1
|
Islam MS, Fan J, Pan F. The power of phages: revolutionizing cancer treatment. Front Oncol 2023; 13:1290296. [PMID: 38033486 PMCID: PMC10684691 DOI: 10.3389/fonc.2023.1290296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Cancer is a devastating disease with a high global mortality rate and is projected to increase further in the coming years. Current treatment options, such as chemotherapy and radiation therapy, have limitations including side effects, variable effectiveness, high costs, and limited availability. There is a growing need for alternative treatments that can target cancer cells specifically with fewer side effects. Phages, that infect bacteria but not eukaryotic cells, have emerged as promising cancer therapeutics due to their unique properties, including specificity and ease of genetic modification. Engineered phages can transform cancer treatment by targeting cancer cells while sparing healthy ones. Phages exhibit versatility as nanocarriers, capable of delivering therapeutic agents like gene therapy, immunotherapy, and vaccines. Phages are extensively used in vaccine development, with filamentous, tailed, and icosahedral phages explored for different antigen expression possibilities. Engineered filamentous phages bring benefits such as built in adjuvant properties, cost-effectiveness, versatility in multivalent formulations, feasibility of oral administration, and stability. Phage-based vaccines stimulate the innate immune system by engaging pattern recognition receptors on antigen-presenting cells, enhancing phage peptide antigen presentation to B-cells and T-cells. This review presents recent phage therapy advances and challenges in cancer therapy, exploring its versatile tools and vaccine potential.
Collapse
Affiliation(s)
- Md. Sharifull Islam
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jie Fan
- Department of Cardiology, Handan Central Hospital, Handan, Hebei, China
| | - Fan Pan
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
2
|
Immunotherapy Using Immunogenic Mimotopes Selected by Phage Display plus Amphotericin B Inducing a Therapeutic Response in Mice Infected with Leishmania amazonensis. Pathogens 2023; 12:pathogens12020314. [PMID: 36839586 PMCID: PMC9964457 DOI: 10.3390/pathogens12020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
Leishmania amazonensis can cause cutaneous and visceral clinical manifestations of leishmaniasis in infected hosts. Once the treatment against disease is toxic, presents high cost, and/or there is the emergence of parasite-resistant strains, alternative means through which to control the disease must be developed. In this context, immunotherapeutics combining known drugs with immunogens could be applied to control infections and allow hosts to recover from the disease. In this study, immunotherapeutics protocols associating mimotopes selected by phage display and amphotericin B (AmpB) were evaluated in L. amazonensis-infected mice. Immunogens, A4 and A8 phages, were administered alone or associated with AmpB. Other animals received saline, AmpB, a wild-type phage (WTP), or WTP/AmpB as controls. Evaluations performed one and thirty days after the application of immunotherapeutics showed that the A4/AmpB and A8/AmpB combinations induced the most polarized Th1-type immune responses, which reflected in significant reductions in the lesion's average diameter and in the parasite load in the infected tissue and distinct organs of the animals. In addition, the combination also reduced the drug toxicity, as compared to values found using it alone. In this context, preliminary data presented here suggest the potential to associate A4 and A8 phages with AmpB to be applied in future studies for treatment against leishmaniasis.
Collapse
|
3
|
Ludolf F, Ramos FF, Coelho EAF. Immunoproteomics and phage display in the context of leishmaniasis complexity. Front Immunol 2023; 14:1112894. [PMID: 36845148 PMCID: PMC9946295 DOI: 10.3389/fimmu.2023.1112894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Leishmaniasis is defined as a complex of diseases caused by protozoan parasites of the genus Leishmania, which comprises 20 parasite species pathogenic to mammalians, such as humans and dogs. From a clinical point of view, and considering the diversity and biological complexity of the parasites, vectors, and vertebrate hosts, leishmaniasis is classified according to the distinct clinical manifestations, such as tegumentary (involving the cutaneous, mucosal, and cutaneous-diffuse forms) and visceral leishmaniasis. Many issues and challenges remain unaddressed, which could be attributed to the complexity and diversity of the disease. The current demand for the identification of new Leishmania antigenic targets for the development of multicomponent-based vaccines, as well as for the production of specific diagnostic tests, is evident. In recent years, biotechnological tools have allowed the identification of several Leishmania biomarkers that might potentially be used for diagnosis and have an application in vaccine development. In this Mini Review, we discuss the different aspects of this complex disease that have been addressed by technologies such as immunoproteomics and phage display. It is extremely important to be aware of the potential applications of antigens selected in different screening context, so that they can be used appropriately, so understanding their performance, characteristics, and self-limitations.
Collapse
Affiliation(s)
- Fernanda Ludolf
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda F. Ramos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo A. F. Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Patologia Clínica, Colégio Técnico (COLTEC), Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
4
|
de Mesquita TGR, Junior JDES, da Silva LDO, Silva GAV, de Araújo FJ, Pinheiro SK, Kerr HKA, da Silva LS, de Souza LM, de Almeida SA, Queiroz KLGD, de Souza JL, da Silva CC, Sequera HDG, de Souza MLG, Barbosa AN, Pontes GS, Guerra MVDF, Ramasawmy R. Distinct plasma chemokines and cytokines signatures in Leishmania guyanensis-infected patients with cutaneous leishmaniasis. Front Immunol 2022; 13:974051. [PMID: 36091007 PMCID: PMC9453042 DOI: 10.3389/fimmu.2022.974051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
The immunopathology associated with Leishmaniasis is a consequence of inflammation. Upon infection with Leishmania, the type of host-immune response is determinant for the clinical manifestations that can lead to either self-healing or chronic disease. Multiple pathways may determine disease severity. A comparison of systemic immune profiles in patients with cutaneous leishmaniasis caused by L. guyanensis and healthy individuals with the same socio-epidemiological characteristics coming from the same endemic areas as the patients is performed to identify particular immune profile and pathways associated with the progression of disease development. Twenty-seven plasma soluble circulating factors were evaluated between the groups by univariate and multivariate analysis. The following biomarkers pairs IL-17/IL-9 (ρ=0,829), IL-17/IL-12 (ρ=0,786), IL-6/IL-1ra (ρ=0,785), IL-6/IL-12 (ρ=0,780), IL-1β/G-CSF (ρ=0,758) and IL-17/MIP-1β (ρ=0,754) showed the highest correlation mean among the patient while only INF-γ/IL-4 (ρ=0.740), 17/MIP-1β (ρ=0,712) and IL-17/IL-9 (ρ=0,707) exhibited positive correlation among the control group. The cytokine IL-17 and IL1β presented the greater number of positive pair correlation among the patients. The linear combinations of biomarkers displayed IP-10, IL-2 and RANTES as the variables with the higher discriminatory activity in the patient group compared to PDGF, IL-1ra and eotaxin among the control subjects. IP-10, IL-2, IL-1β, RANTES and IL-17 seem to be predictive value of progression to the development of disease among the Lg-infected individuals.
Collapse
Affiliation(s)
- Tirza Gabrielle Ramos de Mesquita
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Department of Molecular Biology, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
| | - José do Espírito Santo Junior
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Faculdade de Medicina Nilton Lins, Universidade Nilton Lins, Manaus, Brazil
| | | | - George Allan Villarouco Silva
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Felipe Jules de Araújo
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Faculdade de Medicina Nilton Lins, Universidade Nilton Lins, Manaus, Brazil
| | - Suzana Kanawati Pinheiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Department of Molecular Biology, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
| | | | - Lener Santos da Silva
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Department of Molecular Biology, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
| | - Luciane Macedo de Souza
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | | | | | - Josué Lacerda de Souza
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Faculdade de Medicina Nilton Lins, Universidade Nilton Lins, Manaus, Brazil
| | - Cilana Chagas da Silva
- Department of Molecular Biology, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
| | - Héctor David Graterol Sequera
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Department of Molecular Biology, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
| | - Mara Lúcia Gomes de Souza
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Department of Molecular Biology, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
| | | | - Gemilson Soares Pontes
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Department of Virology, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
- Genomic Health Surveillance Network: Optimization of Assistance and Research in The State of Amazonas – REGESAM, Manaus, Amazonas, Brazil
| | - Marcus Vinitius de Farias Guerra
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Department of Molecular Biology, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
| | - Rajendranath Ramasawmy
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Department of Molecular Biology, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
- Faculdade de Medicina Nilton Lins, Universidade Nilton Lins, Manaus, Brazil
- Genomic Health Surveillance Network: Optimization of Assistance and Research in The State of Amazonas – REGESAM, Manaus, Amazonas, Brazil
- *Correspondence: Rajendranath Ramasawmy,
| |
Collapse
|
5
|
de Paula JI, Lopes-Torres EJ, Jacobs-Lorena M, Paes MC, Cha SJ. The Screen of a Phage Display Library Identifies a Peptide That Binds to the Surface of Trypanosoma cruzi Trypomastigotes and Impairs Their Infection of Mammalian Cells. Front Microbiol 2022; 13:864788. [PMID: 35359712 PMCID: PMC8960960 DOI: 10.3389/fmicb.2022.864788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundChagas is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. On the order of seven million people are infected worldwide and current therapies are limited, highlighting the urgent need for new interventions. T. cruzi trypomastigotes can infect a variety of mammalian cells, recognition and adhesion to the host cell being critical for parasite entry. This study focuses on trypomastigote surface ligands involved in cell invasion.MethodsThree selection rounds of a phage peptide display library for isolation of phages that bind to trypomastigotes, resulted in the identification of the N3 dodecapeptide. N3 peptide binding to T. cruzi developmental forms (trypomastigotes, amastigotes and epimastigotes) was evaluated by flow cytometry and immunofluorescence assays. Parasite invasion of Vero cells was assessed by flow cytometry and immunofluorescence assays.ResultsPhage display screening identified the N3 peptide that binds preferentially to the surface of the trypomastigote and amastigote infective forms as opposed to non-infective epimastigotes. Importantly, the N3 peptide, but not a control scrambled peptide, inhibits trypomastigote invasion of Vero cells by 50%.ConclusionThe N3 peptide specifically binds to T. cruzi, and by doing so, inhibits Vero cell infection. Follow-up studies will identify the molecule on the parasite surface to which the N3 peptide binds. This putative T. cruzi ligand may advance chemotherapy design and vaccine development.
Collapse
Affiliation(s)
- Jéssica I. de Paula
- Laboratório de Interação Tripanossomatídeos e Vetores – Departamento de Bioquímica, IBRAG – UERJ, Rio de Janeiro, Brazil
| | - Eduardo J. Lopes-Torres
- Laboratório de Helmintologia Romero Lascasas Porto, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Jacobs-Lorena
- Johns Hopkins Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology and Malaria Research Institute, Baltimore, MD, United States
| | - Marcia Cristina Paes
- Laboratório de Interação Tripanossomatídeos e Vetores – Departamento de Bioquímica, IBRAG – UERJ, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
- Marcia Cristina Paes,
| | - Sung-Jae Cha
- Johns Hopkins Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology and Malaria Research Institute, Baltimore, MD, United States
- *Correspondence: Sung-Jae Cha,
| |
Collapse
|
6
|
Zhao P, Ma X, Cheng J, Chen H, Li L. Identification of the hub genes and transcription factor-miRNA axes involved in Helicobacter pylori-associated gastric cancer. Oncol Lett 2022; 23:89. [PMID: 35126731 PMCID: PMC8805177 DOI: 10.3892/ol.2022.13209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 11/26/2021] [Indexed: 12/03/2022] Open
Abstract
It has been previously reported that transcription factor-microRNA (TF-miRNA) axes play a significant role in the carcinogenesis of several types of malignant tumor. However, there is a lack of research into the differences in the mechanism of Helicobacter pylori (HP)-positive [HP(+)] and HP-negative [HP(−)] gastric cancer. The aim of the present study was to identify the hub genes and TF-miRNA axes, and to determine the potential mechanisms involved in HP-associated gastric cancer. HP-associated mRNA and miRNA data, as well as the corresponding clinical information, was downloaded from The Cancer Genome Atlas database. Differentially expressed genes (DEGs) and DE miRNAs (DEMs) were then identified from the HP(+) and HP(−) cancer mRNA and miRNA datasets, respectively. Subsequently, gene set enrichment analysis and the protein-protein interaction (PPI) networks were investigated using the ClusterProfiler packages. Lastly, TF-miRNA-DEG networks were constructed using the miRWalk online tool. A total of 1,050 DEGs and 13 DEMs were identified from the normalized mRNA and miRNA expression datasets, respectively. In addition, 180 Gene Ontology terms and 30 Kyoto Encyclopedia of Genes and Genomes pathways were found to be enriched, while 6 hub genes were identified from the PPI analysis. Furthermore, 7 TF-miRNA interactions and 181 TF-miRNA-DEG axes were constructed using an integrated bioinformatics approach, while 2 TF-miRNA interactions (ZEB1-miRNA-144-3p and PAX2-miRNA-592) were confirmed using reverse transcription-quantitative PCR in samples from enrolled patients. Moreover, the ZEB1-miRNA-144-3p axis was further validated based on dual luciferase reporter assay results. In summary, an integrated bioinformatics approach was used to screen the significant molecular and regulatory axes, which may provide a novel direction to investigate the pathogenesis of gastric cancer associated with HP.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xianxiong Ma
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jiancheng Cheng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hengyu Chen
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China.,Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lei Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
7
|
Ramos FF, Tavares GSV, Ludolf F, Machado AS, Santos TTO, Gonçalves IAP, Dias ACS, Alves PT, Fraga VG, Bandeira RS, Oliveira-da-Silva JA, Reis TAR, Lage DP, Martins VT, Freitas CS, Chaves AT, Guimarães NS, Chávez-Fumagalli MA, Tupinambás U, Rocha MOC, Cota GF, Fujiwara RT, Bueno LL, Goulart LR, Coelho EAF. Diagnostic application of sensitive and specific phage-exposed epitopes for visceral leishmaniasis and human immunodeficiency virus coinfection. Parasitology 2021; 148:1706-1714. [PMID: 35060464 PMCID: PMC11010164 DOI: 10.1017/s0031182021001505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/05/2022]
Abstract
The diagnosis of visceral leishmaniasis (VL) has improved with the search of novel antigens; however, their performance is limited when samples from VL/human immunodeficiency virus (HIV)-coinfected patients are tested. In this context, studies conducted to identify more suitable antigens to detect both VL and VL/HIC coinfection cases should be performed. In the current study, phage display was performed using serum samples from healthy subjects and VL, HIV-infected and VL/HIV-coinfected patients; aiming to identify novel phage-exposed epitopes to be evaluated with this diagnostic purpose. Nine non-repetitive and valid sequences were identified, synthetized and tested as peptides in enzyme-linked immunosorbent assay experiments. Results showed that three (Pep2, Pep3 and Pep4) peptides showed excellent performance to diagnose VL and VL/HIV coinfection, with 100% sensitivity and specificity values. The other peptides showed sensitivity varying from 50.9 to 80.0%, as well as specificity ranging from 60.0 to 95.6%. Pep2, Pep3 and Pep4 also showed a potential prognostic effect, since specific serological reactivity was significantly decreased after patient treatment. Bioinformatics assays indicated that Leishmania trypanothione reductase protein was predicted to contain these three conformational epitopes. In conclusion, data suggest that Pep2, Pep3 and Pep4 could be tested for the diagnosis of VL and VL/HIV coinfection.
Collapse
Affiliation(s)
- Fernanda F. Ramos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
| | - Grasiele S. V. Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
| | - Fernanda Ludolf
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
| | - Amanda S. Machado
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
| | - Thaís T. O. Santos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
| | - Isabela A. P. Gonçalves
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
| | - Ana C. S. Dias
- Laboratório de Nanobiotecnologia, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Av. Amazonas s/n, Campus Umuarama, Bloco 2E, Sala 248, 38400-902Uberlândia, Minas Gerais, Brazil
| | - Patrícia T. Alves
- Laboratório de Nanobiotecnologia, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Av. Amazonas s/n, Campus Umuarama, Bloco 2E, Sala 248, 38400-902Uberlândia, Minas Gerais, Brazil
| | - Vanessa G. Fraga
- Laboratório de Nanobiotecnologia, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Av. Amazonas s/n, Campus Umuarama, Bloco 2E, Sala 248, 38400-902Uberlândia, Minas Gerais, Brazil
| | - Raquel S. Bandeira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
| | - João A. Oliveira-da-Silva
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
| | - Thiago A. R. Reis
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
| | - Daniela P. Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
| | - Vívian T. Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
| | - Camila S. Freitas
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
| | - Ana T. Chaves
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
| | - Nathalia S. Guimarães
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
| | | | - Unaí Tupinambás
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
| | - Manoel O. C. Rocha
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
| | - Gláucia F. Cota
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo T. Fujiwara
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte31270-901, Minas Gerais, Brazil
| | - Lílian L. Bueno
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte31270-901, Minas Gerais, Brazil
| | - Luiz Ricardo Goulart
- Laboratório de Nanobiotecnologia, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Av. Amazonas s/n, Campus Umuarama, Bloco 2E, Sala 248, 38400-902Uberlândia, Minas Gerais, Brazil
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, CA95616, USA
| | - Eduardo A. F. Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte31270-901, Minas Gerais, Brazil
| |
Collapse
|
8
|
Abstract
Bacteriophages-viruses that infect bacteria-are abundant within our bodies, but their significance to human health is only beginning to be explored. Here, we synthesize what is currently known about our phageome and its interactions with the immune system. We first review how phages indirectly affect immunity via bacterial expression of phage-encoded proteins. We next review how phages directly influence innate immunity and bacterial clearance. Finally, we discuss adaptive immunity against phages and its implications for phage/bacterial interactions. In light of these data, we propose that our microbiome can be understood as an interconnected network of bacteria, bacteriophages, and human cells and that the stability of these tri-kingdom interactions may be important for maintaining our immunologic and metabolic health. Conversely, the disruption of this balance, through exposure to exogenous phages, microbial dysbiosis, or immune dysregulation, may contribute to disease. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Medeea Popescu
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, California 94305, USA; .,Immunology Program, School of Medicine, Stanford University, Stanford, California 94305, USA.,These authors contributed equally to this article
| | - Jonas D Van Belleghem
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, California 94305, USA; .,These authors contributed equally to this article
| | - Arya Khosravi
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, California 94305, USA;
| | - Paul L Bollyky
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
9
|
de Vries CR, Chen Q, Demirdjian S, Kaber G, Khosravi A, Liu D, Van Belleghem JD, Bollyky PL. Phages in vaccine design and immunity; mechanisms and mysteries. Curr Opin Biotechnol 2020; 68:160-165. [PMID: 33316575 DOI: 10.1016/j.copbio.2020.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/24/2020] [Accepted: 11/09/2020] [Indexed: 02/01/2023]
Abstract
Bacteriophages have attracted extensive interest in vaccine design. This includes the use of phage display technology to select antigens, the use of engineered phages displaying target antigens in vaccine formulations, and phage DNA vaccines. However, the development of these approaches is limited in part by uncertainty regarding the underlying mechanisms by which phages elicit immunity. This has stymied the clinical development of this technology. Here we review the immunology of phage vaccines and highlight the gaps in our knowledge regarding the underlying mechanisms. First, we review the basic biology of phages and their use in vaccines. Next we discuss what is known about the mechanisms of immunity against engineered phages and phage DNA. Finally, we highlight the gaps in our understanding regarding the immunogenicity of these preparations. We argue that mechanistic insight into the immunology of phage vaccines is essential for the further development and clinical utility of these technologies.
Collapse
Affiliation(s)
- Christiaan R de Vries
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, United States
| | - Qingquan Chen
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, United States
| | - Sally Demirdjian
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, United States
| | - Gernot Kaber
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, United States
| | - Arya Khosravi
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, United States
| | - Dan Liu
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, United States
| | - Jonas D Van Belleghem
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, United States
| | - Paul L Bollyky
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, United States.
| |
Collapse
|
10
|
Malta-Santos H, Fukutani KF, Sorgi CA, Queiroz ATL, Nardini V, Silva J, Lago A, Carvalho LP, Machado PLR, Bozza PT, França-Costa J, Faccioli LH, Carvalho EM, Andrade BB, Borges VM. Multi-omic Analyses of Plasma Cytokines, Lipidomics, and Transcriptomics Distinguish Treatment Outcomes in Cutaneous Leishmaniasis. iScience 2020; 23:101840. [PMID: 33313489 PMCID: PMC7721649 DOI: 10.1016/j.isci.2020.101840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/09/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
Leishmania braziliensis infection frequently results in cutaneous leishmaniasis (CL). An increase in incidence of drug-resistant CL leading to treatment failure has been reported. Identification of reliable predictors of treatment outcomes is necessary to optimize patient care. Here, we performed a prospective case-control study in which plasma levels of cytokines and lipid mediators were assessed at different time points during antileishmanial therapy in patients with CL from Brazil. Multidimensional analyses were employed to describe a combination of biomarkers able to predict and characterize treatment failure. We found a biosignature influenced mainly by plasma levels of lipid mediators that accurately predicted treatment failure. Furthermore, transcriptomic analysis of a publicly available data set revealed that expression levels of genes related to lipid metabolism measured in skin lesions could distinguish treatment outcomes in CL. Thus, activation of pathways linked to lipid biosynthesis predicts treatment failure in CL. The biomarkers identified may be further explored as therapeutic targets.
Collapse
Affiliation(s)
- Hayna Malta-Santos
- Faculdade de Medicina da Bahia (FAMED), Universidade Federal da Bahia, Salvador, Brazil.,Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Kiyoshi F Fukutani
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER), Salvador, Brazil
| | - Carlos A Sorgi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP-USP), Universidade de São Paulo (USP), São Paulo, Brazil
| | - Artur T L Queiroz
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER), Salvador, Brazil
| | - Viviane Nardini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP-USP), Universidade de São Paulo (USP), São Paulo, Brazil
| | - Juliana Silva
- Serviço de Imunologia, C-HUPES, Universidade Federal da Bahia, Salvador, Brazil
| | - Alex Lago
- Serviço de Imunologia, C-HUPES, Universidade Federal da Bahia, Salvador, Brazil
| | - Lucas P Carvalho
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Serviço de Imunologia, C-HUPES, Universidade Federal da Bahia, Salvador, Brazil
| | - Paulo L R Machado
- Serviço de Imunologia, C-HUPES, Universidade Federal da Bahia, Salvador, Brazil
| | - Patrícia T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Jaqueline França-Costa
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Serviço de Imunologia, C-HUPES, Universidade Federal da Bahia, Salvador, Brazil
| | - Lucia H Faccioli
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP-USP), Universidade de São Paulo (USP), São Paulo, Brazil
| | - Edgar M Carvalho
- Faculdade de Medicina da Bahia (FAMED), Universidade Federal da Bahia, Salvador, Brazil.,Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Serviço de Imunologia, C-HUPES, Universidade Federal da Bahia, Salvador, Brazil
| | - Bruno B Andrade
- Faculdade de Medicina da Bahia (FAMED), Universidade Federal da Bahia, Salvador, Brazil.,Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER), Salvador, Brazil.,Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil.,Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil
| | - Valéria M Borges
- Faculdade de Medicina da Bahia (FAMED), Universidade Federal da Bahia, Salvador, Brazil.,Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| |
Collapse
|
11
|
Zhou Z, Wang B. Identification of male infertility-related long non-coding RNAs and their functions based on a competing endogenous RNA network. J Int Med Res 2020; 48:300060520961277. [PMID: 33054493 PMCID: PMC7580164 DOI: 10.1177/0300060520961277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE To identify male infertility-related long non-coding (lnc)RNAs and an lncRNA-related competing endogenous (ce)RNA network. METHODS Expression data including 13 normospermic and eight teratozoospermic samples from postmortem donors were downloaded from the GEO database (GSE6872). The limma R package was used to discriminate dysregulated lncRNA and micro (m)RNA profiles. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of differentially expressed (DE) mRNAs were performed using the clusterProfiler R package. The ceRNA network of dysregulated genes was visualized by Cytoscape. RESULTS A total of 101 DE lncRNAs and 1722 mRNAs were identified as male infertility-specific RNAs with thresholds of |log2FoldChange| >2.0 and adjusted P-value <0.05. GO and KEGG pathways were analyzed for DE mRNAs. Gene set enrichment analysis revealed that DE genes were enriched in embryonic skeletal system development and cytokine-cytokine receptor interactions. A ceRNA network was constructed with 26 key lncRNAs, 33 microRNAs, and 133 mRNAs. DE lncRNAs in male sterility were mainly associated with transferring phosphorus-containing groups and complexes of histone methyltransferases, methyltransferases, PcG proteins, and serine/threonine protein kinases. CONCLUSION This provides a novel perspective to study lncRNA-related ceRNA networks in male infertility and assist in identifying new potential biomarkers for diagnostic purposes.
Collapse
Affiliation(s)
- Zuo Zhou
- Department of Obstetrics, Maternal and Child Health Hospital of Zibo City, Shandong Province, China
| | - Bing Wang
- Center of Reproductive Medicine, Maternal and Child Health Hospital of Zibo City, Shandong Province, China
| |
Collapse
|
12
|
Coutinho De Oliveira B, Duthie MS, Alves Pereira VR. Vaccines for leishmaniasis and the implications of their development for American tegumentary leishmaniasis. Hum Vaccin Immunother 2019; 16:919-930. [PMID: 31634036 DOI: 10.1080/21645515.2019.1678998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The leishmaniases are a collection of vector-borne parasitic diseases caused by a number of different Leishmania species that are distributed worldwide. Clinical and laboratory research have together revealed several important immune components that control Leishmania infection and indicate the potential of immunization to prevent leishmaniasis. In this review we introduce previous and ongoing experimental research efforts to develop vaccines against Leishmania species. First, second and third generation vaccine strategies that have been proposed to counter cutaneous and visceral leishmaniasis (CL and VL, respectively) are summarized. One of the major bottlenecks in development is the transition from results in animal model studies to humans, and we highlight that although American tegumentary leishmaniasis (ATL; New World CL) can progress to destructive and disfiguring mucosal lesions, most research has been conducted using mouse models and Old World Leishmania species. We conclude that assessment of vaccine candidates in ATL settings therefore appears merited.
Collapse
Affiliation(s)
- Beatriz Coutinho De Oliveira
- Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco (UFPE), Recife, Brazil.,Departamento de Imunologia, Instituto Aggeu Magalhães, Recife, Brazil
| | | | | |
Collapse
|
13
|
A biomarker for tegumentary and visceral leishmaniasis based on a recombinant Leishmania hypothetical protein. Immunobiology 2019; 224:477-484. [DOI: 10.1016/j.imbio.2019.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/08/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022]
|