1
|
Keleş S, Alakbarli J, Akgül B, Baghirova M, Imamova N, Barati A, Shikhaliyeva I, Allahverdiyev A. Nanotechnology based drug delivery systems for malaria. Int J Pharm 2024; 666:124746. [PMID: 39321903 DOI: 10.1016/j.ijpharm.2024.124746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/04/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Malaria, caused by Plasmodium parasites transmitted through Anopheles mosquitoes, remains a global health burden, particularly in tropical regions. The most lethal species, Plasmodium falciparum and Plasmodium vivax, pose significant threats to human health. Despite various treatment strategies, malaria continues to claim lives, with Africa being disproportionately affected. This review explores the advancements in drug delivery systems for malaria treatment, focusing on polymeric and lipid-based nanoparticles. Traditional antimalarial drugs, while effective, face challenges such as toxicity and poor bio-distribution. To overcome these issues, nanocarrier systems have been developed, aiming to enhance drug efficacy, control release, and minimize side effects. Polymeric nanocapsules, dendrimers, micelles, liposomes, lipid nanoparticles, niosomes, and exosomes loaded with antimalarial drugs are examined, providing a comprehensive overview of recent developments in nanotechnology for malaria treatment. The current state of antimalarial treatment, including combination therapies and prophylactic drugs, is discussed, with a focus on the World Health Organization's recommendations. The importance of nanocarriers in malaria management is underscored, highlighting their role in targeted drug delivery, controlled release, and improved pharmacological properties. This review bridges the gap in the literature, consolidating the latest advancements in nanocarrier systems for malaria treatment and offering insights into potential future developments in the field.
Collapse
Affiliation(s)
- Sedanur Keleş
- Faculty of Engineering, Department of Metallurgical and Materials Engineering, Karadeniz Technical University, Trabzon, Turkey
| | - Jahid Alakbarli
- The V. Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan; Faculty of Chemistry-Metallurgy, Bioengineering Department, Yildiz Technical University, Istanbul, Turkey
| | - Buşra Akgül
- Faculty of Chemistry-Metallurgy, Bioengineering Department, Yildiz Technical University, Istanbul, Turkey
| | - Malahat Baghirova
- The V. Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan
| | - Nergiz Imamova
- The V. Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan
| | - Ana Barati
- The V. Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan
| | - Inji Shikhaliyeva
- The V. Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan
| | - Adil Allahverdiyev
- The V. Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan.
| |
Collapse
|
2
|
Avalos-Padilla Y, Fernàndez-Busquets X. Nanotherapeutics against malaria: A decade of advancements in experimental models. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1943. [PMID: 38426407 DOI: 10.1002/wnan.1943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 11/01/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024]
Abstract
Malaria, caused by different species of protists of the genus Plasmodium, remains among the most common causes of death due to parasitic diseases worldwide, mainly for children aged under 5. One of the main obstacles to malaria eradication is the speed with which the pathogen evolves resistance to the drug schemes developed against it. For this reason, it remains urgent to find innovative therapeutic strategies offering sufficient specificity against the parasite to minimize resistance evolution and drug side effects. In this context, nanotechnology-based approaches are now being explored for their use as antimalarial drug delivery platforms due to the wide range of advantages and tuneable properties that they offer. However, major challenges remain to be addressed to provide a cost-efficient and targeted therapeutic strategy contributing to malaria eradication. The present work contains a systematic review of nanotechnology-based antimalarial drug delivery systems generated during the last 10 years. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Yunuen Avalos-Padilla
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Barcelona, Spain
| | - Xavier Fernàndez-Busquets
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Liu H, Zhou H, Xing J. The antiplasmodial activity of the carboxylic acid metabolite of piperaquine and its pharmacokinetic profiles in healthy volunteers. J Antimicrob Chemother 2024; 79:78-81. [PMID: 37965893 DOI: 10.1093/jac/dkad349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND The long-acting antimalarial drug piperaquine can be metabolized into the carboxylic acid metabolite (PQM). However, the clinical relevance of PQM remains unclear. OBJECTIVES The pharmacodynamics/pharmacokinetics of PQM were studied. METHODS The antimalarial activity of PQM was studied in vitro (Plasmodium strains Pf3D7 and PfDd2) and in vivo (murine Plasmodium yoelii). The toxicity of PQM was evaluated in mice, in terms of the general measures of animal well-being, serum biochemical examination and ECG monitoring. The pharmacokinetic profiles of piperaquine and its metabolite PQM were investigated in healthy subjects after recommended oral doses of piperaquine. RESULTS PQM showed no relevant in vitro antimalarial activity (IC50 > 1.0 μM) with no significant toxicity. After recommended oral administration of piperaquine to healthy subjects, the maximum concentration of PQM was less than 30.0 nM, and it did not accumulate after repeated dosing. CONCLUSIONS With a low antimalarial potency, PQM should not contribute to the efficacy of piperaquine with clinically acceptable doses.
Collapse
Affiliation(s)
- Huixiang Liu
- School of Pharmaceutical Sciences, Shandong University, 44# West Wenhua Road, Jinan, China
| | - Hongchang Zhou
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, China
- Department of Microbiology, School of Medicine, Huzhou University, Huzhou, China
| | - Jie Xing
- School of Pharmaceutical Sciences, Shandong University, 44# West Wenhua Road, Jinan, China
| |
Collapse
|
4
|
PEGylated and functionalized polylactide-based nanocapsules: An overview. Int J Pharm 2023; 636:122760. [PMID: 36858134 DOI: 10.1016/j.ijpharm.2023.122760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/08/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
Polymeric nanocapsules (NC) are versatile mixed vesicular nanocarriers, generally containing a lipid core with a polymeric wall. They have been first developed over four decades ago with outstanding applicability in the cosmetic and pharmaceutical fields. Biodegradable polyesters are frequently used in nanocapsule preparation and among them, polylactic acid (PLA) derivatives and copolymers, such as PLGA and amphiphilic block copolymers, are widely used and considered safe for different administration routes. PLA functionalization strategies have been developed to obtain more versatile polymers and to allow the conjugation with bioactive ligands for cell-targeted NC. This review intends to provide steps in the evolution of NC since its first report and the recent literature on PLA-based NC applications. PLA-based polymer synthesis and surface modifications are included, as well as the use of NC as a novel tool for combined treatment, diagnostics, and imaging in one delivery system. Furthermore, the use of NC to carry therapeutic and/or imaging agents for different diseases, mainly cancer, inflammation, and infections is presented and reviewed. Constraints that impair translation to the clinic are discussed to provide safe and reproducible PLA-based nanocapsules on the market. We reviewed the entire period in the literature where the term "nanocapsules" appears for the first time until the present day, selecting original scientific publications and the most relevant patent literature related to PLA-based NC. We presented to readers a historical overview of these Sui generis nanostructures.
Collapse
|
5
|
Vidal-Diniz AT, Guimarães HN, Garcia GM, Braga ÉM, Richard S, Grabe-Guimarães A, Mosqueira VCF. Polyester Nanocapsules for Intravenous Delivery of Artemether: Formulation Development, Antimalarial Efficacy, and Cardioprotective Effects In Vivo. Polymers (Basel) 2022; 14:polym14245503. [PMID: 36559869 PMCID: PMC9786304 DOI: 10.3390/polym14245503] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Artemether (ATM) is an effective antimalarial drug that also has a short half-life in the blood. Furthermore, ATM is also cardiotoxic and is associated with pro-arrhythmogenic risks. We aimed to develop a delivery system enabling the prolonged release of ATM into the blood coupled with reduced cardiotoxicity. To achieve this, we prepared polymeric nanocapsules (NCs) from different biodegradable polyesters, namely poly(D,L-lactide) (PLA), poly-ε-caprolactone (PCL), and surface-modified NCs, using a monomethoxi-polyethylene glycol-block-poly(D,L-lactide) (PEG5kDa-PLA45kDa) polymer. Using this approach, we were able to encapsulate high yields of ATM (>85%, 0−4 mg/mL) within the oily core of the NCs. The PCL-NCs exhibited the highest percentage of ATM loading as well as a slow release rate. Atomic force microscopy showed nanometric and spherical particles with a narrow size dispersion. We used the PCL NCs loaded with ATM for biological evaluation following IV administration. As with free-ATM, the ATM-PCL-NCs formulation exhibited potent antimalarial efficacy using either the “Four-day test” protocol (ATM total at the end of the 4 daily doses: 40 and 80 mg/kg) in Swiss mice infected with P. berghei or a single low dose (20 mg/kg) of ATM in mice with higher parasitemia (15%). In healthy rats, IV administration of single doses of free-ATM (40 or 80 mg/kg) prolonged cardiac QT and QTc intervals and induced both bradycardia and hypotension. Repeated IV administration of free-ATM (four IV doses at 20 mg/kg every 12 h for 48 h) also prolonged the QT and QTc intervals but, paradoxically, induced tachycardia and hypertension. Remarkably, the incorporation of ATM in ATM-PCL-NCs reduced all adverse effects. In conclusion, the encapsulation of ATM in biodegradable polyester NCs reduces its cardiovascular toxicity without affecting its antimalarial efficacy.
Collapse
Affiliation(s)
- Alessandra Teixeira Vidal-Diniz
- School of Pharmacy, Universidade Federal de Ouro Preto (UFOP), Campus Universitário Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil
| | - Homero Nogueira Guimarães
- Department of Electrical Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Giani Martins Garcia
- School of Pharmacy, Universidade Federal de Ouro Preto (UFOP), Campus Universitário Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil
| | - Érika Martins Braga
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Sylvain Richard
- CNRS, INSERM, Université de Montpellier, 34295 Montpellier, France
- PhyMedExp, CHU Arnaud de Villeneuve 371, Avenue du Doyen Gaston Giraud, CEDEX 05, 34295 Montpellier, France
- Correspondence: (S.R.); (V.C.F.M.)
| | - Andrea Grabe-Guimarães
- School of Pharmacy, Universidade Federal de Ouro Preto (UFOP), Campus Universitário Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil
| | - Vanessa Carla Furtado Mosqueira
- School of Pharmacy, Universidade Federal de Ouro Preto (UFOP), Campus Universitário Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil
- Correspondence: (S.R.); (V.C.F.M.)
| |
Collapse
|
6
|
Ramos JP, Abdel-Salam MAL, Nobre DAB, Glanzmann N, de Souza CP, Leite EA, de Abreu Teles PP, Barbosa AS, Barcelos LS, Dos Reis DC, Cassali GD, de Lima ME, de Castro QJT, Grabe-Guimarães A, da Silva AD, de Souza-Fagundes EM. Acute toxicity and antitumor potential of 1,3,4-trisubstituted-1,2,3-triazole dhmtAc-loaded liposomes on a triple-negative breast cancer model. Arch Pharm (Weinheim) 2022; 355:e2200004. [PMID: 35621705 DOI: 10.1002/ardp.202200004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 11/05/2022]
Abstract
For the first time, compounds developed from the 1,2,3-triazole scaffold were evaluated as novel drugs to treat triple-negative breast cancer (TNBC). Four organic salts were idealized as nonclassical bioisosteres of miltefosine, which is used in the topical treatment for skin metastasizing breast carcinoma. Among them, derivative dhmtAc displayed better solubility and higher cytotoxicity against the human breast adenocarcinoma cell line and mouse 4T1 cell lines, which are representatives of TNBC. In vitro assays revealed that dhmtAc interferes with cell integrity, confirmed by lactate dehydogenase leakage. Due to its human peripheral blood mononuclear cell (PBMC) toxicity, dhmtAc in vivo studies were carried out with the drug incorporated in a long-circulating and pH-sensitive liposome (SpHL-dhmtAc), and the acute toxicity in BALB/c mice was determined. Free dhmtAc displayed cardiac and pulmonary toxicity after the systemic administration of 5 mg/kg doses. On the other hand, SpHL-dhmtAc displayed no toxicity at 20 mg/kg. The in vivo antitumor effect of SpHL-dhmtAc was investigated using the 4T1 heterotopic murine model. Intravenous administration of SpHL-dhmtAc reduced the tumor volume and weight, without interfering with the body weight, compared with the control group and the dhmtAc free form. The incorporation of the triazole compound in the liposome allowed the demonstration of its anticancer potential. These findings evidenced 1,3,4-trisubstituted-1,2,3-triazole as a promising scaffold for the development of novel drugs with applicability for the treatment of patients with TNBC.
Collapse
Affiliation(s)
- Jonas P Ramos
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mostafa A L Abdel-Salam
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniel A B Nobre
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nicolas Glanzmann
- Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Camila P de Souza
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Elaine A Leite
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pedro P de Abreu Teles
- Departamento de Patologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alan S Barbosa
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciola S Barcelos
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Diego C Dos Reis
- Departamento de Patologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Geovanni D Cassali
- Departamento de Patologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria E de Lima
- Programa de Pós-Graduação em Medicina-Biomedicina, Faculdade Santa Casa de Belo Horizonte, Belo Horizonte, Brazil
| | - Quênia J T de Castro
- Departamento de Farmácia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Andrea Grabe-Guimarães
- Departamento de Farmácia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Adilson D da Silva
- Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | | |
Collapse
|
7
|
Polylactide Nanocapsules Attenuate Adverse Cardiac Cellular Effects of Lyso-7, a Pan-PPAR Agonist/Anti-Inflammatory New Thiazolidinedione. Pharmaceutics 2021; 13:pharmaceutics13091521. [PMID: 34575597 PMCID: PMC8470374 DOI: 10.3390/pharmaceutics13091521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
Lyso-7 is a novel synthetic thiazolidinedione, which is a receptor (pan) agonist of PPAR α,β/δ,γ with anti-inflammatory activity. We investigated the cardiotoxicity of free Lyso-7 in vitro (4.5–450 nM), and Lyso-7 loaded in polylactic acid nanocapsules (NC) in vivo (Lyso-7-NC, 1.6 mg/kg). In previous work, we characterized Lyso-7-NC. We administered intravenously Lyso-7, Lyso-7-NC, control, and blank-NC once a day for seven days in mice. We assessed cell contraction and intracellular Ca2+ transients on single mice cardiomyocytes enzymatically isolated. Lyso-7 reduced cell contraction and accelerated relaxation while lowering diastolic Ca2+ and reducing Ca2+ transient amplitude. Lyso-7 also promoted abnormal ectopic diastolic Ca2+ events, which isoproterenol dramatically enhanced. Incorporation of Lyso-7 in NC attenuated drug effects on cell contraction and prevented its impact on relaxation, diastolic Ca2+, Ca2+ transient amplitude, Ca2+ transient decay kinetics, and promotion of diastolic Ca2+ events. Acute effects of Lyso-7 on cardiomyocytes in vitro at high concentrations (450 nM) were globally similar to those observed after repeated administration in vivo. In conclusion, we show evidence for off-target effects of Lyso-7, seen during acute exposure of cardiomyocytes to high concentrations and after repeated treatment in mice. Nano-encapsulation of Lyso-7 in polymeric NC attenuated the unwanted effects, particularly ectopic Ca2+ events known to support life-threatening arrhythmias favored by stress or exercise.
Collapse
|
8
|
Repositioning of Tamoxifen in Surface-Modified Nanocapsules as a Promising Oral Treatment for Visceral Leishmaniasis. Pharmaceutics 2021; 13:pharmaceutics13071061. [PMID: 34371752 PMCID: PMC8309129 DOI: 10.3390/pharmaceutics13071061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
Standards of care for human visceral leishmaniasis (VL) are based on drugs used parenterally, and oral treatment options are urgently needed. In the present study, a repurposing strategy was used associating tamoxifen (TMX) with polyethylene glycol-block-polylactide nanocapsules (NC) and its anti-leishmanial efficacy was reported in vivo. Stable surface modified-NC (5 mg/mL of TMX) exhibited 200 nm in size, +42 mV of zeta potential, and 98% encapsulation efficiency. Atomic force microscopy evidenced core-shell-NC. Treatment with TMX-NC reduced parasite-DNA quantified in liver and spleen compared to free-TMX; and provided a similar reduction of parasite burden compared with meglumine antimoniate in mice and hamster models. Image-guided biodistribution showed accumulation of NC in liver and spleen after 30 min post-administration. TMX-NC reduced the number of liver granulomas and restored the aspect of capsules and trabeculae in the spleen of infected animals. TMX-NC was tested for the first time against VL models, indicating a promising formulation for oral treatment.
Collapse
|
9
|
Wu W, Lu C, Liang Y, Zhang H, Deng C, Wang Q, Xu Q, Tan B, Zhou C, Song J. Electrocardiographic effect of artemisinin-piperaquine, dihydroartemisinin-piperaquine, and artemether-lumefantrine treatment in falciparum malaria patients. Rev Soc Bras Med Trop 2021; 54:e05362020. [PMID: 33605379 PMCID: PMC7891559 DOI: 10.1590/0037-8682-0536-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/15/2020] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Artemisinin-based combination therapy (ACT), such as artemisinin-piperaquine (AP), dihydroartemisinin-piperaquine (DP), and artemether-lumefantrine (AL), is the first-line treatment for malaria in many malaria-endemic areas. However, we lack a detailed evaluation of the cardiotoxicity of these ACTs. This study aimed to analyze the electrocardiographic effects of these three ACTs in malaria patients. METHODS We analyzed the clinical data of 89 hospitalized patients with falciparum malaria who had received oral doses of three different ACTs. According to the ACTs administered, these patients were divided into three treatment groups: 27 treated with AP (Artequick), 31 with DP (Artekin), and 31 with AL (Coartem). Electrocardiograms and other indicators were recorded before and after the treatment. The QT interval was calculated using Fridericia's formula (QTcF) and Bazett's formula (QTcB). RESULTS Both QTcF and QTcB interval prolongation occurred in all three groups. The incidence of such prolongation between the three groups was not significantly different. The incidence of both moderate and severe prolongation was not significantly different between the three groups. The ΔQTcF and ΔQTcB of the three groups were not significantly different. The intra-group comparison showed significant prolongation of QTcF after AL treatment. CONCLUSIONS Clinically recommended doses of DP, AL, and AP may cause QT prolongation in some malaria patients but do not cause torsades de pointes ventricular tachycardia or other arrhythmias.
Collapse
Affiliation(s)
- Wanting Wu
- Guangzhou University of Chinese Medicine, Artemisinin Research Center, Guangzhou, Guangdong, People’s Republic of China
- Guangzhou University of Chinese Medicine, Sci-tech Industrial Park, Guanzhou, Guangdong, People’s Republic of China
| | - Chenguang Lu
- Guangzhou University of Chinese Medicine, Artemisinin Research Center, Guangzhou, Guangdong, People’s Republic of China
- Guangzhou University of Chinese Medicine, Sci-tech Industrial Park, Guanzhou, Guangdong, People’s Republic of China
| | - Yuan Liang
- Guangzhou University of Chinese Medicine, Artemisinin Research Center, Guangzhou, Guangdong, People’s Republic of China
| | - Hongying Zhang
- Guangzhou University of Chinese Medicine, Artemisinin Research Center, Guangzhou, Guangdong, People’s Republic of China
- Guangzhou University of Chinese Medicine, Sci-tech Industrial Park, Guanzhou, Guangdong, People’s Republic of China
| | - Changsheng Deng
- Guangzhou University of Chinese Medicine, Artemisinin Research Center, Guangzhou, Guangdong, People’s Republic of China
- Guangzhou University of Chinese Medicine, Sci-tech Industrial Park, Guanzhou, Guangdong, People’s Republic of China
| | - Qi Wang
- Guangzhou University of Chinese Medicine, Artemisinin Research Center, Guangzhou, Guangdong, People’s Republic of China
- Guangzhou University of Chinese Medicine, Sci-tech Industrial Park, Guanzhou, Guangdong, People’s Republic of China
| | - Qin Xu
- Guangzhou University of Chinese Medicine, Artemisinin Research Center, Guangzhou, Guangdong, People’s Republic of China
- Guangzhou University of Chinese Medicine, Sci-tech Industrial Park, Guanzhou, Guangdong, People’s Republic of China
| | - Bo Tan
- Guangzhou University of Chinese Medicine, Institute of Tropical Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Chongjun Zhou
- Guangzhou University of Chinese Medicine, Institute of Tropical Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Jianping Song
- Guangzhou University of Chinese Medicine, Artemisinin Research Center, Guangzhou, Guangdong, People’s Republic of China
- Guangzhou University of Chinese Medicine, Sci-tech Industrial Park, Guanzhou, Guangdong, People’s Republic of China
| |
Collapse
|
10
|
Boateng-Marfo Y, Dong Y, Ng WK, Lin HS. Artemether-Loaded Zein Nanoparticles: An Innovative Intravenous Dosage Form for the Management of Severe Malaria. Int J Mol Sci 2021; 22:ijms22031141. [PMID: 33498911 PMCID: PMC7865387 DOI: 10.3390/ijms22031141] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 12/11/2022] Open
Abstract
Artemether, an artemisinin derivative, is used in the management of life-threatening severe malaria. This study aimed to develop an intravenous dosage form of artemether using nanotechnology. Artemether-loaded zein nanoparticles were prepared by modified antisolvent precipitation using sodium caseinate as a stabilizer. Subsequently, the physicochemical properties of the nanoparticles were characterized; the in vitro hemolytic property was examined with red blood cells, while the pharmacokinetic profile was evaluated in Sprague–Dawley rats after intravenous administration. The artemether-loaded zein nanoparticles were found to display good encapsulation efficiency, excellent physical stability and offer an in vitro extended-release property. Interestingly, encapsulation of artemether into zein nanoparticles substantially suppressed hemolysis, a common clinical phenomenon occurring after artemisinin-based antimalarial therapy. Upon intravenous administration, artemether-loaded zein nanoparticles extended the mean residence time of artemether by ~80% in comparison to the free artemether formulation (82.9 ± 15.2 versus 45.6 ± 16.4 min, p < 0.01), suggesting that the nanoparticles may prolong the therapeutic duration and reduce the dosing frequency in a clinical setting. In conclusion, intravenous delivery of artemether by artemether-loaded zein nanoparticles appears to be a promising therapeutic option for severe malaria.
Collapse
Affiliation(s)
- Yaa Boateng-Marfo
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, 1 Pesek Road, Jurong Island, Singapore 627833, Singapore; (Y.B.-M.); (Y.D.)
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
- Department of Pharmaceutical Sciences, Sunyani Technical University, P.O. Box 206 Sunyani, Ghana
| | - Yuancai Dong
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, 1 Pesek Road, Jurong Island, Singapore 627833, Singapore; (Y.B.-M.); (Y.D.)
| | - Wai Kiong Ng
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, 1 Pesek Road, Jurong Island, Singapore 627833, Singapore; (Y.B.-M.); (Y.D.)
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
- Correspondence: (W.K.N.); (H.-S.L.)
| | - Hai-Shu Lin
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
- College of Pharmacy, Shenzhen Technology University, 3002 Lantian Road, Pingshan District, Shenzhen 518118, China
- Correspondence: (W.K.N.); (H.-S.L.)
| |
Collapse
|
11
|
Lanna EG, Siqueira RP, Machado MGC, de Souza A, Trindade IC, Branquinho RT, Mosqueira VCF. Lipid-based nanocarriers co-loaded with artemether and triglycerides of docosahexaenoic acid: Effects on human breast cancer cells. Biomed Pharmacother 2020; 134:111114. [PMID: 33352447 DOI: 10.1016/j.biopha.2020.111114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 12/26/2022] Open
Abstract
Artemether (ART) was combined with triglyceride of docosahexaenoic acid (DHA) as the lipid-core in nanoemulsions (NE), nanostructured lipid carriers (NLC), and PEG-PLA nanocapsules (NC) formulations, and their effects on human breast cancer cells were evaluated. ART has been extensively used for malaria and has also therapeutic potential against different tumor cells in a repositioning strategy. The concentration-dependent cytotoxicity in vitro was determined in tumor lineages, MDA-MB-231 and MCF-7, and non-tumor MCF-10A cells for free-ART/DHA combination and its formulations. The cells were monitored for viability, effects on cell migration and clonogenicity, cell death mechanism, and qualitative and quantitative cell uptake of nanocarriers. The lipid-nanocarriers showed mean sizes over the range of 110 and 280 nm with monodisperse populations and zeta potential values ranging from -21 to -67 mV. The ART encapsulation efficiencies varied from 57 to 83 %. ART/DHA co-loaded in three different lipid nanocarriers reduced the MDA-MB-231 and MCF-7 viability in a dose-dependent manner with enhanced selectivity toward tumor cell lines. They also reduced clonogenicity and the ability of cells to migrate showing antimetastatic potential in both cell lines and triggered apoptosis in MCF-7 cells. Confocal microscopy and flow cytometry analysis showed that NC, NLC, and NE were rapidly internalized by cells, with higher interaction displayed by NE with MCF-7 cells compared to NC and NLC that was correlated with the strongest NE-fluorescence in cells. Therefore, this study not only demonstrated the value of this new combination of ART/DHA as a new strategy for breast cancer therapy but also showed enhanced cytotoxicity and potential metastatic activity of lipid-based formulations against human breast cancer cells that indicate great potential for pre-clinical and clinical translation.
Collapse
Affiliation(s)
- Elisa Gomes Lanna
- Laboratory of Pharmaceutics and Nanotechnology (LDGNano), School of Pharmacy, Federal University of Ouro Preto, Minas Gerais, Brazil; Doctoral Program in Pharmaceutical Nanotechnology (NanoFarma Network), School of Pharmacy, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Raoni Pais Siqueira
- Laboratory of Pharmaceutics and Nanotechnology (LDGNano), School of Pharmacy, Federal University of Ouro Preto, Minas Gerais, Brazil; Doctoral Program in Pharmaceutical Nanotechnology (NanoFarma Network), School of Pharmacy, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Marina Guimarães Carvalho Machado
- Laboratory of Pharmaceutics and Nanotechnology (LDGNano), School of Pharmacy, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Aline de Souza
- Laboratory of Pharmaceutics and Nanotechnology (LDGNano), School of Pharmacy, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Izabel Cristina Trindade
- Laboratory of Pharmaceutics and Nanotechnology (LDGNano), School of Pharmacy, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Renata Tupinambá Branquinho
- Laboratory of Pharmaceutics and Nanotechnology (LDGNano), School of Pharmacy, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Vanessa Carla Furtado Mosqueira
- Laboratory of Pharmaceutics and Nanotechnology (LDGNano), School of Pharmacy, Federal University of Ouro Preto, Minas Gerais, Brazil; Doctoral Program in Pharmaceutical Nanotechnology (NanoFarma Network), School of Pharmacy, Federal University of Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
12
|
Karabasz A, Bzowska M, Szczepanowicz K. Biomedical Applications of Multifunctional Polymeric Nanocarriers: A Review of Current Literature. Int J Nanomedicine 2020; 15:8673-8696. [PMID: 33192061 PMCID: PMC7654520 DOI: 10.2147/ijn.s231477] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Polymeric nanomaterials have become a prominent area of research in the field of drug delivery. Their application in nanomedicine can improve bioavailability, pharmacokinetics, and, therefore, the effectiveness of various therapeutics or contrast agents. There are many studies for developing new polymeric nanocarriers; however, their clinical application is somewhat limited. In this review, we present new complex and multifunctional polymeric nanocarriers as promising and innovative diagnostic or therapeutic systems. Their multifunctionality, resulting from the unique chemical and biological properties of the polymers used, ensures better delivery, and a controlled, sequential release of many different therapeutics to the diseased tissue. We present a brief introduction of the classical formulation techniques and describe examples of multifunctional nanocarriers, whose biological assessment has been carried out at least in vitro. Most of them, however, also underwent evaluation in vivo on animal models. Selected polymeric nanocarriers were grouped depending on their medical application: anti-cancer drug nanocarriers, nanomaterials delivering compounds for cancer immunotherapy or regenerative medicine, components of vaccines nanomaterials used for topical application, and lifestyle diseases, ie, diabetes.
Collapse
Affiliation(s)
- Alicja Karabasz
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Monika Bzowska
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Krzysztof Szczepanowicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
13
|
Moreira Souza AC, Grabe‐Guimarães A, Cruz JDS, Santos‐Miranda A, Farah C, Teixeira Oliveira L, Lucas A, Aimond F, Sicard P, Mosqueira VCF, Richard S. Mechanisms of artemether toxicity on single cardiomyocytes and protective effect of nanoencapsulation. Br J Pharmacol 2020; 177:4448-4463. [PMID: 32608017 PMCID: PMC7484510 DOI: 10.1111/bph.15186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE The artemisinin derivative, artemether, has antimalarial activity with potential neurotoxic and cardiotoxic effects. Artemether in nanocapsules (NC-ATM) is more efficient than free artemether for reducing parasitaemia and increasing survival of Plasmodium berghei-infected mice. NCs also prevent prolongation of the QT interval of the ECG. Here, we assessed cellular cardiotoxicity of artemether and how this toxicity was prevented by nanoencapsulation. EXPERIMENTAL APPROACH Mice were treated with NC-ATM orally (120 mg·kg-1 twice daily) for 4 days. Other mice received free artemether, blank NCs, and vehicle for comparison. We measured single-cell contraction, intracellular Ca2+ transient using fluorescent Indo-1AM Ca2+ dye, and electrical activity using the patch-clamp technique in freshly isolated left ventricular myocytes. The acute effect of free artemether was also tested on cardiomyocytes of untreated animals. KEY RESULTS Artemether prolonged action potentials (AP) upon acute exposure (at 0.1, 1, and 10 μM) of cardiomyocytes from untreated mice or after in vivo treatment. This prolongation was unrelated to blockade of K+ currents, increased Ca2+ currents or promotion of a sustained Na+ current. AP lengthening was abolished by the NCX inhibitor SEA-0400. Artemether promoted irregular Ca2+ transients during pacing and spontaneous Ca2+ events during resting periods. NC-ATM prevented all effects. Blank NCs had no effects compared with vehicle. CONCLUSION AND IMPLICATIONS Artemether induced NCX-dependent AP lengthening (explaining QTc prolongation) and disrupted Ca2+ handling, both effects increasing pro-arrhythmogenic risks. NCs prevented these adverse effects, providing a safe alternative to the use of artemether alone, especially to treat malaria.
Collapse
Affiliation(s)
- Ana Carolina Moreira Souza
- Pharmaceutical Sciences Graduate Program (CiPharma), Pharmacy SchoolFederal University of Ouro PretoOuro PretoMinas GeraisBrazil
- Physiologie et Médecine Expérimentale du Cœur et des Muscles (PhyMedExp)Université de Montpellier, CNRS, InsermMontpellierFrance
| | - Andrea Grabe‐Guimarães
- Pharmaceutical Sciences Graduate Program (CiPharma), Pharmacy SchoolFederal University of Ouro PretoOuro PretoMinas GeraisBrazil
| | - Jader dos Santos Cruz
- Department of Immunology and BiochemistryFederal University of Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Artur Santos‐Miranda
- Department of Immunology and BiochemistryFederal University of Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Charlotte Farah
- Physiologie et Médecine Expérimentale du Cœur et des Muscles (PhyMedExp)Université de Montpellier, CNRS, InsermMontpellierFrance
| | - Liliam Teixeira Oliveira
- Pharmaceutical Sciences Graduate Program (CiPharma), Pharmacy SchoolFederal University of Ouro PretoOuro PretoMinas GeraisBrazil
- Physiologie et Médecine Expérimentale du Cœur et des Muscles (PhyMedExp)Université de Montpellier, CNRS, InsermMontpellierFrance
| | - Alexandre Lucas
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC)Inserm/Université Paul Sabatier UMR1048ToulouseFrance
| | - Franck Aimond
- Physiologie et Médecine Expérimentale du Cœur et des Muscles (PhyMedExp)Université de Montpellier, CNRS, InsermMontpellierFrance
| | - Pierre Sicard
- Physiologie et Médecine Expérimentale du Cœur et des Muscles (PhyMedExp)Université de Montpellier, CNRS, InsermMontpellierFrance
| | - Vanessa Carla Furtado Mosqueira
- Pharmaceutical Sciences Graduate Program (CiPharma), Pharmacy SchoolFederal University of Ouro PretoOuro PretoMinas GeraisBrazil
| | - Sylvain Richard
- Physiologie et Médecine Expérimentale du Cœur et des Muscles (PhyMedExp)Université de Montpellier, CNRS, InsermMontpellierFrance
| |
Collapse
|
14
|
Puttappa N, Kumar RS, Kuppusamy G, Radhakrishnan A. Nano-facilitated drug delivery strategies in the treatment of plasmodium infection. Acta Trop 2019; 195:103-114. [PMID: 31039335 DOI: 10.1016/j.actatropica.2019.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 01/05/2023]
Abstract
Malaria, one of the major infectious disease-causing sizeable morbidity, mortality and economic loss worldwide. The main drawback for the failure to eradicate malaria is the spread of multiple drug resistance to the majority of currently available chemotherapy. At present nanotechnology offers an advanced opportunity in the delivery of drugs and vaccines to the desired targeted site in the body following oral and systemic administration. It confers the major advantages like improving drug pharmacokinetic profiles, reduce dose frequency and reduction in drug toxicity. Hence, Nano-based drug delivery system can provide a promising prospect in the way of malaria treatment. This paper is a review of recent researches highlighting includes nanocarriers loaded antimalarial drugs for better therapeutic efficacy and future perspective in the treatment of malaria.
Collapse
Affiliation(s)
- Nethravathi Puttappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (Deemed to be University), Ooty, Tamil Nadu, India
| | - Raman Suresh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (Deemed to be University), Ooty, Tamil Nadu, India.
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (Deemed to be University), Ooty, Tamil Nadu, India
| | - Arun Radhakrishnan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (Deemed to be University), Ooty, Tamil Nadu, India
| |
Collapse
|