1
|
Humann RA, Smith TK. Potential Trypanocidal Activity of Glycerol Analogues. ChemistryOpen 2024; 13:e202400094. [PMID: 39263751 PMCID: PMC11625932 DOI: 10.1002/open.202400094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/18/2024] [Indexed: 09/13/2024] Open
Abstract
Glycerol, a versatile and ubiquitous compound, plays a vital role in a plethora of metabolic pathways in both prokaryotes and eukarotyes. Relatively few glycerol analogues have previously been explored for their use as glycerol kinase inhibitors, in addition to their therapeutic potential, however their use as (pro)-drugs in the context of parasitic diseases such as trypanosomiasis is unreported. The literature on glycerol metabolism and particular its synergic anti-profilation behaviour with salicylhydroxamic acid (SHAM) in Trypanosoma brucei is extensive. However, utiliation of glycerol analogues has not been explored as possible superior combinatory compounds. This report describes the synthesis of various glycerol analogues and their subsequent biochemical pheotypic analysis for their effect on lipid metabolism and their possible synergic activity with SHAM on Trypanosoma brucei. The glycerol analogues caused morphological changes;, including detached flagella, cytokinesis defects and 'big-eye' phenotype. All four compounds either matched or marginally increased the toxicity of SHAM when used in combination against Trypanosoma brucei. However, the compounds exhibited mostly an antagonistic relationship with SHAM rather than synergistic. This research highlights the potential of small molecule glycerol analogues for their combination use with SHAM for the treatment of parasitic disease, such as trypanosomiasis.
Collapse
Affiliation(s)
- R. A. Humann
- BSRCSchool of BiologyUniversity of St AndrewsSt AndrewsKY16 9AJUK
| | - T. K. Smith
- BSRCSchool of BiologyUniversity of St AndrewsSt AndrewsKY16 9AJUK
| |
Collapse
|
2
|
Edrich ESM, Duvenage L, Gourlay CW. Alternative Oxidase - Aid or obstacle to combat the rise of fungal pathogens? BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149031. [PMID: 38195037 DOI: 10.1016/j.bbabio.2024.149031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/16/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
Fungal pathogens present a growing threat to both humans and global health security alike. Increasing evidence of antifungal resistance in fungal populations that infect both humans and plant species has increased reliance on combination therapies and shown the need for new antifungal therapeutic targets to be investigated. Here, we review the roles of mitochondria and fungal respiration in pathogenesis and discuss the role of the Alternative Oxidase enzyme (Aox) in both human fungal pathogens and phytopathogens. Increasing evidence exists for Aox within mechanisms that underpin fungal virulence. Aox also plays important roles in adaptability that may prove useful within dual targeted fungal-specific therapeutic approaches. As improved fungal specific mitochondrial and Aox inhibitors are under development we may see this as an emerging target for future approaches to tackling the growing challenge of fungal infection.
Collapse
Affiliation(s)
| | - Lucian Duvenage
- CMM AFRICA Medical Mycology Research Unit, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Campbell W Gourlay
- Kent Fungal Group, School of Biosciences, University of Kent, Kent CT2 9HY, UK.
| |
Collapse
|
3
|
Li J, Yang S, Wu Y, Wang R, Liu Y, Liu J, Ye Z, Tang R, Whiteway M, Lv Q, Yan L. Alternative Oxidase: From Molecule and Function to Future Inhibitors. ACS OMEGA 2024; 9:12478-12499. [PMID: 38524433 PMCID: PMC10955580 DOI: 10.1021/acsomega.3c09339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/26/2024]
Abstract
In the respiratory chain of the majority of aerobic organisms, the enzyme alternative oxidase (AOX) functions as the terminal oxidase and has important roles in maintaining metabolic and signaling homeostasis in mitochondria. AOX endows the respiratory system with flexibility in the coupling among the carbon metabolism pathway, electron transport chain (ETC) activity, and ATP turnover. AOX allows electrons to bypass the main cytochrome pathway to restrict the generation of reactive oxygen species (ROS). The inhibition of AOX leads to oxidative damage and contributes to the loss of adaptability and viability in some pathogenic organisms. Although AOXs have recently been identified in several organisms, crystal structures and major functions still need to be explored. Recent work on the trypanosome alternative oxidase has provided a crystal structure of an AOX protein, which contributes to the structure-activity relationship of the inhibitors of AOX. Here, we review the current knowledge on the development, structure, and properties of AOXs, as well as their roles and mechanisms in plants, animals, algae, protists, fungi, and bacteria, with a special emphasis on the development of AOX inhibitors, which will improve the understanding of respiratory regulation in many organisms and provide references for subsequent studies of AOX-targeted inhibitors.
Collapse
Affiliation(s)
- Jiye Li
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
- Institute
of Medicinal Biotechnology, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shiyun Yang
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yujie Wu
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Ruina Wang
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yu Liu
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Jiacun Liu
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Zi Ye
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Renjie Tang
- Beijing
South Medical District of Chinese PLA General Hospital, Beijing 100072, China
| | - Malcolm Whiteway
- Department
of Biology, Concordia University, Montreal, H4B 1R6 Quebec, Canada
| | - Quanzhen Lv
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
- Basic
Medicine Innovation Center for Fungal Infectious Diseases, (Naval Medical University), Ministry of Education, Shanghai 200433, China
- Key
Laboratory of Biosafety Defense (Naval Medical University), Ministry
of Education, Shanghai 200433, China
- Shanghai
Key Laboratory of Medical Biodefense, Shanghai 200433, China
| | - Lan Yan
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
- Basic
Medicine Innovation Center for Fungal Infectious Diseases, (Naval Medical University), Ministry of Education, Shanghai 200433, China
- Key
Laboratory of Biosafety Defense (Naval Medical University), Ministry
of Education, Shanghai 200433, China
- Shanghai
Key Laboratory of Medical Biodefense, Shanghai 200433, China
| |
Collapse
|
4
|
Gao H, Zhou L, Zhang P, Wang Y, Qian X, Liu Y, Wu G. Filamentous Fungi-Derived Orsellinic Acid-Sesquiterpene Meroterpenoids: Fungal Sources, Chemical Structures, Bioactivities, and Biosynthesis. PLANTA MEDICA 2023; 89:1110-1124. [PMID: 37225133 DOI: 10.1055/a-2099-4932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Fungi-derived polyketide-terpenoid hybrids are important meroterpenoid natural products that possess diverse structure scaffolds with a broad spectrum of bioactivities. Herein, we focus on an ever-increasing group of meroterpenoids, orsellinic acid-sesquiterpene hybrids comprised of biosynthetic start unit orsellinic acid coupling to a farnesyl group or/and its modified cyclic products. The review entails the search of China National Knowledge Infrastructure (CNKI), Web of Science, Science Direct, Google Scholar, and PubMed databases up to June 2022. The key terms include "orsellinic acid", "sesquiterpene", "ascochlorin", "ascofuranone", and "Ascochyta viciae", which are combined with the structures of "ascochlorin" and "ascofuranone" drawn by the Reaxys and Scifinder databases. In our search, these orsellinic acid-sesquiterpene hybrids are mainly produced by filamentous fungi. Ascochlorin was the first compound reported in 1968 and isolated from filamentous fungus Ascochyta viciae (synonym: Acremonium egyptiacum; Acremonium sclerotigenum); to date, 71 molecules are discovered from various filamentous fungi inhabiting in a variety of ecological niches. As typical representatives of the hybrid molecules, the biosynthetic pathway of ascofuranone and ascochlorin are discussed. The group of meroterpenoid hybrids exhibits a broad arrange of bioactivities, as highlighted by targeting hDHODH (human dihydroorotate dehydrogenase) inhibition, antitrypanosomal, and antimicrobial activities. This review summarizes the findings related to the structures, fungal sources, bioactivities, and their biosynthesis from 1968 to June 2022.
Collapse
Affiliation(s)
- Hua Gao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Luning Zhou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, People's Republic of China
| | - Peng Zhang
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States
| | - Ying Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Xuan Qian
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Yujia Liu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Guangwei Wu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
5
|
Genome-scale RNA interference profiling of Trypanosoma brucei cell cycle progression defects. Nat Commun 2022; 13:5326. [PMID: 36088375 PMCID: PMC9464253 DOI: 10.1038/s41467-022-33109-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
Trypanosomatids, which include major pathogens of humans and livestock, are flagellated protozoa for which cell cycle controls and the underlying mechanisms are not completely understood. Here, we describe a genome-wide RNA-interference library screen for cell cycle defects in Trypanosoma brucei. We induced massive parallel knockdown, sorted the perturbed population using high-throughput flow cytometry, deep-sequenced RNAi-targets from each stage and digitally reconstructed cell cycle profiles at a genomic scale; also enabling data visualisation using an online tool ( https://tryp-cycle.pages.dev/ ). Analysis of several hundred genes that impact cell cycle progression reveals >100 flagellar component knockdowns linked to genome endoreduplication, evidence for metabolic control of the G1-S transition, surface antigen regulatory mRNA-binding protein knockdowns linked to G2M accumulation, and a putative nucleoredoxin required for both mitochondrial genome segregation and for mitosis. The outputs provide comprehensive functional genomic evidence for the known and novel machineries, pathways and regulators that coordinate trypanosome cell cycle progression.
Collapse
|
6
|
El-Khoury R, Rak M, Bénit P, Jacobs HT, Rustin P. Cyanide resistant respiration and the alternative oxidase pathway: A journey from plants to mammals. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148567. [PMID: 35500614 DOI: 10.1016/j.bbabio.2022.148567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 12/19/2022]
Abstract
In a large number of organisms covering all phyla, the mitochondrial respiratory chain harbors, in addition to the conventional elements, auxiliary proteins that confer adaptive metabolic plasticity. The alternative oxidase (AOX) represents one of the most studied auxiliary proteins, initially identified in plants. In contrast to the standard respiratory chain, the AOX mediates a thermogenic cyanide-resistant respiration; a phenomenon that has been of great interest for over 2 centuries in that energy is not conserved when electrons flow through it. Here we summarize centuries of studies starting from the early observations of thermogenicity in plants and the identification of cyanide resistant respiration, to the fascinating discovery of the AOX and its current applications in animals under normal and pathological conditions.
Collapse
Affiliation(s)
- Riyad El-Khoury
- American University of Beirut Medical Center, Pathology and Laboratory Medicine Department, Cairo Street, Hamra, Beirut, Lebanon
| | - Malgorzata Rak
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France
| | - Paule Bénit
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France
| | - Howard T Jacobs
- Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland; Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | - Pierre Rustin
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France.
| |
Collapse
|
7
|
Tauheed AM, Mamman M, Ahmed A, Suleiman MM, Balogun EO. Antitrypanosomal properties of Anogeissus leiocarpa extracts and their inhibitory effect on trypanosome alternative oxidase. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 2:100223. [PMID: 37378019 PMCID: PMC10295807 DOI: 10.1016/j.phyplu.2022.100223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Background African trypanosomiasis is a protozoan disease with huge socio-economic burden to sub-Saharan African exceeding US$4.6 annual loss. To mitigate the incidence of trypanosomal drug resistance, efforts are geared towards discovery of molecules, especially from natural products, with potential to inhibit important molecular target (trypanosome alternative oxidase, TAO) in trypanosomes that are critical to their survival. Method Crude methanol extract of Anogeissus leiocarpa was subjected to in vitro bioassay-guided antitrypanosomal assay to identify the most active extract with trypanocidal activity. The most active extract was run on a column chromatography yielding five fractions, F1-F5. The fractions were assayed for inhibitory effect on TAO. The most promising TAO inhibitor was subjected to antitrypanosomal evaluation by trypanosome count, drug incubation infectivity test (DIIT) and in vivo studies. Gas chromatography-mass spectrometry (GC-MS) was used to identify and quantify phytochemical constituents of the potential TAO-inhibiting fraction. Results Ethyl acetate extract (EtOAc) significantly (p<0.05) produced trypanocidal effect and was the most active extract. Of the five fractions, only F4 significantly (p<0.05) inhibited TAO compared to the control. F4 completely immobilised the trypanosomes up to 0.5 μg/μl, yielding an EC50 of 0.024 μg/μl compared to the 0.502 μg/μl of diminazene aceturate positive control group. The DIIT showed that F4 was significantly (p<0.05) potent up to 0.1 μg/μl. F4 significantly (p<0.05) suppressed parasite multiplication in systemic circulation of the treated rats and significantly (p<0.05) maintained high PCV when compared to the 5% DMSO group. Furthermore, F4 significantly (p<0.05) lowered serum concentrations of malondialdehyde. Phytoconstituents identified by the GC-MS include tetradecene; cetene; 3-(benzylthio) acrylic acid, methyl ester; 1-octadecene; 9-heptadecanone; hexadecanoic acid, methyl ester; dibutyl phthalate; eicosene; octadecenoic acid, methyl ester; oleic acid; 2-methyl-Z,Z-3,13-octadecadienol; 1-docosene; 3-phenylthiane, s-oxide; phenol, 3-methyl; phthalic acid, di(2-propylpentyl) ester and 1,4-benzenedicarboxylic acid, bis (2-ethylhexyl) ester. Conclusion F4 from EtOAc contains six carbohydrates (9.58%), two free fatty acids (6.48%), five fatty acid esters (27.73%), two aromatic compounds (50.63%) and one organosulphide (5.61%). It inhibited TAO and demonstrated antitrypanosomal effects.
Collapse
Affiliation(s)
- Abdullah M. Tauheed
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Mohammed Mamman
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Abubakar Ahmed
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Mohammed M. Suleiman
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Emmanuel O. Balogun
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
8
|
Zíková A. Mitochondrial adaptations throughout the Trypanosoma brucei life cycle. J Eukaryot Microbiol 2022; 69:e12911. [PMID: 35325490 DOI: 10.1111/jeu.12911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 12/01/2022]
Abstract
The unicellular parasite Trypanosoma brucei has a digenetic life cycle that alternates between a mammalian host and an insect vector. During programmed development, this extracellular parasite encounters strikingly different environments that determine its energy metabolism. Functioning as a bioenergetic, biosynthetic, and signaling center, the single mitochondrion of T. brucei is drastically remodeled to support the dynamic cellular demands of the parasite. This manuscript will provide an up-to-date overview of how the distinct T. brucei developmental stages differ in their mitochondrial metabolic and bioenergetic pathways, with a focus on the electron transport chain, proline oxidation, TCA cycle, acetate production, and ATP generation. Although mitochondrial metabolic rewiring has always been simply viewed as a consequence of the differentiation process, the possibility that certain mitochondrial activities reinforce parasite differentiation will be explored.
Collapse
Affiliation(s)
- Alena Zíková
- Biology Centre CAS, Institute of Parasitology, University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
| |
Collapse
|
9
|
Partially Purified Leaf Fractions of Azadirachta indica Inhibit Trypanosome Alternative Oxidase and Exert Antitrypanosomal Effects on Trypanosoma congolense. Acta Parasitol 2022; 67:120-129. [PMID: 34156634 PMCID: PMC8217781 DOI: 10.1007/s11686-021-00437-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022]
Abstract
Introduction Trypanosomiasis is a neglected disease of humans and livestock caused by single-celled flagellated haemo-protozoan parasites belonging to the genus Trypanosoma. Purpose Widespread resistance to trypanocidal drugs creates urgent need for new, more effective drugs with potential to inhibit important trypanosome molecular targets. Methods Nine column chromatographic, partially purified leaf fractions of Azadirachta indica (AIF) were subjected to trypanosome alternative oxidase (TAO) inhibition assay using ubiquinol oxidase assay. The potent TAO inhibitors were evaluated for trypanocidal activities against T. congolense in rat model using in vitro, ex vivo, and in vivo assays. Complete cessation or reduction in parasite motility was scored from 0 (no parasite) to 6 (greater than or equal to 6 × 107 trypanosomes/milliliter of blood), and was used to evaluate the efficacy of in vitro treatments. Results Only AIF1, AIF2, and AIF5 significantly inhibited TAO. AIF1 and AIF5 produced significant, dose-dependent suppression of parasite motility reaching score zero within 1 h with EC50 of 0.005 and 0.004 µg/µL, respectively, while trypanosome-laden blood was still at score six with an EC50 of 44,086 µg/µL. Mice inoculated with the concentrations at scores 0 and 1 (1–2 moribund parasites) at the end of the experiment did not develop parasitaemia. The two fractions significantly (p < 0.05) lowered parasite burden, with the AIF5 exhibiting highest in vivo trypanocidal effects. Packed cell volume was significantly higher in AIF1 (p < 0.05) and AIF5 (p < 0.001) groups compared to DMSO-treated group. Only AIF5 significantly (p < 0.05) lowered malondialdehyde. Conclusion AIF1 and AIF5 offer prospects for the discovery of TAO inhibitor(s).
Collapse
|
10
|
Cisneros D, Cueto-Díaz EJ, Medina-Gil T, Chevillard R, Bernal-Fraile T, López-Sastre R, Aldfer MM, Ungogo MA, Elati HAA, Arai N, Otani M, Matsushiro S, Kojima C, Ebiloma GU, Shiba T, de Koning HP, Dardonville C. Imidazoline- and Benzamidine-Based Trypanosome Alternative Oxidase Inhibitors: Synthesis and Structure-Activity Relationship Studies. ACS Med Chem Lett 2022; 13:312-318. [PMID: 35178188 PMCID: PMC8842630 DOI: 10.1021/acsmedchemlett.1c00717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/24/2022] [Indexed: 01/03/2023] Open
Abstract
![]()
The trypanosome alternative
oxidase (TAO), a mitochondrial enzyme
involved in the respiration of the bloodstream form trypomastigotes
of Trypanosoma brucei, is a validated
drug target against African trypanosomes. Earlier series of TAO inhibitors
having a 2,4-dihydroxy-6-methylbenzoic acid scaffold (“head”)
and a triphenylphosphonium or quinolin-1-ium cation as a mitochondrion-targeting
group (“tail”) were shown to be nanomolar inhibitors
in enzymatic and cellular assays. We investigated here the effect
of different mitochondrion-targeting cations and other scaffold modifications
on the in vitro activity of this class of inhibitors. Low micromolar
range activities were obtained, and the structure–activity
relationship studies showed that modulation of the tail region with
polar substituents is generally detrimental to the enzymatic and cellular
activity of TAO inhibitors.
Collapse
Affiliation(s)
- David Cisneros
- Instituto de Química Médica, IQM−CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | | | - Tania Medina-Gil
- Instituto de Química Médica, IQM−CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Rebecca Chevillard
- Instituto de Química Médica, IQM−CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Teresa Bernal-Fraile
- Instituto de Química Médica, IQM−CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Ramón López-Sastre
- Instituto de Química Médica, IQM−CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Mustafa M. Aldfer
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Marzuq A. Ungogo
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Hamza A. A. Elati
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Natsumi Arai
- Graduate School of Science and Technology, Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Momoka Otani
- Graduate School of Science and Technology, Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Shun Matsushiro
- Graduate School of Science and Technology, Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Chiaki Kojima
- Graduate School of Science and Technology, Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Godwin U. Ebiloma
- Graduate School of Science and Technology, Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom
| | - Tomoo Shiba
- Graduate School of Science and Technology, Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Harry P. de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | | |
Collapse
|
11
|
Pedra-Rezende Y, Bombaça ACS, Menna-Barreto/ RFS. Is the mitochondrion a promising drug target in trypanosomatids? Mem Inst Oswaldo Cruz 2022; 117:e210379. [PMID: 35195164 PMCID: PMC8862782 DOI: 10.1590/0074-02760210379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
|
12
|
Boes DM, Godoy-Hernandez A, McMillan DGG. Peripheral Membrane Proteins: Promising Therapeutic Targets across Domains of Life. MEMBRANES 2021; 11:346. [PMID: 34066904 PMCID: PMC8151925 DOI: 10.3390/membranes11050346] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 11/16/2022]
Abstract
Membrane proteins can be classified into two main categories-integral and peripheral membrane proteins-depending on the nature of their membrane interaction. Peripheral membrane proteins are highly unique amphipathic proteins that interact with the membrane indirectly, using electrostatic or hydrophobic interactions, or directly, using hydrophobic tails or GPI-anchors. The nature of this interaction not only influences the location of the protein in the cell, but also the function. In addition to their unique relationship with the cell membrane, peripheral membrane proteins often play a key role in the development of human diseases such as African sleeping sickness, cancer, and atherosclerosis. This review will discuss the membrane interaction and role of periplasmic nitrate reductase, CymA, cytochrome c, alkaline phosphatase, ecto-5'-nucleotidase, acetylcholinesterase, alternative oxidase, type-II NADH dehydrogenase, and dihydroorotate dehydrogenase in certain diseases. The study of these proteins will give new insights into their function and structure, and may ultimately lead to ground-breaking advances in the treatment of severe diseases.
Collapse
Affiliation(s)
- Deborah M. Boes
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, NL-2629 HZ Delft, The Netherlands; (D.M.B.); (A.G.-H.)
| | - Albert Godoy-Hernandez
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, NL-2629 HZ Delft, The Netherlands; (D.M.B.); (A.G.-H.)
| | - Duncan G. G. McMillan
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, NL-2629 HZ Delft, The Netherlands; (D.M.B.); (A.G.-H.)
- School of Fundamental Sciences, Massey University, Palmerston North, Private Bag 11 222, New Zealand
| |
Collapse
|
13
|
Cueto-Díaz EJ, Ebiloma GU, Alfayez IA, Ungogo MA, Lemgruber L, González-García MC, Giron MD, Salto R, Fueyo-González FJ, Shiba T, González-Vera JA, Ruedas Rama MJ, Orte A, de Koning HP, Dardonville C. Synthesis, biological, and photophysical studies of molecular rotor-based fluorescent inhibitors of the trypanosome alternative oxidase. Eur J Med Chem 2021; 220:113470. [PMID: 33940464 DOI: 10.1016/j.ejmech.2021.113470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/26/2021] [Accepted: 04/10/2021] [Indexed: 11/28/2022]
Abstract
We have recently reported on the development and trypanocidal activity of a class of inhibitors of Trypanosome Alternative Oxidase (TAO) that are targeted to the mitochondrial matrix by coupling to lipophilic cations via C14 linkers to enable optimal interaction with the enzyme's active site. This strategy resulted in a much-enhanced anti-parasite effect, which we ascribed to the greater accumulation of the compound at the location of the target protein, i.e. the mitochondrion, but to date this localization has not been formally established. We therefore synthesized a series of fluorescent analogues to visualize accumulation and distribution within the cell. The fluorophore chosen, julolidine, has the remarkable extra feature of being able to function as a viscosity sensor and might thus additionally act as a probe of the cellular glycerol that is expected to be produced when TAO is inhibited. Two series of fluorescent inhibitor conjugates incorporating a cationic julolidine-based viscosity sensor were synthesized and their photophysical and biological properties were studied. These probes display a red emission, with a high signal-to-noise ratio (SNR), using both single- and two-photon excitation. Upon incubation with T. brucei and mammalian cells, the fluorescent inhibitors 1a and 2a were taken up selectively in the mitochondria as shown by live-cell imaging. Efficient partition of 1a in functional isolated (rat liver) mitochondria was estimated to 66 ± 20% of the total. The compounds inhibited recombinant TAO enzyme in the submicromolar (1a, 2c, 2d) to low nanomolar range (2a) and were effective against WT and multidrug-resistant trypanosome strains (B48, AQP1-3 KO) in the submicromolar range. Good selectivity (SI > 29) over mammalian HEK cells was observed. However, no viscosity-related shift could be detected, presumably because the glycerol was produced cytosolically, and released through aquaglyceroporins, whereas the probe was located, virtually exclusively, in the trypanosome's mitochondrion.
Collapse
Affiliation(s)
- Eduardo J Cueto-Díaz
- Instituto de Química Médica, IQM-CSIC, Juan de la Cierva 3, E-28006, Madrid, Spain
| | - Godwin U Ebiloma
- Graduate School of Science and Technology, Department of Applied Biology, Kyoto Institute of Technology, Kyoto, 606-8585, Japan; Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom
| | - Ibrahim A Alfayez
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Marzuq A Ungogo
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Leandro Lemgruber
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - M Carmen González-García
- Departamento de Fisicoquimica, Facultad de Farmacia, Universidad de Granada, C. U. Cartuja, E-18071, Granada, Spain
| | - Maria D Giron
- Departamento de Bioquimica y Biologia Molecular II. Facultad de Farmacia, Universidad de Granada, C. U. Cartuja, E-18071, Granada, Spain
| | - Rafael Salto
- Departamento de Bioquimica y Biologia Molecular II. Facultad de Farmacia, Universidad de Granada, C. U. Cartuja, E-18071, Granada, Spain
| | | | - Tomoo Shiba
- Graduate School of Science and Technology, Department of Applied Biology, Kyoto Institute of Technology, Kyoto, 606-8585, Japan
| | - Juan A González-Vera
- Departamento de Fisicoquimica, Facultad de Farmacia, Universidad de Granada, C. U. Cartuja, E-18071, Granada, Spain
| | - Maria José Ruedas Rama
- Departamento de Fisicoquimica, Facultad de Farmacia, Universidad de Granada, C. U. Cartuja, E-18071, Granada, Spain
| | - Angel Orte
- Departamento de Fisicoquimica, Facultad de Farmacia, Universidad de Granada, C. U. Cartuja, E-18071, Granada, Spain
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | |
Collapse
|
14
|
Weak O 2 binding and strong H 2O 2 binding at the non-heme diiron center of trypanosome alternative oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148356. [PMID: 33385341 DOI: 10.1016/j.bbabio.2020.148356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/20/2022]
Abstract
Alternative oxidase (AOX) catalyzes the four-electron reduction of dioxygen to water as an additional terminal oxidase, and the catalytic reaction is critical for the parasite to survive in its bloodstream form. Recently, the X-ray crystal structure of trypanosome alternative oxidase (TAO) complexed with ferulenol was reported and the molecular structure of the non-heme diiron center was determined. The binding of O2 was a unique side-on type compared to other iron proteins. In order to characterize the O2 binding state of TAO, the O2 binding states were searched at a quantum mechanics/molecular mechanics (QM/MM) theoretical level in the present study. We found that the most stable O2 binding state is the end-on type, and the binding states of the side-on type are higher in energy. Based on the binding energies and electronic structure analyses, O2 binds very weakly to the TAO iron center (ΔE =6.7 kcal mol-1) in the electronic state of Fe(II)…OO, not in the suggested charge transferred state such as the superoxide state (Fe(III)OO· -) as seen in hemerythrin. Coordination of other ligands such as water, Cl-, CN-, CO, N3- and H2O2 was also examined, and H2O2 was found to bind most strongly to the Fe(II) site by ΔE = 14.0 kcal mol-1. This was confirmed experimentally through the measurement of ubiquinol oxidase activity of TAO and Cryptosporidium parvum AOX which was found to be inhibited by H2O2 in a dose-dependent and reversible manner.
Collapse
|
15
|
Rosell-Hidalgo A, Young L, Moore AL, Ghafourian T. QSAR and molecular docking for the search of AOX inhibitors: a rational drug discovery approach. J Comput Aided Mol Des 2020; 35:245-260. [PMID: 33289903 PMCID: PMC7904559 DOI: 10.1007/s10822-020-00360-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 11/12/2020] [Indexed: 11/24/2022]
Abstract
The alternative oxidase (AOX) is a monotopic diiron carboxylate protein that catalyses the oxidation of ubiquinol and the reduction of oxygen to water. Although a number of AOX inhibitors have been discovered, little is still known about the ligand–protein interaction and essential chemical characteristics of compounds required for a potent inhibition. Furthermore, owing to the rapidly growing resistance to existing inhibitors, new compounds with improved potency and pharmacokinetic properties are urgently required. In this study we used two computational approaches, ligand–protein docking and Quantitative Structure–Activity Relationships (QSAR) to investigate binding of AOX inhibitors to the enzyme and the molecular characteristics required for inhibition. Docking studies followed by protein–ligand interaction fingerprint (PLIF) analysis using the AOX enzyme and the mutated analogues revealed the importance of the residues Leu 122, Arg 118 and Thr 219 within the hydrophobic cavity. QSAR analysis, using stepwise regression analysis with experimentally obtained IC50 values as the response variable, resulted in a multiple regression model with a good prediction accuracy. The model highlighted the importance of the presence of hydrogen bonding acceptor groups on specific positions of the aromatic ring of ascofuranone derivatives, acidity of the compounds, and a large linker group on the compounds on the inhibitory effect of AOX.
Collapse
Affiliation(s)
- Alicia Rosell-Hidalgo
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Luke Young
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Anthony L Moore
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Taravat Ghafourian
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK. .,School of Life Sciences, Faculty of Creative Arts, Technologies and Science, University of Bedfordshire, Luton, Bedfordshire, LU1 3JU, UK.
| |
Collapse
|
16
|
Costa PC, Barsottini MR, Vieira ML, Pires BA, Evangelista JS, Zeri AC, Nascimento AF, Silva JS, Carazzolle MF, Pereira GA, Sforça ML, Miranda PC, Rocco SA. N-Phenylbenzamide derivatives as alternative oxidase inhibitors: Synthesis, molecular properties, 1H-STD NMR, and QSAR. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Pereira CA, Sayé M, Reigada C, Silber AM, Labadie GR, Miranda MR, Valera-Vera E. Computational approaches for drug discovery against trypanosomatid-caused diseases. Parasitology 2020; 147:611-633. [PMID: 32046803 PMCID: PMC10317681 DOI: 10.1017/s0031182020000207] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022]
Abstract
During three decades, only about 20 new drugs have been developed for malaria, tuberculosis and all neglected tropical diseases (NTDs). This critical situation was reached because NTDs represent only 10% of health research investments; however, they comprise about 90% of the global disease burden. Computational simulations applied in virtual screening (VS) strategies are very efficient tools to identify pharmacologically active compounds or new indications for drugs already administered for other diseases. One of the advantages of this approach is the low time-consuming and low-budget first stage, which filters for testing experimentally a group of candidate compounds with high chances of binding to the target and present trypanocidal activity. In this work, we review the most common VS strategies that have been used for the identification of new drugs with special emphasis on those applied to trypanosomiasis and leishmaniasis. Computational simulations based on the selected protein targets or their ligands are explained, including the method selection criteria, examples of successful VS campaigns applied to NTDs, a list of validated molecular targets for drug development and repositioned drugs for trypanosomatid-caused diseases. Thereby, here we present the state-of-the-art of VS and drug repurposing to conclude pointing out the future perspectives in the field.
Collapse
Affiliation(s)
- Claudio A. Pereira
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Melisa Sayé
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Chantal Reigada
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Ariel M. Silber
- Laboratory of Biochemistry of Tryps – LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Guillermo R. Labadie
- Instituto de Química Rosario (IQUIR-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Mariana R. Miranda
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Edward Valera-Vera
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| |
Collapse
|
18
|
Dickie EA, Giordani F, Gould MK, Mäser P, Burri C, Mottram JC, Rao SPS, Barrett MP. New Drugs for Human African Trypanosomiasis: A Twenty First Century Success Story. Trop Med Infect Dis 2020; 5:tropicalmed5010029. [PMID: 32092897 PMCID: PMC7157223 DOI: 10.3390/tropicalmed5010029] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/23/2022] Open
Abstract
The twentieth century ended with human African trypanosomiasis (HAT) epidemics raging across many parts of Africa. Resistance to existing drugs was emerging, and many programs aiming to contain the disease had ground to a halt, given previous success against HAT and the competing priorities associated with other medical crises ravaging the continent. A series of dedicated interventions and the introduction of innovative routes to develop drugs, involving Product Development Partnerships, has led to a dramatic turnaround in the fight against HAT caused by Trypanosoma brucei gambiense. The World Health Organization have been able to optimize the use of existing tools to monitor and intervene in the disease. A promising new oral medication for stage 1 HAT, pafuramidine maleate, ultimately failed due to unforeseen toxicity issues. However, the clinical trials for this compound demonstrated the possibility of conducting such trials in the resource-poor settings of rural Africa. The Drugs for Neglected Disease initiative (DNDi), founded in 2003, has developed the first all oral therapy for both stage 1 and stage 2 HAT in fexinidazole. DNDi has also brought forward another oral therapy, acoziborole, potentially capable of curing both stage 1 and stage 2 disease in a single dosing. In this review article, we describe the remarkable successes in combating HAT through the twenty first century, bringing the prospect of the elimination of this disease into sight.
Collapse
Affiliation(s)
- Emily A. Dickie
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK; (E.A.D.); (F.G.); (M.K.G.)
| | - Federica Giordani
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK; (E.A.D.); (F.G.); (M.K.G.)
| | - Matthew K. Gould
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK; (E.A.D.); (F.G.); (M.K.G.)
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland; (P.M.); (C.B.)
| | - Christian Burri
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland; (P.M.); (C.B.)
- University of Basel, Petersplatz 1, 4000 Basel, Switzerland
| | - Jeremy C. Mottram
- York Biomedical Research Institute, Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK;
| | - Srinivasa P. S. Rao
- Novartis Institute for Tropical Diseases, 5300 Chiron Way, Emeryville, CA 94608, USA;
| | - Michael P. Barrett
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK; (E.A.D.); (F.G.); (M.K.G.)
- Correspondence:
| |
Collapse
|
19
|
Balogun EO, Inaoka DK, Shiba T, Tsuge C, May B, Sato T, Kido Y, Nara T, Aoki T, Honma T, Tanaka A, Inoue M, Matsuoka S, Michels PAM, Watanabe YI, Moore AL, Harada S, Kita K. Discovery of trypanocidal coumarins with dual inhibition of both the glycerol kinase and alternative oxidase of Trypanosoma brucei brucei. FASEB J 2019; 33:13002-13013. [PMID: 31525300 DOI: 10.1096/fj.201901342r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
African trypanosomiasis, sleeping sickness in humans or nagana in animals, is a potentially fatal neglected tropical disease and a threat to 65 million human lives and 100 million small and large livestock animals in sub-Saharan Africa. Available treatments for this devastating disease are few and have limited efficacy, prompting the search for new drug candidates. Simultaneous inhibition of the trypanosomal glycerol kinase (TGK) and trypanosomal alternative oxidase (TAO) is considered a validated strategy toward the development of new drugs. Our goal is to develop a TGK-specific inhibitor for coadministration with ascofuranone (AF), the most potent TAO inhibitor. Here, we report on the identification of novel compounds with inhibitory potency against TGK. Importantly, one of these compounds (compound 17) and its derivatives (17a and 17b) killed trypanosomes even in the absence of AF. Inhibition kinetics revealed that derivative 17b is a mixed-type and competitive inhibitor for TGK and TAO, respectively. Structural data revealed the molecular basis of this dual inhibitory action, which, in our opinion, will aid in the successful development of a promising drug to treat trypanosomiasis. Although the EC50 of compound 17b against trypanosome cells was 1.77 µM, it had no effect on cultured human cells, even at 50 µM.-Balogun, E. O., Inaoka, D. K., Shiba, T., Tsuge, C., May, B., Sato, T., Kido, Y., Nara, T., Aoki, T., Honma, T., Tanaka, A., Inoue, M., Matsuoka, S., Michels, P. A. M., Watanabe, Y.-I., Moore, A. L., Harada, S., Kita, K. Discovery of trypanocidal coumarins with dual inhibition of both the glycerol kinase and alternative oxidase of Trypanosoma brucei brucei.
Collapse
Affiliation(s)
- Emmanuel Oluwadare Balogun
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria.,Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daniel Ken Inaoka
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,School of Tropical Medicine and Global Health Nagasaki University, Nagasaki, Japan.,Department of Molecular Infection Dynamics, Shionogi Global Infectious Disease Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Tomoo Shiba
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Chiaki Tsuge
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Benjamin May
- Biochemistry and Medicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Tomohiro Sato
- Systems and Structural Biology Center, Riken, Yokohama, Japan
| | - Yasutoshi Kido
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria.,Department of Parasitology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Takeshi Nara
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takashi Aoki
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Tokyo, Japan
| | - Teruki Honma
- Systems and Structural Biology Center, Riken, Yokohama, Japan
| | - Akiko Tanaka
- Systems and Structural Biology Center, Riken, Yokohama, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigeru Matsuoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Paul A M Michels
- Centre for Immunity, Infection, and Evolution School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Yoh-Ichi Watanabe
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Anthony L Moore
- Biochemistry and Medicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Shigeharu Harada
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,School of Tropical Medicine and Global Health Nagasaki University, Nagasaki, Japan.,Department of Molecular Infection Dynamics, Shionogi Global Infectious Disease Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| |
Collapse
|
20
|
The potential of respiration inhibition as a new approach to combat human fungal pathogens. Curr Genet 2019; 65:1347-1353. [PMID: 31172256 PMCID: PMC6820612 DOI: 10.1007/s00294-019-01001-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023]
Abstract
The respiratory chain has been proposed as an attractive target for the development of new therapies to tackle human fungal pathogens. This arises from the presence of fungal-specific electron transport chain components and links between respiration and the control of virulence traits in several pathogenic species. However, as the physiological roles of mitochondria remain largely undetermined with respect to pathogenesis, its value as a potential new drug target remains to be determined. The use of respiration inhibitors as fungicides is well developed but has been hampered by the emergence of rapid resistance to current inhibitors. In addition, recent data suggest that adaptation of the human fungal pathogen, Candida albicans, to respiration inhibitors can enhance virulence traits such as yeast-to-hypha transition and cell wall organisation. We conclude that although respiration holds promise as a target for the development of new therapies to treat human fungal infections, we require a more detailed understanding of the role that mitochondria play in stress adaption and virulence.
Collapse
|
21
|
Giannakopoulou E, Pardali V, Frakolaki E, Siozos V, Myrianthopoulos V, Mikros E, Taylor MC, Kelly JM, Vassilaki N, Zoidis G. Scaffold hybridization strategy towards potent hydroxamate-based inhibitors of Flaviviridae viruses and Trypanosoma species. MEDCHEMCOMM 2019; 10:991-1006. [PMID: 31303998 DOI: 10.1039/c9md00200f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
Infections with Flaviviridae viruses, such as hepatitis C virus (HCV) and dengue virus (DENV) pose global health threats. Infected individuals are at risk of developing chronic liver failure or haemorrhagic fever respectively, often with a fatal outcome if left untreated. Diseases caused by tropical parasites of the Trypanosoma species, T. brucei and T. cruzi, constitute significant socioeconomic burden in sub-Saharan Africa and continental Latin America, yet drug development is under-funded. Anti-HCV chemotherapy is associated with severe side effects and high cost, while dengue has no clinically approved therapy and antiparasitic drugs are outdated and difficult to administer. Moreover, drug resistance is an emerging concern. Consequently, the need for new revolutionary chemotherapies is urgent. By utilizing a molecular framework combination approach, we combined two distinct chemical entities with proven antiviral and trypanocidal activity into a novel hybrid scaffold attached by an acetohydroxamic acid group (CH2CONHOH), aiming at derivatives with dual activity. The novel spiro-carbocyclic substituted hydantoin analogues were rationally designed, synthesized and evaluated for their potency against three HCV genotypes (1b, 3a, 4a), DENV and two Trypanosoma species (T. brucei, T. cruzi). They exhibited significant EC50 values and remarkable selectivity indices. Several modifications were undertaken to further explore the structure activity relationships (SARs) and confirm the pivotal role of the acetohydroxamic acid metal binding group.
Collapse
Affiliation(s)
- Erofili Giannakopoulou
- School of Health Sciences , Faculty of Pharmacy , Department of Pharmaceutical Chemistry , National and Kapodistrian University of Athens , Panepistimiopolis-Zografou , GR-15771 Athens , Greece .
| | - Vasiliki Pardali
- School of Health Sciences , Faculty of Pharmacy , Department of Pharmaceutical Chemistry , National and Kapodistrian University of Athens , Panepistimiopolis-Zografou , GR-15771 Athens , Greece .
| | - Efseveia Frakolaki
- Molecular Virology Laboratory , Hellenic Pasteur Institute , Vas. Sofias Avenue , GR-11521 , Athens , Greece
| | - Vasileios Siozos
- Molecular Virology Laboratory , Hellenic Pasteur Institute , Vas. Sofias Avenue , GR-11521 , Athens , Greece
| | - Vassilios Myrianthopoulos
- School of Health Sciences , Faculty of Pharmacy , Department of Pharmaceutical Chemistry , National and Kapodistrian University of Athens , Panepistimiopolis-Zografou , GR-15771 Athens , Greece .
| | - Emmanuel Mikros
- School of Health Sciences , Faculty of Pharmacy , Department of Pharmaceutical Chemistry , National and Kapodistrian University of Athens , Panepistimiopolis-Zografou , GR-15771 Athens , Greece .
| | - Martin C Taylor
- Department of Pathogen Molecular Biology , London School of Hygiene and Tropical Medicine , Keppel Street , London WC1E 7HT , UK
| | - John M Kelly
- Department of Pathogen Molecular Biology , London School of Hygiene and Tropical Medicine , Keppel Street , London WC1E 7HT , UK
| | - Niki Vassilaki
- Molecular Virology Laboratory , Hellenic Pasteur Institute , Vas. Sofias Avenue , GR-11521 , Athens , Greece
| | - Grigoris Zoidis
- School of Health Sciences , Faculty of Pharmacy , Department of Pharmaceutical Chemistry , National and Kapodistrian University of Athens , Panepistimiopolis-Zografou , GR-15771 Athens , Greece .
| |
Collapse
|
22
|
Barsottini MR, Pires BA, Vieira ML, Pereira JG, Costa PC, Sanitá J, Coradini A, Mello F, Marschalk C, Silva EM, Paschoal D, Figueira A, Rodrigues FH, Cordeiro AT, Miranda PC, Oliveira PS, Sforça ML, Carazzolle MF, Rocco SA, Pereira GA. Synthesis and testing of novel alternative oxidase (AOX) inhibitors with antifungal activity against Moniliophthora perniciosa (Stahel), the causal agent of witches' broom disease of cocoa, and other phytopathogens. PEST MANAGEMENT SCIENCE 2019; 75:1295-1303. [PMID: 30350447 DOI: 10.1002/ps.5243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/18/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Moniliophthora perniciosa (Stahel) Aime & Phillips-Mora is the causal agent of witches' broom disease (WBD) of cocoa (Theobroma cacao L.) and a threat to the chocolate industry. The membrane-bound enzyme alternative oxidase (AOX) is critical for M. perniciosa virulence and resistance to fungicides, which has also been observed in other phytopathogens. Notably AOX is an escape mechanism from strobilurins and other respiration inhibitors, making AOX a promising target for controlling WBD and other fungal diseases. RESULTS We present the first study aimed at developing novel fungal AOX inhibitors. N-Phenylbenzamide (NPD) derivatives were screened in the model yeast Pichia pastoris through oxygen consumption and growth measurements. The most promising AOX inhibitor (NPD 7j-41) was further characterized and displayed better activity than the classical AOX inhibitor SHAM in vitro against filamentous fugal phytopathogens, such as M. perniciosa, Sclerotinia sclerotiorum and Venturia pirina. We demonstrate that 7j-41 inhibits M. perniciosa spore germination and prevents WBD symptom appearance in infected plants. Finally, a structural model of P. pastoris AOX was created and used in ligand structure-activity relationships analyses. CONCLUSION We present novel fungal AOX inhibitors with antifungal activity against relevant phytopathogens. We envisage the development of novel antifungal agents to secure food production. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mario Ro Barsottini
- Department of Genetics, Evolution, Microbiology and Imunology, Genomics and bioEnergy Laboratory, Institute of Biology, State University of Campinas, Campinas, Brazil
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Bárbara A Pires
- Department of Genetics, Evolution, Microbiology and Imunology, Genomics and bioEnergy Laboratory, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Maria L Vieira
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - José Gc Pereira
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Paulo Cs Costa
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- Department of Organic Chemistry, Institute of Chemistry, State University of Campinas, Campinas, Brazil
| | - Jaqueline Sanitá
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Alessandro Coradini
- Department of Genetics, Evolution, Microbiology and Imunology, Genomics and bioEnergy Laboratory, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Fellipe Mello
- Department of Genetics, Evolution, Microbiology and Imunology, Genomics and bioEnergy Laboratory, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Cidnei Marschalk
- Department of Genetics, Evolution, Microbiology and Imunology, Genomics and bioEnergy Laboratory, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Eder M Silva
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Daniele Paschoal
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Antonio Figueira
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Fábio Hs Rodrigues
- School of Life Sciences, University of Warwick - Gibbet Hill Campus, Coventry, United Kingdom
| | - Artur T Cordeiro
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Paulo Cml Miranda
- Department of Organic Chemistry, Institute of Chemistry, State University of Campinas, Campinas, Brazil
| | - Paulo Sl Oliveira
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Maurício L Sforça
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Marcelo F Carazzolle
- Department of Genetics, Evolution, Microbiology and Imunology, Genomics and bioEnergy Laboratory, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Silvana A Rocco
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Gonçalo Ag Pereira
- Department of Genetics, Evolution, Microbiology and Imunology, Genomics and bioEnergy Laboratory, Institute of Biology, State University of Campinas, Campinas, Brazil
| |
Collapse
|
23
|
Ebiloma GU, Balogun EO, Cueto-Díaz EJ, de Koning HP, Dardonville C. Alternative oxidase inhibitors: Mitochondrion-targeting as a strategy for new drugs against pathogenic parasites and fungi. Med Res Rev 2019; 39:1553-1602. [PMID: 30693533 DOI: 10.1002/med.21560] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/07/2018] [Accepted: 12/08/2018] [Indexed: 12/11/2022]
Abstract
The alternative oxidase (AOX) is a ubiquitous terminal oxidase of plants and many fungi, catalyzing the four-electron reduction of oxygen to water alongside the cytochrome-based electron transfer chain. Unlike the classical electron transfer chain, however, the activity of AOX does not generate adenosine triphosphate but has functions such as thermogenesis and stress response. As it lacks a mammalian counterpart, it has been investigated intensely in pathogenic fungi. However, it is in African trypanosomes, which lack cytochrome-based respiration in their infective stages, that trypanosome alternative oxidase (TAO) plays the central and essential role in their energy metabolism. TAO was validated as a drug target decades ago and among the first inhibitors to be identified was salicylhydroxamic acid (SHAM), which produced the expected trypanocidal effects, especially when potentiated by coadministration with glycerol to inhibit anaerobic energy metabolism as well. However, the efficacy of this combination was too low to be of practical clinical use. The antibiotic ascofuranone (AF) proved a much stronger TAO inhibitor and was able to cure Trypanosoma vivax infections in mice without glycerol and at much lower doses, providing an important proof of concept milestone. Systematic efforts to improve the SHAM and AF scaffolds, aided with the elucidation of the TAO crystal structure, provided detailed structure-activity relationship information and reinvigorated the drug discovery effort. Recently, the coupling of mitochondrion-targeting lipophilic cations to TAO inhibitors has dramatically improved drug targeting and trypanocidal activity while retaining target protein potency. These developments appear to have finally signposted the way to preclinical development of TAO inhibitors.
Collapse
Affiliation(s)
- Godwin U Ebiloma
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Emmanuel O Balogun
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria.,Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
24
|
Murphy MP, Hartley RC. Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov 2018; 17:865-886. [PMID: 30393373 DOI: 10.1038/nrd.2018.174] [Citation(s) in RCA: 492] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Although the development of mitochondrial therapies has largely focused on diseases caused by mutations in mitochondrial DNA or in nuclear genes encoding mitochondrial proteins, it has been found that mitochondrial dysfunction also contributes to the pathology of many common disorders, including neurodegeneration, metabolic disease, heart failure, ischaemia-reperfusion injury and protozoal infections. Mitochondria therefore represent an important drug target for these highly prevalent diseases. Several strategies aimed at therapeutically restoring mitochondrial function are emerging, and a small number of agents have entered clinical trials. This Review discusses the opportunities and challenges faced for the further development of mitochondrial pharmacology for common pathologies.
Collapse
Affiliation(s)
- Michael P Murphy
- Medical Research Council (MRC) Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
25
|
Meco-Navas A, Ebiloma GU, Martín-Domínguez A, Martínez-Benayas I, Cueto-Díaz EJ, Alhejely AS, Balogun EO, Saito M, Matsui M, Arai N, Shiba T, Harada S, de Koning HP, Dardonville C. SAR of 4-Alkoxybenzoic Acid Inhibitors of the Trypanosome Alternative Oxidase. ACS Med Chem Lett 2018; 9:923-928. [PMID: 30258542 DOI: 10.1021/acsmedchemlett.8b00282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/31/2018] [Indexed: 11/30/2022] Open
Abstract
The SAR of 4-hydroxybenzaldehyde inhibitors of the trypanosome alternative oxidase (TAO), a critical enzyme for the respiration of bloodstream forms of trypanosomes, was investigated. Replacing the aldehyde group with a methyl ester resulted in a 10-fold increase in TAO inhibition and activity against T. brucei. Remarkably, two analogues containing the 2-hydroxy-6-methyl scaffold (9e and 16e) displayed single digit nanomolar TAO inhibition, which constitute the most potent 4-alkoxybenzoic acid derivatives described to date. 9e was 50-times more potent against TAO and 10-times more active against T. brucei compared to its benzaldehyde analogue 1. The farnesyl derivative 16e was as potent a TAO inhibitor as ascofuranone with IC50 = 3.1 nM. Similar to ascofuranone derivatives, the 2-hydroxy and 6-methyl groups seemed essential for low nanomolar TAO inhibition of acid derivatives, suggesting analogous binding interactions with the TAO active site.
Collapse
Affiliation(s)
- Alejandro Meco-Navas
- Instituto de Química Médica, IQM-CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Godwin U. Ebiloma
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Ana Martín-Domínguez
- Instituto de Química Médica, IQM-CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | | | | | - Amani Saud Alhejely
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | - Machi Saito
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Miho Matsui
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Natsumi Arai
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Tomoo Shiba
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Shigeharu Harada
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Harry P. de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | |
Collapse
|
26
|
West RA, Cunningham T, Pennicott LE, Rao SPS, Ward SE. Toward More Drug Like Inhibitors of Trypanosome Alternative Oxidase. ACS Infect Dis 2018; 4:592-604. [PMID: 29353481 DOI: 10.1021/acsinfecdis.7b00218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
New tools are required to ensure the adequate control of the neglected tropical disease human African trypanosomiasis. Annual reports of infection have recently fallen to fewer than 5000 cases per year; however, current therapies are hard to administer and have safety concerns and, hence, are far from ideal. Trypanosome alternative oxidase is an exciting target for controlling the infection; it is unique to the parasite, and inhibition of this enzyme with the natural product ascofuranone has shown to clear in vivo infections. We report the synthesis and associated structure activity relationships of inhibitors based upon this natural product with correlation to T. b. brucei growth inhibition in an attempt to generate molecules that possess improved physicochemical properties and potential for use as new treatments for human African trypanosomiasis.
Collapse
Affiliation(s)
- Ryan A. West
- Sussex Drug Discovery Centre, University of Sussex, Brighton, BN1 9QJ, United Kingdom
| | - Thomas Cunningham
- Sussex Drug Discovery Centre, University of Sussex, Brighton, BN1 9QJ, United Kingdom
| | - Lewis E. Pennicott
- Sussex Drug Discovery Centre, University of Sussex, Brighton, BN1 9QJ, United Kingdom
| | - Srinivasa P. S. Rao
- Novartis Institutes for Tropical Diseases, 5300 Chiron Way, Emeryville, California 94608-2916, United States
| | - Simon E. Ward
- Sussex Drug Discovery Centre, University of Sussex, Brighton, BN1 9QJ, United Kingdom
- Medicines Discovery Institute, Cardiff University, Park Place, Cardiff, CF10 3AT, United Kingdom
| |
Collapse
|
27
|
Denny PW. Microbial protein targets: towards understanding and intervention. Parasitology 2018; 145:111-115. [PMID: 29143719 PMCID: PMC5817423 DOI: 10.1017/s0031182017002037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 10/06/2017] [Accepted: 10/06/2017] [Indexed: 12/11/2022]
Abstract
The rise of antimicrobial resistance, coupled with a lack of industrial focus on antimicrobial discovery over preceding decades, has brought the world to a crisis point. With both human and animal health set to decline due to increased disease burdens caused by near untreatable microbial pathogens, there is an urgent need to identify new antimicrobials. Central to this is the elucidation of new, robustly validated, drug targets. Informed by industrial practice and concerns, the use of both biological and chemical tools in validation is key. In parallel, repurposing approved drugs for use as antimicrobials may provide both new treatments and identify new targets, whilst improved understanding of pharmacology will help develop and progress good 'hits' with the required rapidity. In recognition of the need to increase research efforts in these areas, in 14-16 September 2017, the British Society for Parasitology (BSP) Autumn Symposium was hosted at Durham University with the title: Microbial Protein Targets: towards understanding and intervention. Staged in collaboration with the Royal Society of Chemistry (RSC) Chemistry Biology Interface Division (CBID), the core aim was to bring together leading researchers working across disciplines to imagine novel approaches towards combating infection and antimicrobial resistance. Sessions were held on: 'Anti-infective discovery, an overview'; 'Omic approaches to target validation'; 'Genetic approaches to target validation'; 'Drug target structure and drug discovery'; 'Fragment-based approaches to drug discovery'; and 'Chemical approaches to target validation'. Here, we introduce a series of review and primary research articles from selected contributors to the Symposium, giving an overview of progress in understanding antimicrobial targets and developing new drugs. The Symposium was organized by Paul Denny (Durham) for the BSP and Patrick Steel (Durham) for RSC CBID.
Collapse
Affiliation(s)
- Paul W Denny
- Department of Biosciences,Durham University,Lower Mountjoy, Stockton Road, Durham DH1 3LE,UK
| |
Collapse
|
28
|
Structural insights into the alternative oxidases: are all oxidases made equal? Biochem Soc Trans 2017; 45:731-740. [PMID: 28620034 DOI: 10.1042/bst20160178] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 01/15/2023]
Abstract
The alternative oxidases (AOXs) are ubiquinol-oxidoreductases that are members of the diiron carboxylate superfamily. They are not only ubiquitously distributed within the plant kingdom but also found in increasing numbers within the fungal, protist, animal and prokaryotic kingdoms. Although functions of AOXs are highly diverse in general, they tend to play key roles in thermogenesis, stress tolerance (through the management of radical oxygen species) and the maintenance of mitochondrial and cellular energy homeostasis. The best structurally characterised AOX is from Trypanosoma brucei In this review, we compare the structure of AOXs, created using homology modelling, from many important species in an attempt to explain differences in activity and sensitivity to AOX inhibitors. We discuss the implications of these findings not only for future structure-based drug design but also for the design of novel AOXs for gene therapy.
Collapse
|
29
|
Jeacock L, Baker N, Wiedemar N, Mäser P, Horn D. Aquaglyceroporin-null trypanosomes display glycerol transport defects and respiratory-inhibitor sensitivity. PLoS Pathog 2017; 13:e1006307. [PMID: 28358927 PMCID: PMC5388498 DOI: 10.1371/journal.ppat.1006307] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 04/11/2017] [Accepted: 03/22/2017] [Indexed: 11/19/2022] Open
Abstract
Aquaglyceroporins (AQPs) transport water and glycerol and play important roles in drug-uptake in pathogenic trypanosomatids. For example, AQP2 in the human-infectious African trypanosome, Trypanosoma brucei gambiense, is responsible for melarsoprol and pentamidine-uptake, and melarsoprol treatment-failure has been found to be due to AQP2-defects in these parasites. To further probe the roles of these transporters, we assembled a T. b. brucei strain lacking all three AQP-genes. Triple-null aqp1-2-3 T. b. brucei displayed only a very moderate growth defect in vitro, established infections in mice and recovered effectively from hypotonic-shock. The aqp1-2-3 trypanosomes did, however, display glycerol uptake and efflux defects. They failed to accumulate glycerol or to utilise glycerol as a carbon-source and displayed increased sensitivity to salicylhydroxamic acid (SHAM), octyl gallate or propyl gallate; these inhibitors of trypanosome alternative oxidase (TAO) can increase intracellular glycerol to toxic levels. Notably, disruption of AQP2 alone generated cells with glycerol transport defects. Consistent with these findings, AQP2-defective, melarsoprol-resistant clinical isolates were sensitive to the TAO inhibitors, SHAM, propyl gallate and ascofuranone, relative to melarsoprol-sensitive reference strains. We conclude that African trypanosome AQPs are dispensable for viability and osmoregulation but they make important contributions to drug-uptake, glycerol-transport and respiratory-inhibitor sensitivity. We also discuss how the AQP-dependent inverse sensitivity to melarsoprol and respiratory inhibitors described here might be exploited.
Collapse
Affiliation(s)
- Laura Jeacock
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Nicola Baker
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Natalie Wiedemar
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Pascal Mäser
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - David Horn
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| |
Collapse
|