1
|
Donaldson JE, Ezenwa VO, Morrison TA, Holdo RM. Effects of migratory animals on resident parasite dynamics. Trends Ecol Evol 2024; 39:625-633. [PMID: 38355367 DOI: 10.1016/j.tree.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/16/2024]
Abstract
Migratory animals can bring parasites into resident animal (i.e., non-migratory) home ranges (transport effects) and exert trophic effects that either promote or reduce parasite exposure to resident hosts. Here, we examine the importance of these transport and trophic effects and their interactions for resident parasite dynamics. We propose that migrant transport and trophic effects are impacted by the number of migratory animals entering a resident's home range (migration intensity), the amount of time that migrants spend within a resident's home range (migration duration), and the timing of migrant-resident interactions. We then incorporate migration intensity, duration, and timing into a framework for exploring the net impact of migrant trophic and transport effects on resident animal parasite prevalence.
Collapse
Affiliation(s)
| | - Vanessa O Ezenwa
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Thomas A Morrison
- School of Biodiversity, Animal Health, and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Ricardo M Holdo
- Odum School of Ecology, University of Georgia, Athens, GA, USA
| |
Collapse
|
2
|
Palomba M, Marchiori E, Tedesco P, Fioravanti M, Marcer F, Gustinelli A, Aco-Alburqueque R, Belli B, Canestrelli D, Santoro M, Cipriani P, Mattiucci S. An update and ecological perspective on certain sentinel helminth endoparasites within the Mediterranean Sea. Parasitology 2023; 150:1139-1157. [PMID: 37942726 PMCID: PMC10941224 DOI: 10.1017/s0031182023000951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 11/10/2023]
Abstract
The Mediterranean Sea is recognized as a marine biodiversity hotspot. This enclosed basin is facing several anthropogenic-driven threats, such as seawater warming, pollution, overfishing, bycatch, intense maritime transport and invasion by alien species. The present review focuses on the diversity and ecology of specific marine trophically transmitted helminth endoparasites (TTHs) of the Mediterranean ecosystems, aiming to elucidate their potential effectiveness as ‘sentinels’ of anthropogenic disturbances in the marine environment. The chosen TTHs comprise cestodes and nematodes sharing complex life cycles, involving organisms from coastal and marine mid/upper-trophic levels as definitive hosts. Anthropogenic disturbances directly impacting the free-living stages of the parasites and their host population demographies can significantly alter the distribution, infection levels and intraspecific genetic variability of these TTHs. Estimating these parameters in TTHs can provide valuable information to assess the stability of marine trophic food webs. Changes in the distribution of particular TTHs species can also serve as indicators of sea temperature variations in the Mediterranean Sea, as well as the bioaccumulation of pollutants. The contribution of the chosen TTHs to monitor anthropogenic-driven changes in the Mediterranean Sea, using their measurable attributes at both spatial and temporal scales, is proposed.
Collapse
Affiliation(s)
- Marialetizia Palomba
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Viterbo, Italy
| | - Erica Marchiori
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Padua, Italy
| | - Perla Tedesco
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Marialetizia Fioravanti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Federica Marcer
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Padua, Italy
| | - Andrea Gustinelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Renato Aco-Alburqueque
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, Rome, Italy
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Beatrice Belli
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, Rome, Italy
| | - Daniele Canestrelli
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Viterbo, Italy
| | - Mario Santoro
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Paolo Cipriani
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, Rome, Italy
- Section of Contaminants and Biohazards, Institute of Marine Research (IMR), Nordnes, Bergen, Norway
| | - Simonetta Mattiucci
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
3
|
Gastrointestinal helminths in brown trout (Salmo trutta Linnaeus, 1758) captured in Galician rivers (NW Spain). Parasitol Int 2023; 92:102676. [DOI: 10.1016/j.parint.2022.102676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/21/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022]
|
4
|
da Silva RD, Benicio L, Moreira J, Paschoal F, Pereira FB. Parasite communities and their ecological implications: comparative approach on three sympatric clupeiform fish populations (Actinopterygii: Clupeiformes), off Rio de Janeiro, Brazil. Parasitol Res 2022; 121:1937-1949. [PMID: 35589866 DOI: 10.1007/s00436-022-07550-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
Abstract
Fish parasite communities can be directly influenced by characteristics of host species. However, little is known about the host-parasite relationships in commercially important fish of the southeastern Atlantic. To address this knowledge gap, a comparative analysis of the parasite communities of three sympatric Clupeiformes was conducted. Cetengraulis edentulus (Engraulidae), Opisthonema oglinum (Clupeidae) and Sardinella brasiliensis (Clupeidae) were collected from an estuarine lagoon near Rio de Janeiro, Brazil. Prevalence, abundance and aggregation were estimated for infrapopulations; richness, diversity, evenness and dominance for infracommunities. The three component communities were compared using both quantitative and qualitative components. Canonical discriminant analysis was used to determine if a host population could be characterised by the component community of its parasites. Multivariate models revealed that host species, a proxy for diet and phylogenetic relationships, was the main factor influencing the composition of parasite infracommunities. Diet was found to be the main factor shaping the communities of endoparasites, in which digeneans were dominant and best indicator of host population. Ectoparasites (copepods, isopods and monogeneans) displayed strong host-specificity with some species restricted to a single host population. The similarity of the component communities of the two clupeid populations demonstrated the influence of host phylogeny. Parasite infracommunities exhibited low diversity and high dominance, with many taxa restricted to a single host species (specialists) and few occurring in more than one (generalists). Host phylogeny and by extension, diet, morphology and coevolution with parasites appear to be important factors in determining the host-parasite relationships of clupeiform fish in the southeastern Atlantic.
Collapse
Affiliation(s)
- Richard D da Silva
- Programa de Pós-Graduação em Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, CEP, Belo Horizonte, MG, 31270-901, Brazil
| | - Luana Benicio
- Laboratório de Parasitologia Animal, Centro de Estudos e Pesquisas em Biologia, Universidade Castelo Branco, Av. Santa Cruz, 1631, Realengo, CEP, 21710-255, Rio de Janeiro, RJ, Brasil
| | - Juliana Moreira
- Laboratório de Parasitologia Animal, Centro de Estudos e Pesquisas em Biologia, Universidade Castelo Branco, Av. Santa Cruz, 1631, Realengo, CEP, 21710-255, Rio de Janeiro, RJ, Brasil
| | - Fabiano Paschoal
- Laboratório de Parasitologia Animal, Centro de Estudos e Pesquisas em Biologia, Universidade Castelo Branco, Av. Santa Cruz, 1631, Realengo, CEP, 21710-255, Rio de Janeiro, RJ, Brasil
| | - Felipe B Pereira
- Programa de Pós-Graduação em Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, CEP, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
5
|
Metazoan endoparasite fauna and feeding ecology of commercial fishes from Java, Indonesia. Parasitol Res 2022; 121:551-562. [PMID: 34993639 PMCID: PMC8800894 DOI: 10.1007/s00436-021-07377-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/08/2021] [Indexed: 11/10/2022]
Abstract
Despite being an important component of the marine ecosystem and posing health risks to human seafood consumers, fish parasites in Indonesia have yet to be adequately described. Here, we analyzed the diet and metazoan parasite fauna of seven commercial fish species (Alectis indica, Carangoides chrysophrys, Johnius borneensis, Mene maculata, Trichiurus lepturus, Upeneus asymmetricus, U. moluccensis) landed in Java, Indonesia. We isolated 11 endoparasite species, established 22 new host and 14 new locality records, and extended parasitological records of A. indica by 24%, C. chrysophrys by 25%, J. borneensis by 40%, M. maculata by 44%, U. asymmetricus by 100%, and U. moluccensis by 17%. We genetically identified the trematode Stephanostomum cf. uku (of Bray et al. 2005) from Alecta indica for the first time in Indonesia and provided the sequence of its 28S marker. Stomach content analysis revealed seven different prey items, and the examined fish species were grouped into four feeding categories, which differed significantly in their respective endoparasite fauna. All but two examined fish species hosted potentially zoonotic nematodes, which reveal a risk for parasite-borne diseases in Indonesian food fishes and call for more consequent monitoring with regard to seafood safety in this region. With this study, we were able to establish an association between the feeding ecology and the endoparasite fauna of marine fishes which will help to better understand the transmission pathways of (potentially zoonotic) parasites in food fishes in tropical waters.
Collapse
|
6
|
Bolnick DI, Resetarits EJ, Ballare K, Stuart YE, Stutz WE. Scale-dependent effects of host patch traits on species composition in a stickleback parasite metacommunity. Ecology 2020; 101:e03181. [PMID: 32880940 PMCID: PMC7757261 DOI: 10.1002/ecy.3181] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/08/2020] [Accepted: 06/28/2020] [Indexed: 01/06/2023]
Abstract
A core goal of ecology is to understand the abiotic and biotic variables that regulate species distributions and community composition. A major obstacle is that the rules governing species distributions can change with spatial scale. Here, we illustrate this point using data from a spatially nested metacommunity of parasites infecting a metapopulation of threespine stickleback fish from 34 lakes on Vancouver Island, British Columbia. Like most parasite metacommunities, the composition of stickleback parasites differs among host individuals within each host population, and differs between host populations. The distribution of each parasite taxon depends, to varying degrees, on individual host traits (e.g., mass, diet) and on host-population characteristics (e.g., lake size, mean host mass, mean diet). However, in most cases in this data set, a given parasite was regulated by different factors at the host-individual and host-population scales, leading to scale-dependent patterns of parasite-species co-occurrence.
Collapse
Affiliation(s)
- Daniel I. Bolnick
- Department of Integrative BiologyUniversity of Texas at AustinAustinTexas78712USA
- Present address:
Ecology and Evolutionary Biology & Institute of System GenomicsUniversity of ConnecticutStorrsConnecticut06269USA
| | - Emlyn J. Resetarits
- Department of Integrative BiologyUniversity of Texas at AustinAustinTexas78712USA
- Present address:
Center for the Ecology of Infectious DiseaseOdum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Kimberly Ballare
- Department of Integrative BiologyUniversity of Texas at AustinAustinTexas78712USA
- Present address:
Ecology and Evolutionary BiologyUniversity of California Santa CruzSanta CruzCalifornia95064USA
| | - Yoel E. Stuart
- Department of Integrative BiologyUniversity of Texas at AustinAustinTexas78712USA
- Present address:
Department of BiologyLoyola UniversityChicagoIllinois60660USA
| | - William E. Stutz
- Department of Integrative BiologyUniversity of Texas at AustinAustinTexas78712USA
- Office of Institutional ResearchWestern Michigan UniversityKalamazooMichigan49008‐5253USA
| |
Collapse
|
7
|
Shvydka S, Cadarso-Suárez C, Ballová D, Sarabeev V. Patterns of monogenean abundance in native and invasive populations of Planiliza haematocheila (Teleostei: Mugilidae): interactions between climate and host defence mechanisms explain parasite release. Int J Parasitol 2020; 50:1023-1031. [PMID: 32798531 DOI: 10.1016/j.ijpara.2020.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/06/2020] [Accepted: 06/11/2020] [Indexed: 11/29/2022]
Abstract
One of the most intriguing questions in invasive biology is how an introduced species changes its population parameters in a new environment. Translocation of free-living species commonly results in co-introduction of their parasites. The current study focuses on the abundance pattern of the monogenean parasite Ligophorus llewellyni of the pacific so-iuy mullet, Planiliza haematocheila, across the native and introduced distribution ranges. We evaluated parasite release by the so-iuy mullet by comparing abundance patterns of L. llewellyni under effects of the host length, water temperature and month of the year in the Sea of Japan and the Sea of Azov. Generalised additive models applied to analysis of parasite abundance data showed that relationships between the mean number of L. llewellyni and the three tested independent variables were not linear. Our results suggest that the introduced host lost a large amount of parasite abundance due to the effect of warm climate in a new region, which is mediated by host defence mechanisms. The abundance of L. llewellyni rapidly rose in autumn, as fish activity and immune response decrease, reached the maximum in winter and began to fall in spring as a warm temperature facilitates the fish immune defence. The abundance of L. llewellyni showed an initial increase in response to fish growth and reached an asymptote. The response curves built for native and introduced regions reached an asymptote at different fish body lengths, reflecting the fish growth rate, which is higher in the introduced range of P. haematocheila. We found that the carried parasite species holds the same trend in relationships compared with its native area, between the mean number of monogeneans per host and independent variables increasing abundance with fish length, low temperature and cold months. Our results open new perspectives for future research on statistical modelling of parasite abundance across native and introduced distribution ranges in order to provide deeper insight into host-parasite interactions of invasive populations.
Collapse
Affiliation(s)
- Svitlana Shvydka
- Department of Mathematics, Zaporizhzhia National University, Zhukovskogo 66, 69063 Zaporizhzhia, Ukraine
| | - Carmen Cadarso-Suárez
- Department of Statistical, Mathematical Analysis and Optimization, University of Santiago de Compostela, Rúa Lope Gómez de Marzoa, s/n. Campus vida, 15782 Santiago de Compostela, Spain
| | - Dominika Ballová
- Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, Slovak University of Technology in Bratislava, Radlinského 11, 81005 Bratislava, Slovakia
| | - Volodimir Sarabeev
- Department of Biology, Zaporizhzhia National University, Zhukovskogo 66, 69063 Zaporizhzhia, Ukraine.
| |
Collapse
|
8
|
Espínola‐Novelo JF, González MT, Pacheco AS, Luque JL, Oliva ME. Testing for deterministic succession in metazoan parasite communities of marine fish. Ecol Lett 2020; 23:631-641. [DOI: 10.1111/ele.13463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/02/2019] [Accepted: 12/27/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Juan F. Espínola‐Novelo
- Programa de Doctorado en Ciencias Aplicadas mención Sistemas Marinos Costeros Universidad de Antofagasta P.O. Box 170 Antofagasta Chile
- Instituto de Ciencias Naturales Alexander von Humboldt Universidad de Antofagasta P.O. Box 170 Antofagasta Chile
| | - M. Teresa González
- Instituto de Ciencias Naturales Alexander von Humboldt Universidad de Antofagasta P.O. Box 170 Antofagasta Chile
| | - Aldo S. Pacheco
- Facultad de Ciencias Veterinarias y Biológicas Universidad Científica del Sur Lima Perú
| | - José L. Luque
- Departamento de Parasitología Animal Universidad Federal Rural Rio de Janeiro Seropedica Brazil
| | - Marcelo E. Oliva
- Instituto de Ciencias Naturales Alexander von Humboldt Universidad de Antofagasta P.O. Box 170 Antofagasta Chile
- Instituto Milenio de Oceanografía (IMO) Universidad de Concepción P.O. Box 160‐C Concepción Chile
| |
Collapse
|
9
|
Cirtwill AR, Eklöf A, Roslin T, Wootton K, Gravel D. A quantitative framework for investigating the reliability of empirical network construction. Methods Ecol Evol 2019. [DOI: 10.1111/2041-210x.13180] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alyssa R. Cirtwill
- Department of Physics, Chemistry and Biology (IFM)Linköping University Linköping Sweden
| | - Anna Eklöf
- Department of Physics, Chemistry and Biology (IFM)Linköping University Linköping Sweden
| | - Tomas Roslin
- Department of EcologySwedish University of Agricultural Sciences Uppsala Sweden
| | - Kate Wootton
- Department of EcologySwedish University of Agricultural Sciences Uppsala Sweden
| | - Dominique Gravel
- Département de biologieUniversité de Sherbrooke Sherbrooke Canada
| |
Collapse
|
10
|
Villa M, Lagrue C. Progenesis and facultative life cycle abbreviation in trematode parasites: Are there more constraints than costs? Int J Parasitol 2019; 49:347-354. [PMID: 30771358 DOI: 10.1016/j.ijpara.2018.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/27/2018] [Accepted: 11/19/2018] [Indexed: 11/16/2022]
Abstract
Complex life cycles provide advantages to parasites (longer life span, higher fecundity, etc.), but also represent a series of unlikely events for which many adaptations have evolved (asexual multiplication, host finding mechanisms, etc.). Some parasites use a radical strategy where the definitive host is dropped; life cycle abbreviation is most often achieved through progenesis (i.e. early maturation) and reproduction in the second intermediate host. In many progenetic species, both the typical and abbreviated life cycles are maintained. However, conditions that trigger the adoption of one or the other strategy, and the pros and cons of each parasite life history strategy, are often complex and poorly understood. We used experimental infections with the trematode Coitocaecum parvum in its fish definitive host to test for potential costs of progenesis in terms of lifespan and fecundity. We show that individuals that adopt progenesis in the intermediate host are still able to establish in the definitive host and achieve higher survival and fecundity than conspecifics adopting the typical three-host life cycle. Our results and that of previous studies show that there seems to be few short-term costs associated with progenesis in C. parvum. Potential costs of self-fertilization and inbreeding are often suggested to select for the maintenance of both life-history strategies in species capable of facultative progenesis. We suggest that, at least for our focal species, there are more constraints than costs limiting its adoption. Progenesis and the abbreviated cycle may become the typical life-history strategy while reproduction in the vertebrate definitive host is now a secondary alternative when progenesis is impossible (e.g. limited host resources, etc.). Whether this pattern can be generalized to other progenetic trematodes is unknown and would require further studies.
Collapse
Affiliation(s)
- Manon Villa
- MIVEGEC, UMR CNRS 5290, IRD 224, Montpellier, France
| | - Clément Lagrue
- Department of Biological Sciences, University of Alberta, Edmonton T6G 2E9, Alberta, Canada.
| |
Collapse
|
11
|
Role of ecology and phylogeny in determining tapeworm assemblages in skates (Rajiformes). J Helminthol 2018; 93:738-751. [PMID: 30205854 DOI: 10.1017/s0022149x18000809] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An understanding of the mechanisms that determine host and parasite relationships is a central aim in parasitology. Association of a parasite species with a host species may be influenced primarily by phylogenetic constraints that cause parasite species to co-speciate with their host species, or predominantly by ecological parameters that influence all other co-evolutionary scenarios. This study aimed to investigate the role of co-speciation as well as other co-evolutionary scenarios in influencing the assemblages of tapeworm parasites (marine cestodes) in skate hosts (Rajiformes) using a modification of the PACo (Procrustean Approach to Cophylogeny) method. The study found that phylogeny and host ecology are both significant predictors of skate-tapeworm relationships, implying that co-speciation as well as other co-evolutionary scenarios are shaping these associations. The study also investigated the key ecological parameters influencing host-switching and found that host diet, distribution depth, average body size and geographical location have a combined effect. Given the importance of parasites in ensuring healthy and stable marine ecosystems, the findings of this study have implications for conservation management worldwide.
Collapse
|
12
|
Tavares-Dias M, Neves LR. Diversity of parasites in wild Astronotus ocellatus (Perciformes, Cichlidae), an ornamental and food fish in Brazil. AN ACAD BRAS CIENC 2017; 89:2305-2315. [PMID: 29044314 DOI: 10.1590/0001-3765201720160700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 06/12/2017] [Indexed: 11/21/2022] Open
Abstract
The community composition of parasites was characterized in Astronotus ocellatus from a tributary of the Amazon River, northern Brazil. The prevalence was 87.9%, and a total of 526,052 parasites were collected, with a mean of 15,941 parasites per host. Nine taxa of ecto- and endo-parasites were identified, but Ichthyophthirius multifiliis was the dominant species, while Piscinoodinium pillulare, Clinostomum marginatum and Argulus multicolor were the least prevalent parasites. The parasite community was characterized by a low species richness, low diversity and low evenness. Host body size was not found to influence the composition of the parasite community, and there was no significant correlation between abundance of any parasite species and host body size. Papers published concerning the presence of parasites in this host in different hydrographic basins within Brazil indicate that 22 species of parasites are known to infect A. ocellatus, including species of ectoparasites and endoparasites. In Brazil, ectoparasites species, particularly crustaceans, have been found to parasitize A. ocellatus in relatively high numbers. This predominance of ectoparasites is typical of fish of lentic ecosystems. Finally, the presence of different endoparasites taxa suggest that A. ocellatus acts as an intermediate or definitive host.
Collapse
Affiliation(s)
- Marcos Tavares-Dias
- Embrapa Amapá, Rodovia Juscelino Kubitschek, Km 5, N° 2600, 68903-419 Macapá, AP, Brazil.,Programa de Pós-Graduação em Biodiversidade e Biotecnologia - PPGBIONORTE, Universidade Federal do Amapá/UNIFAP, Rodovia Juscelino Kubitschek, s/n, 68903-419 Macapá, AP, Brazil
| | - Ligia R Neves
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia - PPGBIONORTE, Universidade Federal do Amapá/UNIFAP, Rodovia Juscelino Kubitschek, s/n, 68903-419 Macapá, AP, Brazil
| |
Collapse
|
13
|
Sokolov SG, Zhukov AV. Functional diversity of a parasite assemblages of the Chinese sleeper Perccottus glenii Dybowski, 1877 (Actinopterygii: Odontobutidae) and habitat structure of the host. BIOL BULL+ 2017. [DOI: 10.1134/s1062359017020182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Arnott SA., Dyková I, Roumillat WA, de Buron I. Pathogenic endoparasites of the spotted seatrout, Cynoscion nebulosus: patterns of infection in estuaries of South Carolina, USA. Parasitol Res 2017; 116:1729-1743. [DOI: 10.1007/s00436-017-5449-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/12/2017] [Indexed: 01/10/2023]
|
15
|
Gill monogenean communities (Platyhelminthes, Monogenea, Dactylogyridae) of butterflyfishes from tropical Indo-West Pacific Islands. Parasitology 2016; 143:1580-91. [DOI: 10.1017/s0031182016001463] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYWe studied the monogenean communities of 34 species of butterflyfish from the tropical Indo-West Pacific, identifying 13 dactylogyrid species (including two species that are presently undescribed). Monogenean assemblages differed significantly between host species in terms of taxonomic structure, intensity and prevalence. Parasite richness ranged from 0 (Chaetodon lunulatus) to 11 (C. auriga, C. citrinellus and C. lunula). Host specificity varied between the dactylogyrids species, being found on 2–29 of the 34 chaetodontid species examined. Sympatric butterflyfish species were typically parasitized by different combinations of dactylogyrid species, suggesting the existence of complex host–parasite interactions. We identified six clusters of butterflyfish species based on the similarities of their dactylogyrid communities. Dactylogyrid richness and diversity were not related to host size, diet specialization, depth range or phylogeny of butterflyfish species. However, there was a weak positive correlation between monogenean richness and diversity and host geographical range. Most communities of dactylogyrids were dominated by Haliotrema aurigae and H. angelopterum, indicating the importance of the genus Haliotrema in shaping monogenean communities of butterflyfishes. This study casts light on the structure of the monogenean communities of butterflyfishes, suggesting that the diversity and complexity of community structures arises from a combination of host species-specific parameters.
Collapse
|