such as temperature and the age of the insect impact the immune response, and how social immunity protects entire groups. Finally, this review highlights some underexplored areas in the field of insect immunobiology.
Collapse
Affiliation(s)
- Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, VU Station B 35-1634, Nashville, TN 37235, USA.
| |
Collapse
|
7
|
Mysterud A, Madslien K, Herland A, Viljugrein H, Ytrehus B. Phenology of deer ked (Lipoptena cervi) host-seeking flight activity and its relationship with prevailing autumn weather. Parasit Vectors 2016; 9:95. [PMID: 26897626 PMCID: PMC4761182 DOI: 10.1186/s13071-016-1387-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/17/2016] [Indexed: 01/13/2023] Open
Abstract
Background The deer ked (Lipoptena cervi) is an ectoparasite on cervids that has invaded large parts of Norway, Sweden and Finland during recent decades. During their host-seeking flight activity, the adult deer keds constitute a considerable nuisance to people and limit human outdoor recreation. The bites of the deer ked can cause long-lasting dermatitis in humans. Determining the pattern of flight activity during autumn is hence important. Methods Data on flight phenology was gathered by walking along transects in the forest in two counties of Norway during 2009–2013, counting the number of host-seeking keds. We analysed how the flight activity of deer keds varied depending on date and prevailing weather during autumn. Results The best model of flight activity included both date and temperature, both as nonlinear terms. Host-seeking deer keds were observed from early August to mid-November with a marked peak in late September. Number of host-seeking keds declined with temperatures falling below the mean, but did not increase much at above mean temperatures. The pattern of flight phenology was similar across the two counties and five years. Conclusions Parasitic arthropods may be strongly affected by prevailing weather during off-host periods. Our study shows an estimated positive effect of temperature on deer ked flight activity mainly for below mean temperatures in late autumn, while the effect of temperature on flight activity in early autumn was weak. The pattern of host-seeking flight activity during late, rather than early autumn, is hence more likely to change with ongoing climate change, with a predicted increase in duration of the host-seeking period.
Collapse
Affiliation(s)
- Atle Mysterud
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, P.O. Box 1066 Blindern, Oslo, NO-0316, Norway.
| | - Knut Madslien
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, Oslo, NO-0106, Norway.
| | - Anders Herland
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, P.O. Box 1066 Blindern, Oslo, NO-0316, Norway.
| | - Hildegunn Viljugrein
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, P.O. Box 1066 Blindern, Oslo, NO-0316, Norway. .,Norwegian Veterinary Institute, P.O. Box 750 Sentrum, Oslo, NO-0106, Norway.
| | - Bjørnar Ytrehus
- Norwegian Institute for Nature Research (NINA), PO Box 5685 Sluppen, Trondheim, NO-7485, Norway.
| |
Collapse
|