1
|
Poulin R. Evolution of parasitological knowledge: can the past inform the future? Trends Parasitol 2024:S1471-4922(24)00300-3. [PMID: 39488464 DOI: 10.1016/j.pt.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024]
Abstract
The growth of scientific knowledge is often likened to the evolution and diversification of life: new disciplines branch off older ones, and subsequently prosper or decline in a manner reminiscent of the expansion or extinction of diverse lineages of organisms. Based on a parallel between evolutionary diversification and knowledge growth, I examine the expansion of subdisciplines within 'ecological and evolutionary parasitology'. Bibliometric data are used to map the rise and fall of subdisciplines over time, capturing historical trends over the past several decades. This historical overview is followed by a critical consideration of its practical applications for decision-making, ranging from rational funding allocation among subdisciplines to whether the collective planning of future research directions is a desirable option.
Collapse
Affiliation(s)
- Robert Poulin
- Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand.
| |
Collapse
|
2
|
Scholz T. Gaps in parasitological research in the molecular era. Trends Parasitol 2024; 40:283-291. [PMID: 38429122 DOI: 10.1016/j.pt.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 03/03/2024]
Abstract
We live in the age of molecular biology and '-omics', and molecular methods have opened up unimagined possibilities for biological research, including parasitology. However, too one-sided a focus on new approaches can lead to major gaps as less 'cool' topics are neglected. Selected areas of research are briefly discussed to highlight the gaps caused by the current excessive focus on molecular and '-omics' methods. It is crucial to combine both 'classical' and modern methods without neglecting the complexity of the interactions of parasites with their hosts and the environment (One Health concept), which is even more urgent in today's rapidly changing world. Parasitologists should be more involved in field studies and multidisciplinary assessment of parasites.
Collapse
Affiliation(s)
- Tomáš Scholz
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.
| |
Collapse
|
3
|
Olivera LA, Campião KM. Diversity of Acanthocephala parasites in Neotropical amphibians. J Helminthol 2024; 98:e11. [PMID: 38263742 DOI: 10.1017/s0022149x23000986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Acanthocephalans constitute a small taxonomic group related to rotifers and specialized in a parasitic lifestyle. Anurans act as paratenic and definitive hosts and infections always occur trophically. Our objective is to describe and summarize the richness of acanthocephalans in Neotropical anurans. We conducted a literature review in the main research databases, compiling data published until August 2021. We identified 66 articles with records of acanthocephalan-anuran association, 53.03% were carried out in Brazil. We detected 108 species of anurans from 11 families parasitized by acanthocephalans. With the exception of Bufonidae, Hylidae and Leptodactylidae, which are relatively well-studied families, interaction with acanthocephalans remains largely unexplored for most anuran species. We found six families of acanthocephalans: Centrorhynchidae, Echinorhynchidae, Oligacanthorhynchidae, Cavisomidae, Neoechinorhynchidae and Plagiorhynchidae. Centrorhynchidae and Echinorhynchidae presented the largest number of taxa associated with anurans. The largest number of records corresponded to acanthocephalans in the larval stage (cystacanths), for which anurans act as paratenic hosts. We observed a lack of specific taxonomic resolution in the identifications of most reports, because a large part of the records in the larval stage make morphological identification difficult. Brazil, Mexico, Paraguay, Argentina, Ecuador and Peru are the countries with the most records, while Costa Rica, Venezuela, Colombia, Chile and Uruguay exhibited the lowest publication numbers, resulting in gaps in the distribution of acanthocephalans. We expanded the known number of anuran species parasitized by acanthocephalans, compared to the last published review. Overall, we aim to contribute to the understanding of diversity within this intriguing but understudied group.
Collapse
Affiliation(s)
- L A Olivera
- Postgraduate Program in Zoology, Federal University of Paraná. Curitiba, Brazil
- Laboratory of Biological Interactions, Federal University of Paraná, UFPR-Curitiba, Paraná, Brazil
| | - K M Campião
- Laboratory of Biological Interactions, Federal University of Paraná, UFPR-Curitiba, Paraná, Brazil
| |
Collapse
|
4
|
De Vivo M, Chen WY, Huang JP. Testing the efficacy of different molecular tools for parasite conservation genetics: a case study using horsehair worms (Phylum: Nematomorpha). Parasitology 2023; 150:842-851. [PMID: 37415562 PMCID: PMC10478060 DOI: 10.1017/s0031182023000641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
In recent years, parasite conservation has become a globally significant issue. Because of this, there is a need for standardized methods for inferring population status and possible cryptic diversity. However, given the lack of molecular data for some groups, it is challenging to establish procedures for genetic diversity estimation. Therefore, universal tools, such as double-digest restriction-site-associated DNA sequencing (ddRADseq), could be useful when conducting conservation genetic studies on rarely studied parasites. Here, we generated a ddRADseq dataset that includes all 3 described Taiwanese horsehair worms (Phylum: Nematomorpha), possibly one of the most understudied animal groups. Additionally, we produced data for a fragment of the cytochrome c oxidase subunit I (COXI) for the said species. We used the COXI dataset in combination with previously published sequences of the same locus for inferring the effective population size (Ne) trends and possible population genetic structure.We found that a larger and geographically broader sample size combined with more sequenced loci resulted in a better estimation of changes in Ne. We were able to detect demographic changes associated with Pleistocene events in all the species. Furthermore, the ddRADseq dataset for Chordodes formosanus did not reveal a genetic structure based on geography, implying a great dispersal ability, possibly due to its hosts. We showed that different molecular tools can be used to reveal genetic structure and demographic history at different historical times and geographical scales, which can help with conservation genetic studies in rarely studied parasites.
Collapse
Affiliation(s)
- Mattia De Vivo
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Taipei, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Yun Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Jen-Pan Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
5
|
Picelli AM, Silva MRL, Correa JKC, Paiva GR, Paula FR, Hernández-Ruz EJ, Oliveira EA, Viana LA. Hepatozoon Miller, 1908 parasites in the Colubridae snakes Clelia clelia (Daudin, 1803) and Drymarchon corais (Boie, 1827) from the Eastern Amazonia. AN ACAD BRAS CIENC 2023; 95:e20220115. [PMID: 37255167 DOI: 10.1590/0001-3765202320220115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 12/22/2022] [Indexed: 06/01/2023] Open
Abstract
Based on the genetic, morphological, and morphometric data of blood gamonts, we identified Hepatozoon parasites in colubrid snakes sampled in the Eastern Amazon region. Hepatozoon trigeminum was detected in the mussurana snake Clelia clelia and exhibited wide and elongated gamonts (mean dimensions: 14.25±0.65 × 4.31±0.43 μm) with an evident parasitophorous vacuole. Hepatozoon odwyerae sp. nov. was described in the indigo snake Drymarchon corais, whose gamonts have elongated and thin bodies (mean dimensions: 13.41±0.79 × 3.72±0.35 μm) with one end more tapered than the other. Phylogenetic analyses, based on the amplification of a 441 bp fragment of the 18S rRNA gene, revealed that the novel sequences of Hepatozoon spp. from our study were closely related to hemogregarine lineages found in lizards and snakes from Brazil, forming a well-supported monophyletic clade with them. The present study provides the first species description of Hepatoozon in D. corais and a new record of a host species for C. clelia using the integrated taxonomic data. We also highlight the importance of further investigations into the diversity of Hepatozoon in snakes, a rich but underestimated group of parasites, especially in the Amazonian biome.
Collapse
Affiliation(s)
- Amanda Maria Picelli
- Programa de Pós-Graduação em Biologia Experimental, Universidade Federal de Rondônia, Avenida Pres. Dutra, 2965, 76801-058 Porto Velho, RO, Brazil
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Rua da Beira, 7671, 76812-245 Porto Velho, RO, Brazil
| | - Maria Regina L Silva
- Universidade Federal do Amapá, Departamento de Ciências Biológicas e da Saúde, Laboratório de Estudos Morfofisiológicos e Parasitários, Rodovia Josmar Chaves Pinto, Km 02, 68903-419 Macapá, AP, Brazil
| | - Jamille Karina C Correa
- Universidade Federal do Amapá, Departamento de Ciências Biológicas e da Saúde, Laboratório de Estudos Morfofisiológicos e Parasitários, Rodovia Josmar Chaves Pinto, Km 02, 68903-419 Macapá, AP, Brazil
| | - Gleicierle R Paiva
- Universidade Federal do Pará, Laboratório de Zoologia, Rua Coronel José Porfírio 2515, 68372-040 Altamira, PA, Brazil
| | - Fabiane R Paula
- Universidade Federal do Amapá, Departamento de Ciências Biológicas e da Saúde, Laboratório de Estudos Morfofisiológicos e Parasitários, Rodovia Josmar Chaves Pinto, Km 02, 68903-419 Macapá, AP, Brazil
- Programa de Pós-Graduação em Biodiversidade e Saúde, Instituto Oswaldo Cruz-IOC/Fiocruz, Avenida Brasil, 4365, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Emil José Hernández-Ruz
- Universidade Federal do Pará, Laboratório de Zoologia, Rua Coronel José Porfírio 2515, 68372-040 Altamira, PA, Brazil
| | - Elciomar A Oliveira
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede BIONORTE, Universidade Federal do Amazonas, Avenida General Rodrigo Octavio Jordão Ramos, 1200, 69067-005 Manaus, AM, Brazil
| | - Lúcio André Viana
- Universidade Federal do Amapá, Departamento de Ciências Biológicas e da Saúde, Laboratório de Estudos Morfofisiológicos e Parasitários, Rodovia Josmar Chaves Pinto, Km 02, 68903-419 Macapá, AP, Brazil
| |
Collapse
|
6
|
Poulin R, Presswell B, Filion A, Salloum PM, Chai X, Bennett J, de Angeli Dutra D. Battle of the sexes: analysis of sex bias in host use and reporting practices in parasitological experiments. Int J Parasitol 2023; 53:381-389. [PMID: 37028782 DOI: 10.1016/j.ijpara.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 04/09/2023]
Abstract
Experimental approaches are among the most powerful tools available to biologists, yet in many disciplines their results have been questioned due to an underrepresentation of female animal subjects. In parasitology, experiments are crucial to understand host-parasite interactions, parasite development, host immune responses, as well as the efficacy of different control methods. However, distinguishing between species-wide and sex-specific effects requires the balanced inclusion of both male and female hosts in experiments and the reporting of results for each sex separately. Here, using data from over 3600 parasitological experiments on helminth-mammal interactions published in the past four decades, we investigate patterns of male versus female subject use and result reporting practices in experimental parasitology. We uncover multiple effects of the parasite taxon used, the type of host used (rats and mice for which subject selection is fully under researcher control versus farm animals), the research subject area and the year of publication, on whether host sex is even specified, whether one or both host sexes have been used (and if only one then which one), and whether the results are presented separately for each host sex. We discuss possible reasons for biases and unjustifiable selection of host subjects, and for poor experimental design and reporting of results. Finally, we make some simple recommendations for increased rigour in experimental design and to reset experimental approaches as a cornerstone of parasitological research.
Collapse
Affiliation(s)
- Robert Poulin
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.
| | - Bronwen Presswell
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Antoine Filion
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Priscila M Salloum
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Xuhong Chai
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Jerusha Bennett
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | | |
Collapse
|
7
|
Brabec J, Rochat EC, Knudsen R, Scholz T, Blasco-Costa I. Mining various genomic resources to resolve old alpha-taxonomy questions: A test of the species hypothesis of the Proteocephalus longicollis species complex (Cestoda: Platyhelminthes) from salmonid fishes. Int J Parasitol 2023; 53:197-205. [PMID: 36706803 DOI: 10.1016/j.ijpara.2022.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 01/27/2023]
Abstract
High-throughput sequencing strategies became commonly employed to study non-model parasites, but the corresponding genomes and transcriptomes were seldom mined following the original publication. Similar to the data generated with genome skimming techniques based on shallow-depth shotgun genomes, various genomic and transcriptomic resources can be screened for useful molecular phylogenetic markers traditionally characterised with Sanger sequencing. Here, we provide an example of a strategy using reduced-representation genomic as well as transcriptomic data to obtain broad insights into the molecular diversity of the cestode Proteocephalus longicollis, a common parasite of salmonids distributed throughout the Holarctic region. We extract popular mitochondrial and nuclear ribosomal markers from various genomic resources for hundreds of parasite specimens from multiple European whitefish populations and compare those with Proteocephalus representatives from other species of salmonids and various geographical regions. In contrast with the previous morphology-based assessments, molecular phylogeny reveals a high degree of genetic divergence between Proteocephalus isolates from different salmonids, contrastingly low genetic differentiation within the parasite's populations hosted by the European whitefish (Coregonus lavaretus species complex), and a sister species relationship of Proteocephalus from European whitefish and Proteocephalus percae, a parasite of European perch (Perca fluviatilis). Proteocephalus spp. from North American lake whitefish, brown trout and Arctic charr each formed clearly distinct lineages. These results advance our understanding of the interrelationships of the Proteocephalus-aggregate, a well-recognized clade of Holarctic freshwater fish proteocephalids, and support resurrection of some of the nominal species of Proteocephalus, including Proteocephalus exiguus La Rue, 1911 from North American coregonids and Proteocephalus fallax La Rue, 1911 from European C. lavaretus, reserving Proteocephalus longicollis (Zeder, 1800) exclusively for parasites of Salmo trutta.
Collapse
Affiliation(s)
- Jan Brabec
- Department of Invertebrates, Natural History Museum of Geneva, Geneva, Switzerland; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.
| | - Eloïse C Rochat
- Department of Arctic Biology, The Arctic University of Norway, Tromsø, Norway
| | - Rune Knudsen
- Department of Arctic Biology, The Arctic University of Norway, Tromsø, Norway.
| | - Tomáš Scholz
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Isabel Blasco-Costa
- Department of Invertebrates, Natural History Museum of Geneva, Geneva, Switzerland; Department of Arctic Biology, The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
8
|
Environmental DNA in human and veterinary parasitology - Current applications and future prospects for monitoring and control. Food Waterborne Parasitol 2022; 29:e00183. [DOI: 10.1016/j.fawpar.2022.e00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022] Open
|
9
|
Doherty JF, Matthews BJ. Host Manipulation, Gene Editing, and Non-Traditional Model Organisms: A New Frontier for Behavioral Research? FRONTIERS IN INSECT SCIENCE 2022; 2:938644. [PMID: 38468779 PMCID: PMC10926399 DOI: 10.3389/finsc.2022.938644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/13/2022] [Indexed: 03/13/2024]
Abstract
Insects and parasites dominate the biosphere, in terms of known biodiversity and mode of life, respectively. Consequently, insects play a part in many host-parasite systems, either as parasite, host, or both. Moreover, a lot of these systems involve adaptive parasite-induced changes of host phenotype (typically behavior or morphology), which is commonly known as host manipulation. While many host manipulation systems have been described within the last few decades, the proximate mechanisms that underpin host phenotypic change are still largely unknown. Given the intimate co-evolutionary history of host-parasite systems, teasing apart the intricate network of biochemical reactions involved in host manipulation requires the integration of various complementary technologies. In this perspective, we stress the importance of multidisciplinary research on host manipulation, such as high-throughput sequencing methods (genomics and transcriptomics) to search for candidate mechanisms that are activated during a manipulation event. Then, we argue that gene editing technologies, specifically the CRISPR-Cas9 system, are a powerful way to test for the functional roles of candidate mechanisms, in both the parasite and the host. Finally, given the sheer diversity of unique host-parasite systems discovered to date, there is indeed a tremendous potential to create novel non-traditional model systems that could greatly expand our capacity to test the fundamental aspects of behavior and behavioral regulation.
Collapse
|
10
|
Titcomb GC, Pansu J, Hutchinson MC, Tombak KJ, Hansen CB, Baker CCM, Kartzinel TR, Young HS, Pringle RM. Large-herbivore nemabiomes: patterns of parasite diversity and sharing. Proc Biol Sci 2022; 289:20212702. [PMID: 35538775 PMCID: PMC9091847 DOI: 10.1098/rspb.2021.2702] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Amidst global shifts in the distribution and abundance of wildlife and livestock, we have only a rudimentary understanding of ungulate parasite communities and parasite-sharing patterns. We used qPCR and DNA metabarcoding of fecal samples to characterize gastrointestinal nematode (Strongylida) community composition and sharing among 17 sympatric species of wild and domestic large mammalian herbivore in central Kenya. We tested a suite of hypothesis-driven predictions about the role of host traits and phylogenetic relatedness in describing parasite infections. Host species identity explained 27-53% of individual variation in parasite prevalence, richness, community composition and phylogenetic diversity. Host and parasite phylogenies were congruent, host gut morphology predicted parasite community composition and prevalence, and hosts with low evolutionary distinctiveness were centrally positioned in the parasite-sharing network. We found no evidence that host body size, social-group size or feeding height were correlated with parasite composition. Our results highlight the interwoven evolutionary and ecological histories of large herbivores and their gastrointestinal nematodes and suggest that host identity, phylogeny and gut architecture-a phylogenetically conserved trait related to parasite habitat-are the overriding influences on parasite communities. These findings have implications for wildlife management and conservation as wild herbivores are increasingly replaced by livestock.
Collapse
Affiliation(s)
- Georgia C. Titcomb
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA,Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA,Mpala Research Centre, Nanyuki, Kenya
| | - Johan Pansu
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA,ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Matthew C. Hutchinson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Kaia J. Tombak
- Mpala Research Centre, Nanyuki, Kenya,Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA,Department of Anthropology, Hunter College of the City University of New York, New York, NY, USA
| | - Christina B. Hansen
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Christopher C. M. Baker
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA,US Army ERDC Cold Regions Research and Engineering Laboratory, Hanover, NH, USA
| | - Tyler R. Kartzinel
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA,Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI, USA,Institute at Brown for Environment and Society, Brown University, Providence, RI, USA
| | - Hillary S. Young
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA,Mpala Research Centre, Nanyuki, Kenya
| | - Robert M. Pringle
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
11
|
The rise of ecological parasitology: twelve landmark advances that changed its history. Int J Parasitol 2021; 51:1073-1084. [PMID: 34390744 DOI: 10.1016/j.ijpara.2021.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/29/2021] [Accepted: 07/07/2021] [Indexed: 11/23/2022]
Abstract
In the five decades since the first publication of the International Journal for Parasitology, ecological parasitology has grown from modest beginnings to become a modern discipline with a strong theoretical foundation, a diverse toolkit, and a multidisciplinary approach. In this review, I highlight 12 advances in the field that have spurred its growth over the past 50 years. Where relevant, I identify pivotal contributions that have altered the course of research, as well as the influence of developments in other fields such as mainstream ecology and molecular biology. The 12 key advances discussed are in areas including parasite population dynamics and community assembly, the regulation of host population abundance and food web structure, parasites as agents of natural selection, the impacts of biodiversity and anthropogenic changes on host-parasite interactions, the biogeography of parasite diversity, and the evolutionary genetics of parasites. I conclude by identifying some challenges and opportunities lying ahead, which need to be met for the future growth of ecological research on host-parasite interactions.
Collapse
|
12
|
Towards a more healthy conservation paradigm: integrating disease and molecular ecology to aid biological conservation †. J Genet 2021. [PMID: 33622992 PMCID: PMC7371965 DOI: 10.1007/s12041-020-01225-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parasites, and the diseases they cause, are important from an ecological and evolutionary perspective because they can negatively affect host fitness and can regulate host populations. Consequently, conservation biology has long recognized the vital role that parasites can play in the process of species endangerment and recovery. However, we are only beginning to understand how deeply parasites are embedded in ecological systems, and there is a growing recognition of the important ways in which parasites affect ecosystem structure and function. Thus, there is an urgent need to revisit how parasites are viewed from a conservation perspective and broaden the role that disease ecology plays in conservation-related research and outcomes. This review broadly focusses on the role that disease ecology can play in biological conservation. Our review specifically emphasizes on how the integration of tools and analytical approaches associated with both disease and molecular ecology can be leveraged to aid conservation biology. Our review first concentrates on disease-mediated extinctions and wildlife epidemics. We then focus on elucidating how host–parasite interactions has improved our understanding of the eco-evolutionary dynamics affecting hosts at the individual, population, community and ecosystem scales. We believe that the role of parasites as drivers and indicators of ecosystem health is especially an exciting area of research that has the potential to fundamentally alter our view of parasites and their role in biological conservation. The review concludes with a broad overview of the current and potential applications of modern genomic tools in disease ecology to aid biological conservation.
Collapse
|
13
|
The Adaptiveness of Host Behavioural Manipulation Assessed Using Tinbergen's Four Questions. Trends Parasitol 2021; 37:597-609. [PMID: 33568325 DOI: 10.1016/j.pt.2021.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 11/20/2022]
Abstract
Host organisms show altered phenotypic reactions when parasitised, some of which result from adaptive host manipulation, a phenomenon that has long been debated. Here, we provide an overview and discuss the rationale in distinguishing adaptive versus nonadaptive host behavioural manipulation. We discuss Poulin's criteria of adaptive host behavioural manipulation within the context of Tinbergen's four questions of ethology, while highlighting the importance of both the proximate and evolutionary explanations of such traits. We also provide guidelines for future studies exploring the adaptiveness of host behavioural manipulation. Through this article, we seek to encourage researchers to consider both the proximate and ultimate causes of host behavioural manipulation to infer on the adaptiveness of such traits.
Collapse
|
14
|
Doherty JF. When fiction becomes fact: exaggerating host manipulation by parasites. Proc Biol Sci 2020; 287:20201081. [PMID: 33049168 DOI: 10.1098/rspb.2020.1081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In an era where some find fake news around every corner, the use of sensationalism has inevitably found its way into the scientific literature. This is especially the case for host manipulation by parasites, a phenomenon in which a parasite causes remarkable change in the appearance or behaviour of its host. This concept, which has deservedly garnered popular interest throughout the world in recent years, is nearly 50 years old. In the past two decades, the use of scientific metaphors, including anthropomorphisms and science fiction, to describe host manipulation has become more and more prevalent. It is possible that the repeated use of such catchy, yet misleading words in both the popular media and the scientific literature could unintentionally hamper our understanding of the complexity and extent of host manipulation, ultimately shaping its narrative in part or in full. In this commentary, the impacts of exaggerating host manipulation are brought to light by examining trends in the use of embellishing words. By looking at key examples of exaggerated claims from widely reported host-parasite systems found in the recent scientific literature, it would appear that some of the fiction surrounding host manipulation has since become fact.
Collapse
|
15
|
Abstract
Bibliometric methods were used to analyse the major research trends, themes and topics over the last 30 years in the parasitology discipline. The tools used were SciMAT, VOSviewer and SWIFT-Review in conjunction with the parasitology literature contained in the MEDLINE, Web of Science, Scopus and Dimensions databases. The analyses show that the major research themes are dynamic and continually changing with time, although some themes identified based on keywords such as malaria, nematode, epidemiology and phylogeny are consistently referenced over time. We note the major impact of countries like Brazil has had on the literature of parasitology research. The increase in recent times of research productivity on 'antiparasitics' is discussed, as well as the change in emphasis on different antiparasitic drugs and insecticides over time. In summary, innovation in parasitology is global, extensive, multidisciplinary, constantly evolving and closely aligned with the availability of technology.
Collapse
|