1
|
Differential Analysis of Key Proteins Related to Fibrosis and Inflammation in Soluble Egg Antigen of Schistosoma mansoni at Different Infection Times. Pathogens 2023; 12:pathogens12030441. [PMID: 36986363 PMCID: PMC10054402 DOI: 10.3390/pathogens12030441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Schistosomiasis is a major global health problem. Schistosomes secrete antigens into the host tissue that bind to chemokines or inhibit immune cell receptors, regulating the immune responses to allow schistosome development. However, the detailed mechanism of chronic schistosome infection-induced liver fibrosis, including the relationship between secreted soluble egg antigen (SEA) and hepatic stellate cell (HSC) activation, is still unknown. We used mass spectrometry to identify the SEA protein sequences from different infection weeks. In the 10th and 12th infection weeks, we focused on the SEA components and screened out the special protein components, particularly fibrosis- and inflammation-related protein sequences. Our results have identified heat shock proteins, phosphorylation-associated enzymes, or kinases, such as Sm16, GSTA3, GPCRs, EF1-α, MMP7, and other proteins linked to schistosome-induced liver fibrosis. After sorting, we found many special proteins related to fibrosis and inflammation, but studies proving their association with schistosomiasis infection are limited. Follow-up studies on MICOS, MATE1, 14-3-3 epsilon, and CDCP1 are needed. We treated the LX-2 cells with the SEA from the 8th, 10th, and 12th infection weeks to test HSC activation. In a trans-well cell model in which PBMCs and HSCs were co-cultured, the SEA could significantly induce TGF-β secretion, especially from the 12th week of infection. Our data also showed that TGF-β secreted by PBMC after the SEA treatment activates LX-2 and upregulates hepatic fibrotic markers α-SMA and collagen 1. Based on these results, the CUB domain-containing protein 1 (CDCP1) screened at the 12th infection week could be investigated further. This study clarifies the trend of immune mechanism variation in the different stages of schistosome infection. However, how egg-induced immune response transformation causes liver tissue fibrosis needs to be studied further.
Collapse
|
2
|
Zhou C, Li J, Guo C, Zhou Z, Yang Z, Zhang Y, Jiang J, Cai Y, Zhou J, Ming Y. Comparison of intestinal flora between patients with chronic and advanced Schistosoma japonicum infection. Parasit Vectors 2022; 15:413. [PMID: 36345042 PMCID: PMC9640844 DOI: 10.1186/s13071-022-05539-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022] Open
Abstract
Background Schistosoma japonicum infection is an important public health problem, imposing heavy social and economic burdens in 78 countries worldwide. However, the mechanism of transition from chronic to advanced S. japonicum infection remains largely unknown. Evidences suggested that gut microbiota plays a role in the pathogenesis of S. japonicum infection. However, the composition of the gut microbiota in patients with chronic and advanced S. japonicum infection is not well defined. In this study, we compared the composition of the intestinal flora in patients with chronic and advanced S. japonicum infection. Methods The feces of 24 patients with chronic S. japonicum infection and five patients with advanced S. japonicum infection from the same area were collected according to standard procedures, and 16S rRNA sequencing technology was used to analyze the intestinal microbial composition of the two groups of patients. Results We found that alteration occurs in the gut microbiota between the groups of patients with chronic and advanced S. japonicum infections. Analysis of alpha and beta diversity indicated that the diversity and abundance of intestinal flora in patients with advanced S. japonicum infection were lower than those in patients with chronic S. japonicum infection. Furthermore, Prevotella 9, Subdoligranulum, Ruminococcus torques, Megamonas and Fusicatenibacter seemed to have potential to discriminate different stages of S. japonicum infection and to act as biomarkers for diagnosis. Function prediction analysis revealed that microbiota function in the chronic group was focused on translation and cell growth and death, while that in the advanced group was concentrated on elevating metabolism-related functions. Conclusions Our study demonstrated that alteration in gut microbiota in different stages of S. japonicum infection plays a potential role in the pathogenesis of transition from chronic to advanced S. japonicum infection. However, further validation in the clinic is needed, and the underlying mechanism requires further study. Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05539-6.
Collapse
|
3
|
Costain AH, Phythian-Adams AT, Colombo SAP, Marley AK, Owusu C, Cook PC, Brown SL, Webb LM, Lundie RJ, Borger JG, Smits HH, Berriman M, MacDonald AS. Dynamics of Host Immune Response Development During Schistosoma mansoni Infection. Front Immunol 2022; 13:906338. [PMID: 35958580 PMCID: PMC9362740 DOI: 10.3389/fimmu.2022.906338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/23/2022] [Indexed: 12/27/2022] Open
Abstract
Schistosomiasis is a disease of global significance, with severity and pathology directly related to how the host responds to infection. The immunological narrative of schistosomiasis has been constructed through decades of study, with researchers often focussing on isolated time points, cell types and tissue sites of interest. However, the field currently lacks a comprehensive and up-to-date understanding of the immune trajectory of schistosomiasis over infection and across multiple tissue sites. We have defined schistosome-elicited immune responses at several distinct stages of the parasite lifecycle, in three tissue sites affected by infection: the liver, spleen, and mesenteric lymph nodes. Additionally, by performing RNA-seq on the livers of schistosome infected mice, we have generated novel transcriptomic insight into the development of schistosome-associated liver pathology and fibrosis across the breadth of infection. Through depletion of CD11c+ cells during peak stages of schistosome-driven inflammation, we have revealed a critical role for CD11c+ cells in the co-ordination and regulation of Th2 inflammation during infection. Our data provide an updated and high-resolution account of how host immune responses evolve over the course of murine schistosomiasis, underscoring the significance of CD11c+ cells in dictating host immunopathology against this important helminth infection.
Collapse
Affiliation(s)
- Alice H. Costain
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Stefano A. P. Colombo
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Angela K. Marley
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Christian Owusu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Peter C. Cook
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Sheila L. Brown
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Lauren M. Webb
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
- Department of Immunology, University of Washington, Seattle, WA, United States
| | | | | | - Hermelijn H. Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Andrew S. MacDonald
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
4
|
Namulondo J, Mulindwa J, Nyangiri OA, Egesa M, Noyes H, Matovu E. Gene expression changes in mammalian hosts during schistosomiasis: a review. AAS Open Res 2021. [DOI: 10.12688/aasopenres.13312.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Schistosomiasis affects over 250 million people worldwide with an estimated mortality of more than 200,000 deaths per year in sub-Saharan Africa. Efforts to control schistosomiasis in the affected areas have mainly relied on mass administration of praziquantel, which kills adult but not immature worms of all Schistosoma species. Mammalian hosts respond differently to Schistosoma infection with some being more susceptible than others, which is associated with risk factors such as sociodemographic, epidemiological, immunological and/or genetic. Host genetic factors play a major role in influencing molecular processes in response to schistosomiasis as shown in gene expression studies. These studies highlight gene profiles expressed at different time points of infection using model animals. Immune function related genes; cytokines (Th1 and Th17) are upregulated earlier in infection and Th2 upregulated later indicating a mixed Th1/Th2 response. However, Th1 response has been shown to be sustained in S. japonicum infection. Immune mediators such as matrix metalloproteinases (Mmps) and tissue inhibitors of matrix metalloproteinases (Timps) are expressed later in the infection and these are linked to wound healing and fibrosis. Downregulation of metabolic associated genes is recorded in later stages of infection. Most mammalian host gene expression studies have been done using rodent models, with fewer in larger hosts such as bovines and humans. The majority of these studies have focused on S. japonicum infections and less on S. haematobium and S. mansoni infections (the two species that cause most global infections). The few human schistosomiasis gene expression studies so far have focused on S. japonicum and S. haematobium infections and none on S. mansoni, as far as we are aware. This highlights a paucity of gene expression data in humans, specifically with S. mansoni infection. This data is important to understand the disease pathology, identify biomarkers, diagnostics and possible drug targets.
Collapse
|
5
|
Huang Y, Wu Q, Zhao L, Xiong C, Xu Y, Dong X, Wen Y, Cao J. UHPLC-MS-Based Metabolomics Analysis Reveals the Process of Schistosomiasis in Mice. Front Microbiol 2020; 11:1517. [PMID: 32760365 PMCID: PMC7371968 DOI: 10.3389/fmicb.2020.01517] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Metabolomics, as an emerging technology, has been demonstrated to be a very powerful tool in the study of the host metabolic responses to infections by parasites. Schistosomiasis is a parasitic infection caused by schistosoma worm via the direct contact with the water containing cercaria, among which Schistosoma japonicum (S. japonicum) is endemic in Asia. In order to characterize the schistosome-induced changes in the host metabolism and further to develop the strategy for early diagnosis of schistosomiasis, we performed comprehensive LC-MS-based metabolomics analysis of serum from mice infected by S. japonicum for 5 weeks. With the developed diagnosis strategy based on our metabolomics data, we were able to successfully detect schistosomiasis at the first week post-infection, which was 3 weeks earlier than "gold standard" methods and 2 weeks earlier than the methods based on 1H NMR spectroscopy. Our metabolomics study revealed that S. japonicum infection induced the metabolic changes involved in a variety of metabolic pathways including amino acid metabolism, DNA and RNA biosynthesis, phospholipid metabolism, depression of energy metabolism, glucose uptake and metabolism, and disruption of gut microbiota metabolism. In addition, we identified seventeen specific metabolites whose down-regulated profiles were closely correlated with the time-course of schistosomiasis progression and can also be used as an indicator for the worm-burdens. Interestingly, the decrease of these seventeen metabolites was particularly remarkable at the first week post-infection. Thus, our findings on mechanisms of host-parasite interaction during the disease process pave the way for the development of an early diagnosis tool and provide more insightful understandings of the potential metabolic process associated with schistosomiasis in mice. Furthermore, the diagnosis strategy developed in this work is cost-effective and is superior to other currently used diagnosis methods.
Collapse
Affiliation(s)
- Yuzheng Huang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Public Health Research Center, Jiangnan University, Wuxi, China
| | - Qiong Wu
- Department of Pharmacy, General Hospital of Southern Theater Command, Guangzhou, China
| | - Liang Zhao
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| | - Chunrong Xiong
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Public Health Research Center, Jiangnan University, Wuxi, China
| | - Yongliang Xu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Public Health Research Center, Jiangnan University, Wuxi, China
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai, China
- Institute of Translation Medicine, Shanghai University, Shanghai, China
| | - Yan Wen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jun Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Public Health Research Center, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Wilson JL, Mayr HK, Weichhart T. Metabolic Programming of Macrophages: Implications in the Pathogenesis of Granulomatous Disease. Front Immunol 2019; 10:2265. [PMID: 31681260 PMCID: PMC6797840 DOI: 10.3389/fimmu.2019.02265] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/09/2019] [Indexed: 12/16/2022] Open
Abstract
Metabolic reprogramming is rapidly gaining appreciation in the etiology of immune cell dysfunction in a variety of diseases. Tuberculosis, schistosomiasis, and sarcoidosis represent an important class of diseases characterized by the formation of granulomas, where macrophages are causatively implicated in disease pathogenesis. Recent studies support the incidence of macrophage metabolic reprogramming in granulomas of both infectious and non-infectious origin. These publications identify the mechanistic target of rapamycin (mTOR), as well as the major regulators of lipid metabolism and cellular energy balance, peroxisome proliferator receptor gamma (PPAR-γ) and adenosine monophosphate-activated protein kinase (AMPK), respectively, as key players in the pathological progression of granulomas. In this review, we present a comprehensive breakdown of emerging research on the link between macrophage cell metabolism and granulomas of different etiology, and how parallels can be drawn between different forms of granulomatous disease. In particular, we discuss the role of PPAR-γ signaling and lipid metabolism, which are currently the best-represented metabolic pathways in this context, and we highlight dysregulated lipid metabolism as a common denominator in granulomatous disease progression. This review therefore aims to highlight metabolic mechanisms of granuloma immune cell fate and open up research questions for the identification of potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Jayne Louise Wilson
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Hannah Katharina Mayr
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Thomas Weichhart
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Ryaboshapkina M, Hammar M. Human hepatic gene expression signature of non-alcoholic fatty liver disease progression, a meta-analysis. Sci Rep 2017; 7:12361. [PMID: 28955037 PMCID: PMC5617840 DOI: 10.1038/s41598-017-10930-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a wide-spread chronic liver condition that places patients at risk of developing cardiovascular diseases and may progress to cirrhosis or hepatocellular carcinoma if untreated. Challenges in clinical and basic research are caused by poor understanding of NAFLD mechanisms. The purpose of current study is to describe molecular changes occurring in human liver during NAFLD progression by defining a reproducible gene expression signature. We conduct a systematic meta-analysis of published human gene expression studies on liver biopsies and bariatric surgery samples of NAFLD patients. We relate gene expression levels with histology scores using regression models and identify a set of genes showing consistent-sign associations with NAFLD progression that are replicated in at least three independent studies. The analysis reveals genes that have not been previously characterized in the context of NAFLD such as HORMAD2 and LINC01554. In addition, we highlight biomarker opportunities for risk stratification and known drugs that could be used as tool compounds to study NAFLD in model systems. We identify gaps in current knowledge of molecular mechanisms of NAFLD progression and discuss ways to address them. Finally, we provide an extensive data supplement containing meta-analysis results in a computer-readable format.
Collapse
Affiliation(s)
- Maria Ryaboshapkina
- Cardiovascular and Metabolic Diseases, Translational Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.
| | - Mårten Hammar
- Cardiovascular and Metabolic Diseases, Translational Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| |
Collapse
|
8
|
Zhou G, Stevenson MM, Geary TG, Xia J. Comprehensive Transcriptome Meta-analysis to Characterize Host Immune Responses in Helminth Infections. PLoS Negl Trop Dis 2016; 10:e0004624. [PMID: 27058578 PMCID: PMC4826001 DOI: 10.1371/journal.pntd.0004624] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/21/2016] [Indexed: 12/19/2022] Open
Abstract
Helminth infections affect more than a third of the world’s population. Despite very broad phylogenetic differences among helminth parasite species, a systemic Th2 host immune response is typically associated with long-term helminth infections, also known as the “helminth effect”. Many investigations have been carried out to study host gene expression profiles during helminth infections. The objective of this study is to determine if there is a common transcriptomic signature characteristic of the helminth effect across multiple helminth species and tissue types. To this end, we performed a comprehensive meta-analysis of publicly available gene expression datasets. After data processing and adjusting for study-specific effects, we identified ~700 differentially expressed genes that are changed consistently during helminth infections. Functional enrichment analyses indicate that upregulated genes are predominantly involved in various immune functions, including immunomodulation, immune signaling, inflammation, pathogen recognition and antigen presentation. Down-regulated genes are mainly involved in metabolic process, with only a few of them are involved in immune regulation. This common immune gene signature confirms previous observations and indicates that the helminth effect is robust across different parasite species as well as host tissue types. To the best of our knowledge, this study is the first comprehensive meta-analysis of host transcriptome profiles during helminth infections. Many studies have been conducted to understand the immune modulatory effects in helminth infections. To determine whether there is a common transcriptomic signature characteristic of the helminth effect, we performed a comprehensive meta-analysis of publicly available gene expression datasets. The results revealed a distinct pattern of gene expression that is consistent across multiple helminth species and host tissue types, with upregulated genes dominated by those involved in immune regulation, Th2 immunity and inflammatory responses.
Collapse
Affiliation(s)
- Guangyan Zhou
- Institute of Parasitology, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Centre for Host-Parasite Interactions, McGill University, Sainte Anne de Bellevue, Quebec, Canada
| | - Mary M. Stevenson
- Centre for Host-Parasite Interactions, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Departments of Medicine and Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Timothy G. Geary
- Institute of Parasitology, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Centre for Host-Parasite Interactions, McGill University, Sainte Anne de Bellevue, Quebec, Canada
| | - Jianguo Xia
- Institute of Parasitology, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Centre for Host-Parasite Interactions, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Department of Animal Science, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- * E-mail:
| |
Collapse
|