1
|
Li Y, Chen P, Huang X, Huang H, Ma Q, Lin Z, Qiu L, Ou C, Liu W. Pathogenic Th17 cells are a potential therapeutic target for tacrolimus in AChR-myasthenia gravis patients. J Neuroimmunol 2024; 396:578464. [PMID: 39393213 DOI: 10.1016/j.jneuroim.2024.578464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
In our study, we investigated the impact of tacrolimus (TAC) on CD4+ T cell subsets in 41 AChR-MG patients over 12 weeks. Twenty-seven patients were classified as the response group (RG) (improved myasthenia gravis composite scores ≥3), while 14 were non-response. We found that TAC treatment significantly reduced Th17 and pathogenic Th17 cells, along with IL-17 levels in RG, while Th1 and Tfh cells slightly decreased without affecting Th2 or Treg subsets. This indicates that TAC's clinical benefits may be due to its inhibitory effect on the Th17 response, enhancing our insight into its immunomodulatory mechanisms in MG management.
Collapse
Affiliation(s)
- Yingkai Li
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Neuromuscular division, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Pei Chen
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xin Huang
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Hao Huang
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Qian Ma
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhongqiang Lin
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Li Qiu
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Changyi Ou
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Weibin Liu
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
2
|
Cen YK, He NY, Zhou WY, Liu ZQ, Zheng YG. Development of a yeast cell based method for efficient screening of high yield tacrolimus production strain. 3 Biotech 2024; 14:26. [PMID: 38169568 PMCID: PMC10757991 DOI: 10.1007/s13205-023-03870-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024] Open
Abstract
Tacrolimus (FK506) is a widely used and clinically important immunosuppressant drug that can be produced by fermentation of Streptomyces tsukubaensis. The industrial strains are typically obtained through multiple rounds of mutagenesis and screening, a labor-intensive process. We have established an efficient yeast cell based screening method for the evolutionary process of high-FK506-yielding strain. The S. tsukubaensis strains of different FK506 yields were tested for zone of growth inhibition of the wild type and calcineurin mutant (cnb1∆) yeast strains. We found that different FK506 yields correspond well to altered yeast growth inhibitions. Based on the combinational inhibition effects of FK506 with different antifungals that have been frequently reported, we also tested the zone of inhibition by addition of fluconazole, amphotericin B and caspofungin to the medium. In the end, for the best screening performance, we systemically evaluated the strategy when different yeast strains and different antifungals were used according to the clarity, size, and divergence of the inhibition circles. Using different yeast strains and antifungals, we successfully broadened the screening spectrum. An efficient high-FK506-yield S. tsukubaensis screening method has been established and optimized. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03870-y.
Collapse
Affiliation(s)
- Yu-Ke Cen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
- Engineering Research Center of Bioconversion and Bio Purification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Nai-Ying He
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
- Engineering Research Center of Bioconversion and Bio Purification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Wan-Ying Zhou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
- Engineering Research Center of Bioconversion and Bio Purification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
- Engineering Research Center of Bioconversion and Bio Purification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
- Engineering Research Center of Bioconversion and Bio Purification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014 China
| |
Collapse
|
3
|
Thommen BT, Dziekan JM, Achcar F, Tjia S, Passecker A, Buczak K, Gumpp C, Schmidt A, Rottmann M, Grüring C, Marti M, Bozdech Z, Brancucci NMB. Genetic validation of PfFKBP35 as an antimalarial drug target. eLife 2023; 12:RP86975. [PMID: 37934560 PMCID: PMC10629825 DOI: 10.7554/elife.86975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Plasmodium falciparum accounts for the majority of over 600,000 malaria-associated deaths annually. Parasites resistant to nearly all antimalarials have emerged and the need for drugs with alternative modes of action is thus undoubted. The FK506-binding protein PfFKBP35 has gained attention as a promising drug target due to its high affinity to the macrolide compound FK506 (tacrolimus). Whilst there is considerable interest in targeting PfFKBP35 with small molecules, a genetic validation of this factor as a drug target is missing and its function in parasite biology remains elusive. Here, we show that limiting PfFKBP35 levels are lethal to P. falciparum and result in a delayed death-like phenotype that is characterized by defective ribosome homeostasis and stalled protein synthesis. Our data furthermore suggest that FK506, unlike the action of this drug in model organisms, exerts its antiproliferative activity in a PfFKBP35-independent manner and, using cellular thermal shift assays, we identify putative FK506-targets beyond PfFKBP35. In addition to revealing first insights into the function of PfFKBP35, our results show that FKBP-binding drugs can adopt non-canonical modes of action - with major implications for the development of FK506-derived molecules active against Plasmodium parasites and other eukaryotic pathogens.
Collapse
Affiliation(s)
- Basil T Thommen
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Jerzy M Dziekan
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Fiona Achcar
- Wellcome Center for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUnited Kingdom
- Institute for Parasitology, University of ZurichZurichSwitzerland
| | - Seth Tjia
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Armin Passecker
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | | | - Christin Gumpp
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | | | - Matthias Rottmann
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Christof Grüring
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Matthias Marti
- Wellcome Center for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUnited Kingdom
- Institute for Parasitology, University of ZurichZurichSwitzerland
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Nicolas MB Brancucci
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| |
Collapse
|
4
|
Deutscher RCE, Safa Karagöz M, Purder PL, Kolos JM, Meyners C, Oki Sugiarto W, Krajczy P, Tebbe F, Geiger TM, Ünal C, Hellmich UA, Steinert M, Hausch F. [4.3.1]Bicyclic FKBP Ligands Inhibit Legionella Pneumophila Infection by LpMip-Dependent and LpMip-Independent Mechanisms. Chembiochem 2023; 24:e202300442. [PMID: 37489700 DOI: 10.1002/cbic.202300442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 07/26/2023]
Abstract
Legionella pneumophila is the causative agent of Legionnaires' disease, a serious form of pneumonia. Its macrophage infectivity potentiator (Mip), a member of a highly conserved family of FK506-binding proteins (FKBPs), plays a major role in the proliferation of the gram-negative bacterium in host organisms. In this work, we test our library of >1000 FKBP-focused ligands for inhibition of LpMip. The [4.3.1]-bicyclic sulfonamide turned out as a highly preferred scaffold and provided the most potent LpMip inhibitors known so far. Selected compounds were non-toxic to human cells, displayed antibacterial activity and block bacterial proliferation in cellular infection-assays as well as infectivity in human lung tissue explants. The results confirm [4.3.1]-bicyclic sulfonamides as anti-legionellal agents, although their anti-infective properties cannot be explained by inhibition of LpMip alone.
Collapse
Affiliation(s)
- Robin C E Deutscher
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - M Safa Karagöz
- Institut für Mikrobiologie, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Patrick L Purder
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Jürgen M Kolos
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Christian Meyners
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Wisely Oki Sugiarto
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Patryk Krajczy
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Frederike Tebbe
- Institute of Organic Chemistry & Macromolecular Chemistry (IOMC), Friedrich Schiller University Germany, Humboldtstraße 10, 07743, Jena, Germany
| | - Thomas M Geiger
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Can Ünal
- Institut für Mikrobiologie, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Ute A Hellmich
- Institute of Organic Chemistry & Macromolecular Chemistry (IOMC), Friedrich Schiller University Germany, Humboldtstraße 10, 07743, Jena, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Max-von-Laue-Str. 9, 60438, Frankurt/Main, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Michael Steinert
- Institut für Mikrobiologie, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
- Helmholtz Centre for Infection Research, 38106, Braunschweig, Germany
| | - Felix Hausch
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, 64287, Darmstadt, Germany
| |
Collapse
|
5
|
Rajan S, Yoon HS. Structural insights into Plasmodium PPIases. Front Cell Infect Microbiol 2022; 12:931635. [PMID: 36118020 PMCID: PMC9478106 DOI: 10.3389/fcimb.2022.931635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Malaria is one of the most prevalent infectious diseases posing a serious challenge over the years, mainly owing to the emergence of drug-resistant strains, sparking a need to explore and identify novel protein targets. It is a well-known practice to adopt a chemo-genomics approach towards identifying targets for known drugs, which can unravel a novel mechanism of action to aid in better drug targeting proficiency. Immunosuppressive drugs cyclosporin A, FK506 and rapamycin, were demonstrated to inhibit the growth of the malarial parasite, Plasmodium falciparum. Peptidyl prolyl cis/trans isomerases (PPIases), comprising cylcophilins and FK506-binding proteins (FKBPs), the specific target of these drugs, were identified in the Plasmodium parasite and proposed as an antimalarial drug target. We previously attempted to decipher the structure of these proteins and target them with non-immunosuppressive drugs, predominantly on FKBP35. This review summarizes the structural insights on Plasmodium PPIases, their inhibitor complexes and perspectives on drug discovery.
Collapse
Affiliation(s)
- Sreekanth Rajan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Ho Sup Yoon
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- College of Pharmacy, CHA University, Pocheon-si, South Korea
- CHA Advanced Research Institute, Seongnam-si, South Korea
- *Correspondence: Ho Sup Yoon,
| |
Collapse
|
6
|
Hsp90 and Associated Co-Chaperones of the Malaria Parasite. Biomolecules 2022; 12:biom12081018. [PMID: 35892329 PMCID: PMC9332011 DOI: 10.3390/biom12081018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 12/14/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is one of the major guardians of cellular protein homeostasis, through its specialized molecular chaperone properties. While Hsp90 has been extensively studied in many prokaryotic and higher eukaryotic model organisms, its structural, functional, and biological properties in parasitic protozoans are less well defined. Hsp90 collaborates with a wide range of co-chaperones that fine-tune its protein folding pathway. Co-chaperones play many roles in the regulation of Hsp90, including selective targeting of client proteins, and the modulation of its ATPase activity, conformational changes, and post-translational modifications. Plasmodium falciparum is responsible for the most lethal form of human malaria. The survival of the malaria parasite inside the host and the vector depends on the action of molecular chaperones. The major cytosolic P. falciparum Hsp90 (PfHsp90) is known to play an essential role in the development of the parasite, particularly during the intra-erythrocytic stage in the human host. Although PfHsp90 shares significant sequence and structural similarity with human Hsp90, it has several major structural and functional differences. Furthermore, its co-chaperone network appears to be substantially different to that of the human host, with the potential absence of a key homolog. Indeed, PfHsp90 and its interface with co-chaperones represent potential drug targets for antimalarial drug discovery. In this review, we critically summarize the current understanding of the properties of Hsp90, and the associated co-chaperones of the malaria parasite.
Collapse
|
7
|
Baindara P, Agrawal S, Franco OL. Host-directed therapies for malaria and tuberculosis: common infection strategies and repurposed drugs. Expert Rev Anti Infect Ther 2022; 20:849-869. [DOI: 10.1080/14787210.2022.2044794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Piyush Baindara
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Missouri, Columbia, MO, USA
| | - Sonali Agrawal
- Immunology Division, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - O. L. Franco
- Proteomics Analysis and Biochemical Center, Catholic University of Brasilia, Brasilia, Brazil; S-Inova Biotech, Catholic University Dom Bosco, Campo Grande, MS, Brazil
| |
Collapse
|
8
|
Abstract
The mechanistic (or mammalian) target of rapamycin (mTOR) is considered as a critical regulatory enzyme involved in essential signaling pathways affecting cell growth, cell proliferation, protein translation, regulation of cellular metabolism, and cytoskeletal structure. Also, mTOR signaling has crucial roles in cell homeostasis via processes such as autophagy. Autophagy prevents many pathogen infections and is involved on immunosurveillance and pathogenesis. Immune responses and autophagy are therefore key host responses and both are linked by complex mTOR regulatory mechanisms. In recent years, the mTOR pathway has been highlighted in different diseases such as diabetes, cancer, and infectious and parasitic diseases including leishmaniasis, toxoplasmosis, and malaria. The current review underlines the implications of mTOR signals and intricate networks on pathogen infections and the modulation of this master regulator by parasites. Parasitic infections are able to induce dynamic metabolic reprogramming leading to mTOR alterations in spite of many other ways impacting this regulatory network. Accordingly, the identification of parasite effects and interactions over such a complex modulation might reveal novel information regarding the biology of the abovementioned parasites and might allow the development of therapeutic strategies against parasitic diseases. In this sense, the effects of inhibiting the mTOR pathways are also considered in this context in the light of their potential for the prevention and treatment of parasitic diseases.
Collapse
|
9
|
Atack TC, Raymond DD, Blomquist CA, Pasaje CF, McCarren PR, Moroco J, Befekadu HB, Robinson FP, Pal D, Esherick LY, Ianari A, Niles JC, Sellers WR. Targeted Covalent Inhibition of Plasmodium FK506 Binding Protein 35. ACS Med Chem Lett 2020; 11:2131-2138. [PMID: 33209191 PMCID: PMC7667655 DOI: 10.1021/acsmedchemlett.0c00272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/01/2020] [Indexed: 01/04/2023] Open
Abstract
![]()
FK506-binding
protein 35, FKBP35, has been implicated as an essential
malarial enzyme. Rapamycin and FK506 exhibit antiplasmodium activity
in cultured parasites. However, due to the highly conserved nature
of the binding pockets of FKBPs and the immunosuppressive properties
of these drugs, there is a need for compounds that selectively inhibit
FKBP35 and lack the undesired side effects. In contrast to human FKBPs,
FKBP35 contains a cysteine, C106, adjacent to the rapamycin binding
pocket, providing an opportunity to develop targeted covalent inhibitors
of Plasmodium FKBP35. Here, we synthesize inhibitors
of FKBP35, show that they directly bind FKBP35 in a model cellular
setting, selectively covalently modify C106, and exhibit antiplasmodium
activity in blood-stage cultured parasites.
Collapse
Affiliation(s)
- Thomas C. Atack
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Donald D. Raymond
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Christa A. Blomquist
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Charisse Flerida Pasaje
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Patrick R. McCarren
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Jamie Moroco
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Henock B. Befekadu
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Foxy P. Robinson
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Debjani Pal
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Lisl Y. Esherick
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alessandra Ianari
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Jacquin C. Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - William R. Sellers
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
- Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, United States
| |
Collapse
|
10
|
Pomplun S, Sippel C, Hähle A, Tay D, Shima K, Klages A, Ünal CM, Rieß B, Toh HT, Hansen G, Yoon HS, Bracher A, Preiser P, Rupp J, Steinert M, Hausch F. Chemogenomic Profiling of Human and Microbial FK506-Binding Proteins. J Med Chem 2018; 61:3660-3673. [PMID: 29578710 DOI: 10.1021/acs.jmedchem.8b00137] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
FK506-binding proteins (FKBPs) are evolutionarily conserved proteins that display peptidyl-prolyl isomerase activities and act as coreceptors for immunosuppressants. Microbial macrophage-infectivity-potentiator (Mip)-type FKBPs can enhance infectivity. However, developing druglike ligands for FKBPs or Mips has proven difficult, and many FKBPs and Mips still lack biologically useful ligands. To explore the scope and potential of C5-substituted [4.3.1]-aza-bicyclic sulfonamides as a broadly applicable class of FKBP inhibitors, we developed a new synthesis method for the bicyclic core scaffold and used it to prepare an FKBP- and Mip-focused library. This allowed us to perform a systematic structure-activity-relationship analysis across key human FKBPs and microbial Mips, yielding highly improved inhibitors for all the FKBPs studied. A cocrystal structure confirmed the molecular-binding mode of the core structure and explained the affinity gained as a result of the preferred substituents. The best FKBP and Mip ligands showed promising antimalarial, antileginonellal, and antichlamydial properties in cellular models of infectivity, suggesting that substituted [4.3.1]-aza-bicyclic sulfonamides could be a novel class of anti-infectives.
Collapse
Affiliation(s)
- Sebastian Pomplun
- Department of Translational Research in Psychiatry , Max Planck Institute of Psychiatry , 80804 Munich , Germany
| | - Claudia Sippel
- Department of Translational Research in Psychiatry , Max Planck Institute of Psychiatry , 80804 Munich , Germany
| | - Andreas Hähle
- Department of Translational Research in Psychiatry , Max Planck Institute of Psychiatry , 80804 Munich , Germany.,Technical University Darmstadt , Alarich-Weiss-Straße 4 , 64287 Darmstadt , Germany
| | - Donald Tay
- School of Biological Sciences , Nanyang Technological University , 639798 Singapore
| | - Kensuke Shima
- Department of Infectious Diseases and Microbiology , University of Lübeck , 23562 Lübeck , Germany
| | - Alina Klages
- Technische Universität Braunschweig , 38106 Braunschweig , Germany
| | - Can Murat Ünal
- Technische Universität Braunschweig , 38106 Braunschweig , Germany
| | - Benedikt Rieß
- Department of Translational Research in Psychiatry , Max Planck Institute of Psychiatry , 80804 Munich , Germany
| | - Hui Ting Toh
- School of Biological Sciences , Nanyang Technological University , 639798 Singapore
| | | | - Ho Sup Yoon
- School of Biological Sciences , Nanyang Technological University , 639798 Singapore
| | - Andreas Bracher
- Max Planck Institute of Biochemistry , 82152 Martinsried , Germany
| | - Peter Preiser
- School of Biological Sciences , Nanyang Technological University , 639798 Singapore
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology , University of Lübeck , 23562 Lübeck , Germany
| | - Michael Steinert
- Department of Infectious Diseases and Microbiology , University of Lübeck , 23562 Lübeck , Germany.,Helmholtz Centre for Infection Research , 38124 Braunschweig , Germany
| | - Felix Hausch
- Department of Translational Research in Psychiatry , Max Planck Institute of Psychiatry , 80804 Munich , Germany.,Technical University Darmstadt , Alarich-Weiss-Straße 4 , 64287 Darmstadt , Germany
| |
Collapse
|