1
|
Nagasubramanian K, Gupta K. Interactome analysis implicates class II transactivator (CIITA) in depression and other neuroinflammatory disorders. Int J Neurosci 2024; 134:1153-1171. [PMID: 37933915 DOI: 10.1080/00207454.2023.2279502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
PURPOSE Inappropriate inflammatory responses within the nervous system (neuroinflammation) have been implicated in several neurological conditions. Class II transactivator (CIITA), a principal regulator of the major histocompatibility complex II (MHCII), is known to play essential roles in inflammation. Hence, CIITA and its interactors could be potentially involved in multiple neurological disorders. However, the molecular mechanisms underlying CIITA-mediated neuroinflammation (NI) are yet to be understood. MATERIALS AND METHODS In this regard, we analyzed the potential involvement of CIITA and its interactome in the regulation of neuroinflammation. In the present study, using various computational tools, we aimed (1) to identify NI-related proteins, (2) to filter the critical interactors in the CIITA-NI network, and (3) to analyze the protein-disease interactions and the associated molecular pathways through which CIITA could influence neuroinflammation. RESULTS CIITA was found to interact with P T GS2, GSK3B, and NR3C1 and may influence depressive disorders. Further, the IL4/IL13 pathway was found to be potentially underlying the CIITA-interactomemediated effects on neurological disorders. Moreover, CIITA was found to be connected to genes associated with depressive disorder through IL4, wherein CIITA was found to be potentially involved in depressive disorders through IL-4/IL-13 and hippo pathways. However, the present study is based on the existing data on protein interactomes and could be re-evaluated as newer interactions are discovered. Also, the functional mechanisms of CIITA's roles in neuroinflammation must be evaluated further. CONCLUSION Notwithstanding these limitations, the results presented here, could form a basis for further experimental studies to assess CIITA as a potential therapeutic target in managing depression and other neuroinflammatory disorders.
Collapse
Affiliation(s)
- Kishore Nagasubramanian
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - Krishnakant Gupta
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
- NCCS, Pune, India
| |
Collapse
|
2
|
Khalid S, Kearney M, McReynolds DE. Can social adversity alter the epigenome, trigger oral disease, and affect future generations? Ir J Med Sci 2024; 193:2597-2606. [PMID: 38740675 PMCID: PMC11450135 DOI: 10.1007/s11845-024-03697-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/27/2024] [Indexed: 05/16/2024]
Abstract
The nature versus nurture debate has intrigued scientific circles for decades. Although extensive research has established a clear relationship between genetics and disease development, recent evidence has highlighted the insufficiency of attributing adverse health outcomes to genetic factors alone. In fact, it has been suggested that environmental influences, such as socioeconomic position (SEP), may play a much larger role in the development of disease than previously thought, with extensive research suggesting that low SEP is associated with adverse health conditions. In relation to oral health, a higher prevalence of caries (tooth decay) exists among those of low SEP. Although little is known about the biological mechanisms underlying this relationship, epigenetic modifications resulting from environmental influences have been suggested to play an important role. This review explores the intersection of health inequalities and epigenetics, the role of early-life social adversity and its long-term epigenetic impacts, and how those living within the lower hierarchies of the socioeconomic pyramid are indeed at higher risk of developing diseases, particularly in relation to oral health. A deeper understanding of these mechanisms could lead to the development of targeted interventions for individuals of low SEP to improve oral health or identify those who are at higher risk of developing oral disease.
Collapse
Affiliation(s)
- Sakr Khalid
- Dublin Dental University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Michaela Kearney
- Dublin Dental University Hospital, Trinity College Dublin, Dublin, Ireland
| | - David E McReynolds
- Dublin Dental University Hospital, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
3
|
Shchaslyvyi AY, Antonenko SV, Telegeev GD. Comprehensive Review of Chronic Stress Pathways and the Efficacy of Behavioral Stress Reduction Programs (BSRPs) in Managing Diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1077. [PMID: 39200687 PMCID: PMC11353953 DOI: 10.3390/ijerph21081077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024]
Abstract
The connection between chronic psychological stress and the onset of various diseases, including diabetes, HIV, cancer, and cardiovascular conditions, is well documented. This review synthesizes current research on the neurological, immune, hormonal, and genetic pathways through which stress influences disease progression, affecting multiple body systems: nervous, immune, cardiovascular, respiratory, reproductive, musculoskeletal, and integumentary. Central to this review is an evaluation of 16 Behavioral Stress Reduction Programs (BSRPs) across over 200 studies, assessing their effectiveness in mitigating stress-related health outcomes. While our findings suggest that BSRPs have the potential to enhance the effectiveness of medical therapies and reverse disease progression, the variability in study designs, sample sizes, and methodologies raises questions about the generalizability and robustness of these results. Future research should focus on long-term, large-scale studies with rigorous methodologies to validate the effectiveness of BSRPs.
Collapse
Affiliation(s)
- Aladdin Y. Shchaslyvyi
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Zabolotnogo Str., 03143 Kyiv, Ukraine; (S.V.A.); (G.D.T.)
| | | | | |
Collapse
|
4
|
Theodoridou D, Tsiantis CO, Vlaikou AM, Chondrou V, Zakopoulou V, Christodoulides P, Oikonomou ED, Tzimourta KD, Kostoulas C, Tzallas AT, Tsamis KI, Peschos D, Sgourou A, Filiou MD, Syrrou M. Developmental Dyslexia: Insights from EEG-Based Findings and Molecular Signatures-A Pilot Study. Brain Sci 2024; 14:139. [PMID: 38391714 PMCID: PMC10887023 DOI: 10.3390/brainsci14020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Developmental dyslexia (DD) is a learning disorder. Although risk genes have been identified, environmental factors, and particularly stress arising from constant difficulties, have been associated with the occurrence of DD by affecting brain plasticity and function, especially during critical neurodevelopmental stages. In this work, electroencephalogram (EEG) findings were coupled with the genetic and epigenetic molecular signatures of individuals with DD and matched controls. Specifically, we investigated the genetic and epigenetic correlates of key stress-associated genes (NR3C1, NR3C2, FKBP5, GILZ, SLC6A4) with psychological characteristics (depression, anxiety, and stress) often included in DD diagnostic criteria, as well as with brain EEG findings. We paired the observed brain rhythms with the expression levels of stress-related genes, investigated the epigenetic profile of the stress regulator glucocorticoid receptor (GR) and correlated such indices with demographic findings. This study presents a new interdisciplinary approach and findings that support the idea that stress, attributed to the demands of the school environment, may act as a contributing factor in the occurrence of the DD phenotype.
Collapse
Affiliation(s)
- Daniela Theodoridou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Christos-Orestis Tsiantis
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Angeliki-Maria Vlaikou
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), 45110 Ioannina, Greece
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Vasiliki Chondrou
- Laboratory of Biology, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Victoria Zakopoulou
- Department of Speech and Language Therapy, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Pavlos Christodoulides
- Department of Speech and Language Therapy, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Emmanouil D Oikonomou
- Department of Informatics and Telecommunications, School of Informatics & Telecommunications, University of Ioannina, 47100 Arta, Greece
| | - Katerina D Tzimourta
- Department of Electrical and Computer Engineering, University of Western Macedonia, 50100 Kozani, Greece
| | - Charilaos Kostoulas
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Alexandros T Tzallas
- Department of Informatics and Telecommunications, School of Informatics & Telecommunications, University of Ioannina, 47100 Arta, Greece
| | - Konstantinos I Tsamis
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Peschos
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Argyro Sgourou
- Laboratory of Biology, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Michaela D Filiou
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), 45110 Ioannina, Greece
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Maria Syrrou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
5
|
Navarro D, Marín-Mayor M, Gasparyan A, García-Gutiérrez MS, Rubio G, Manzanares J. Molecular Changes Associated with Suicide. Int J Mol Sci 2023; 24:16726. [PMID: 38069051 PMCID: PMC10706600 DOI: 10.3390/ijms242316726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Suicide is a serious global public health problem, with a worrying recent increase in suicide rates in both adolescent and adult populations. However, it is essential to recognize that suicide is preventable. A myriad of factors contributes to an individual's vulnerability to suicide. These factors include various potential causes, from psychiatric disorders to genetic and epigenetic alterations. These changes can induce dysfunctions in crucial systems such as the serotonergic, cannabinoid, and hypothalamic-pituitary-adrenal axes. In addition, early life experiences of abuse can profoundly impact an individual's ability to cope with stress, ultimately leading to changes in the inflammatory system, which is a significant risk factor for suicidal behavior. Thus, it is clear that suicidal behavior may result from a confluence of multiple factors. This review examines the primary risk factors associated with suicidal behavior, including psychiatric disorders, early life adversities, and epigenetic modifications. Our goal is to elucidate the molecular changes at the genetic, epigenetic, and molecular levels in the brains of individuals who have taken their own lives and in the plasma and peripheral mononuclear cells of suicide attempters and how these changes may serve as predisposing factors for suicidal tendencies.
Collapse
Affiliation(s)
- Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (D.N.); (A.G.); (M.S.G.-G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Marta Marín-Mayor
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- Department of Psychiatry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (D.N.); (A.G.); (M.S.G.-G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (D.N.); (A.G.); (M.S.G.-G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Gabriel Rubio
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain;
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- Department of Psychiatry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (D.N.); (A.G.); (M.S.G.-G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
6
|
Acero VP, Cribas ES, Browne KD, Rivellini O, Burrell JC, O’Donnell JC, Das S, Cullen DK. Bedside to bench: the outlook for psychedelic research. Front Pharmacol 2023; 14:1240295. [PMID: 37869749 PMCID: PMC10588653 DOI: 10.3389/fphar.2023.1240295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/30/2023] [Indexed: 10/24/2023] Open
Abstract
There has recently been a resurgence of interest in psychedelic compounds based on studies demonstrating their potential therapeutic applications in treating post-traumatic stress disorder, substance abuse disorders, and treatment-resistant depression. Despite promising efficacy observed in some clinical trials, the full range of biological effects and mechanism(s) of action of these compounds have yet to be fully established. Indeed, most studies to date have focused on assessing the psychological mechanisms of psychedelics, often neglecting the non-psychological modes of action. However, it is important to understand that psychedelics may mediate their therapeutic effects through multi-faceted mechanisms, such as the modulation of brain network activity, neuronal plasticity, neuroendocrine function, glial cell regulation, epigenetic processes, and the gut-brain axis. This review provides a framework supporting the implementation of a multi-faceted approach, incorporating in silico, in vitro and in vivo modeling, to aid in the comprehensive understanding of the physiological effects of psychedelics and their potential for clinical application beyond the treatment of psychiatric disorders. We also provide an overview of the literature supporting the potential utility of psychedelics for the treatment of brain injury (e.g., stroke and traumatic brain injury), neurodegenerative diseases (e.g., Parkinson's and Alzheimer's diseases), and gut-brain axis dysfunction associated with psychiatric disorders (e.g., generalized anxiety disorder and major depressive disorder). To move the field forward, we outline advantageous experimental frameworks to explore these and other novel applications for psychedelics.
Collapse
Affiliation(s)
- Victor P. Acero
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
- Penn Psychedelics Collaborative, University of Pennsylvania, Philadelphia, PA, United States
| | - Emily S. Cribas
- Penn Psychedelics Collaborative, University of Pennsylvania, Philadelphia, PA, United States
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kevin D. Browne
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Olivia Rivellini
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Penn Psychedelics Collaborative, University of Pennsylvania, Philadelphia, PA, United States
| | - Justin C. Burrell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - John C. O’Donnell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Penn Psychedelics Collaborative, University of Pennsylvania, Philadelphia, PA, United States
| | - Suradip Das
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - D. Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
7
|
Kouter K, Zupanc T, Videtič Paska A. Targeted sequencing approach: Comprehensive analysis of DNA methylation and gene expression across blood and brain regions in suicide victims. World J Biol Psychiatry 2023; 24:12-23. [PMID: 35200087 DOI: 10.1080/15622975.2022.2046291] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Epigenetic mechanisms are involved in regulation of many pathologies, including suicidal behaviour. However, the factors through which epigenetics affect suicidal behaviour are not fully understood. METHODS We analysed DNA methylation of eight neuropsychiatric genes (NR3C1, SLC6A4, HTR1A, TPH2, SKA2, MAOA, GABRA1, and NRIP3) in brain regions (hippocampus, insula, amygdala, Brodmann area 46) and blood of 25 male suicide victims and 28 male control subjects, using bisulphite next-generation sequencing. RESULTS Comparing mean methylation values, notable changes were observed in NR3C1 (insula p-value = 0.05), HTR1A (insula p-value < 0.001, blood p-value = 0.001), SKA2 (insula p-value = 0.03, blood p-value = 0.016), MAOA (blood p-value < 0.001), GABRA1 (insula p-value = 0.05, blood p-value = 0.024) and NRIP3 (hippocampus p-value = 0.001, insula p-value = 0.002, amygdala p-value = 0.014). Comparing methylation pattern between blood and brain, similarity was observed between blood and insula for HTR1A. Gene expression analysis in hippocampus revealed changes in expression of NR3C1 (p-value = 0.049), SLC6A4 (p-value = 0.017) and HTR1A (p-value = 0.053). CONCLUSIONS Results provide an insight into the altered state of DNA methylation in suicidal behaviour. Epigenetic differences could therefore affect suicidal behaviour in both previously known and in novel neuropsychiatric candidate genes.
Collapse
Affiliation(s)
- Katarina Kouter
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tomaž Zupanc
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Alja Videtič Paska
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
8
|
Kanes SJ, Dennie L, Perera P. Targeting the Arginine Vasopressin V 1b Receptor System and Stress Response in Depression and Other Neuropsychiatric Disorders. Neuropsychiatr Dis Treat 2023; 19:811-828. [PMID: 37077711 PMCID: PMC10106826 DOI: 10.2147/ndt.s402831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/23/2023] [Indexed: 04/21/2023] Open
Abstract
A healthy stress response is critical for good mental and overall health and promotes neuronal growth and adaptation, but the intricately balanced biological mechanisms that facilitate a stress response can also result in predisposition to disease when that equilibrium is disrupted. The hypothalamic-pituitary-adrenal (HPA) axis neuroendocrine system plays a critical role in the body's response and adaptation to stress, and vasopressinergic regulation of the HPA axis is critical to maintaining system responsiveness during chronic stress. However, exposure to repeated or excessive physical or emotional stress or trauma can shift the body's stress response equilibrium to a "new normal" underpinned by enduring changes in HPA axis function. Exposure to early life stress due to adverse childhood experiences can also lead to lasting neurobiological changes, including in HPA axis function. HPA axis impairment in patients with depression is considered among the most reliable findings in biological psychiatry, and chronic stress has been shown to play a major role in the pathogenesis and onset of depression and other neuropsychiatric disorders. Modulating HPA axis activity, for example via targeted antagonism of the vasopressin V1b receptor, is a promising approach for patients with depression and other neuropsychiatric disorders associated with HPA axis impairment. Despite favorable preclinical indications in animal models, demonstration of clinical efficacy for the treatment of depressive disorders by targeting HPA axis dysfunction has been challenging, possibly due to the heterogeneity and syndromal nature of depressive disorders. Measures of HPA axis function, such as elevated cortisol levels, may be useful biomarkers for identifying patients who may benefit from treatments that modulate HPA axis activity. Utilizing clinical biomarkers to identify subsets of patients with impaired HPA axis function who may benefit is a promising next step in fine-tuning HPA axis activity via targeted antagonism of the V1b receptor.
Collapse
Affiliation(s)
- Stephen J Kanes
- EmbarkNeuro, Oakland, CA, USA
- Correspondence: Stephen J Kanes, EmbarkNeuro, Inc, 1111 Broadway, Suite 1300, Oakland, CA, 94607, USA, Tel +1 610 757 7821, Email
| | | | | |
Collapse
|
9
|
Packard K, Opendak M. Rodent models of early adversity: Impacts on developing social behavior circuitry and clinical implications. Front Behav Neurosci 2022; 16:918862. [PMID: 35990728 PMCID: PMC9385963 DOI: 10.3389/fnbeh.2022.918862] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Flexible and context-appropriate social functioning is key for survival across species. This flexibility also renders social behavior highly plastic, particularly during early development when attachment to caregiver can provide a template for future social processing. As a result, early caregiving adversity can have unique and lasting impacts on social behavior and even confer vulnerability to psychiatric disorders. However, the neural circuit mechanisms translating experience to outcome remain poorly understood. Here, we consider social behavior scaffolding through the lens of reward and threat processing. We begin by surveying several complementary rodent models of early adversity, which together have highlighted impacts on neural circuits processing social cues. We next explore these circuits underlying perturbed social functioning with focus on dopamine (DA) and its role in regions implicated in social and threat processing such as the prefrontal cortex (PFC), basolateral amygdala (BLA) and the lateral habenula (LHb). Finally, we turn to human populations once more to examine how altered DA signaling and LHb dysfunction may play a role in social anhedonia, a common feature in diagnoses such as schizophrenia and major depressive disorder (MDD). We argue that this translational focus is critical for identifying specific features of adversity that confer heightened vulnerability for clinical outcomes involving social cue processing.
Collapse
Affiliation(s)
- Katherine Packard
- Department of Neuroscience, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Maya Opendak
- Department of Neuroscience, Kennedy Krieger Institute, Baltimore, MD, United States
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
10
|
James E, Keppler J, L Robertshaw T, Sessa B. N,N-dimethyltryptamine and Amazonian ayahuasca plant medicine. Hum Psychopharmacol 2022; 37:e2835. [PMID: 35175662 PMCID: PMC9286861 DOI: 10.1002/hup.2835] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Reports have indicated possible uses of ayahuasca for the treatment of conditions including depression, addictions, post-traumatic stress disorder, anxiety and specific psychoneuroendocrine immune system pathologies. The article assesses potential ayahuasca and N,N-dimethyltryptamine (DMT) integration with contemporary healthcare. The review also seeks to provide a summary of selected literature regarding the mechanisms of action of DMT and ayahuasca; and assess to what extent the state of research can explain reports of unusual phenomenology. DESIGN A narrative review. RESULTS Compounds in ayahuasca have been found to bind to serotonergic receptors, glutaminergic receptors, sigma-1 receptors, trace amine-associated receptors, and modulate BDNF expression and the dopaminergic system. Subjective effects are associated with increased delta and theta oscillations in amygdala and hippocampal regions, decreased alpha wave activity in the default mode network, and stimulations of vision-related brain regions particularly in the visual association cortex. Both biological processes and field of consciousness models have been proposed to explain subjective effects of DMT and ayahuasca, however, the evidence supporting the proposed models is not sufficient to make confident conclusions. Ayahuasca plant medicine and DMT represent potentially novel treatment modalities. CONCLUSIONS Further research is required to clarify the mechanisms of action and develop treatments which can be made available to the general public. Integration between healthcare research institutions and reputable practitioners in the Amazon is recommended.
Collapse
Affiliation(s)
- Edward James
- School of Pharmacy and Pharmaceutical SciencesCardiff UniversityCardiffUK
| | | | | | - Ben Sessa
- Centre for NeuropsychopharmacologyDivision of Brain SciencesFaculty of MedicineImperial College LondonLondonUK
| |
Collapse
|
11
|
Chaudhari PR, Singla A, Vaidya VA. Early Adversity and Accelerated Brain Aging: A Mini-Review. Front Mol Neurosci 2022; 15:822917. [PMID: 35392273 PMCID: PMC8980717 DOI: 10.3389/fnmol.2022.822917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Early adversity is an important risk factor that influences brain aging. Diverse animal models of early adversity, including gestational stress and postnatal paradigms disrupting dam-pup interactions evoke not only persistent neuroendocrine dysfunction and anxio-depressive behaviors, but also perturb the trajectory of healthy brain aging. The process of brain aging is thought to involve hallmark features such as mitochondrial dysfunction and oxidative stress, evoking impairments in neuronal bioenergetics. Furthermore, brain aging is associated with disrupted proteostasis, progressively defective epigenetic and DNA repair mechanisms, the build-up of neuroinflammatory states, thus cumulatively driving cellular senescence, neuronal and cognitive decline. Early adversity is hypothesized to evoke an “allostatic load” via an influence on several of the key physiological processes that define the trajectory of healthy brain aging. In this review we discuss the evidence that animal models of early adversity impinge on fundamental mechanisms of brain aging, setting up a substratum that can accelerate and compromise the time-line and nature of brain aging, and increase risk for aging-associated neuropathologies.
Collapse
|
12
|
Xu H, Zhong Y, Yuan S, Wu Y, Ma Z, Hao Z, Ding H, Wu H, Liu G, Pang M, Liu N, Wang C, Zhang N. Nitric Oxide Synthase Type 1 Methylation Is Associated With White Matter Microstructure in the Corpus Callosum and Greater Panic Disorder Severity Among Panic Disorder Patients. Front Neurol 2021; 12:755270. [PMID: 34733233 PMCID: PMC8559336 DOI: 10.3389/fneur.2021.755270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/06/2021] [Indexed: 11/28/2022] Open
Abstract
Objectives: Methylation of the neuronal nitric oxide synthase (NOS1/nNOS) gene has recently been identified as a promising biomarker of psychiatric disorders. NOS1 plays an essential role in neurite outgrowth and may thus affect the microstructure development of white matter (WM) in the corpus callosum (CC), which is known to be altered in panic disorder (PD). We examined the relationship between NOS1 methylation, WM tracts in the CC, and symptoms based on this finding. Methods: Thirty-two patients with PD and 22 healthy controls (HCs) were recruited after age, gender, and the education level were matched. The cell type used was whole-blood DNA, and DNA methylation of NOS1 was measured at 20 CpG sites in the promoter region. Although 25 patients with PD were assessed with the Panic Disorder Severity Scale (PDSS), diffusion tensor imaging (DTI) scans were only collected from 16 participants with PD. Results: We observed that the PD group showed lower methylation than did the HCs group and positive correlations between the symptom severity of PD and methylation at CpG4 and CpG9. In addition, CpG9 methylation was significantly correlated with the fractional anisotropy (FA) and mean diffusivity (MD) values of the CC and its major components (the genu and the splenium) in the PD group. Furthermore, path analyses showed that CpG9 methylation offers a mediating effect for the association between the MD values of the genu of the CC and PD symptom severity (95% CI = −1.731 to −0.034). Conclusions: The results suggest that CpG9 methylation leads to atypical development of the genu of the CC, resulting in higher PD symptom severity, adding support for the methylation of NOS1 as a future prognostic indicator of PD.
Collapse
Affiliation(s)
- Huazhen Xu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China.,The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Yuan Zhong
- School of Psychology, Nanjing Normal University, Nanjing, China.,Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing Normal University, Nanjing, China
| | - Shiting Yuan
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yun Wu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Zijuan Ma
- School of Psychology, South China Normal University, Guangzhou, China
| | - Ziyu Hao
- School of Psychology, Nanjing Normal University, Nanjing, China
| | - Huachen Ding
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Huiqing Wu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Gang Liu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Manlong Pang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Na Liu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, China
| | - Chun Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China.,School of Psychology, Nanjing Normal University, Nanjing, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| | - Ning Zhang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Motavalli R, Majidi T, Pourlak T, Abediazar S, Shoja MM, Zununi Vahed S, Etemadi J. The clinical significance of the glucocorticoid receptors: Genetics and epigenetics. J Steroid Biochem Mol Biol 2021; 213:105952. [PMID: 34274458 DOI: 10.1016/j.jsbmb.2021.105952] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 12/14/2022]
Abstract
The impacts of glucocorticoids (GCs) are mainly mediated by a nuclear receptor (GR) existing in almost every tissue. The GR regulates a wide range of physiological functions, including inflammation, cell metabolism, and differentiation playing a major role in cellular responses to GCs and stress. Therefore, the dysregulation or disruption of GR can cause deficiencies in the adaptation to stress and the preservation of homeostasis. The number of GR polymorphisms associated with different diseases has been mounting per year. Tackling these clinical complications obliges a comprehensive understanding of the molecular network action of GCs at the level of the GR structure and its signaling pathways. Beyond genetic variation in the GR gene, epigenetic changes can enhance our understanding of causal factors involved in the development of diseases and identifying biomarkers. In this review, we highlight the relationships of GC receptor gene polymorphisms and epigenetics with different diseases.
Collapse
Affiliation(s)
- Roza Motavalli
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taraneh Majidi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tala Pourlak
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Abediazar
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali M Shoja
- Clinical Academy of Teaching and Learning, Ross University School of Medicine, Miramar, FL, USA
| | | | - Jalal Etemadi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
The Role of Epigenomic Regulatory Pathways in the Gut-Brain Axis and Visceral Hyperalgesia. Cell Mol Neurobiol 2021; 42:361-376. [PMID: 34057682 DOI: 10.1007/s10571-021-01108-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/24/2021] [Indexed: 01/07/2023]
Abstract
The gut-brain axis (GBA) is broadly accepted to describe the bidirectional circuit that links the gastrointestinal tract with the central nervous system (CNS). Interest in the GBA has grown dramatically over past two decades along with advances in our understanding of the importance of the axis in the pathophysiology of numerous common clinical disorders including mood disorders, neurodegenerative disease, diabetes mellitus, non-alcohol fatty liver disease (NAFLD) and enhanced abdominal pain (visceral hyperalgesia). Paralleling the growing interest in the GBA, there have been seminal developments in our understanding of how environmental factors such as psychological stress and other extrinsic factors alter gene expression, primarily via epigenomic regulatory mechanisms. This process has been driven by advances in next-generation multi-omics methods and bioinformatics. Recent reviews address various components of GBA, but the role of epigenomic regulatory pathways in chronic stress-associated visceral hyperalgesia in relevant regions of the GBA including the amygdala, spinal cord, primary afferent (nociceptive) neurons, and the intestinal barrier has not been addressed. Rapidly developing evidence suggests that intestinal epithelial barrier dysfunction and microbial dysbiosis play a potentially significant role in chronic stress-associated visceral hyperalgesia in nociceptive neurons innervating the lower intestine via downregulation in intestinal epithelial cell tight junction protein expression and increase in paracellular permeability. These observations support an important role for the regulatory epigenome in the development of future diagnostics and therapeutic interventions in clinical disorders affecting the GBA.
Collapse
|
15
|
Arasappan D, Eickhoff SB, Nemeroff CB, Hofmann HA, Jabbi M. Transcription Factor Motifs Associated with Anterior Insula Gene Expression Underlying Mood Disorder Phenotypes. Mol Neurobiol 2021; 58:1978-1989. [PMID: 33411239 DOI: 10.1007/s12035-020-02195-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/30/2020] [Indexed: 10/22/2022]
Abstract
Mood disorders represent a major cause of morbidity and mortality worldwide but the brain-related molecular pathophysiology in mood disorders remains largely undefined. Because the anterior insula is reduced in volume in patients with mood disorders, RNA was extracted from the anterior insula postmortem anterior insula of mood disorder samples and compared with unaffected controls for RNA-sequencing identification of differentially expressed genes (DEGs) in (a) bipolar disorder (BD; n = 37) versus (vs.) controls (n = 33), and (b) major depressive disorder (MDD n = 30) vs. controls, and (c) low vs. high axis I comorbidity (a measure of cumulative psychiatric disease burden). Given the regulatory role of transcription factors (TFs) in gene expression via specific-DNA-binding domains (motifs), we used JASPAR TF binding database to identify TF-motifs. We found that DEGs in BD vs. controls, MDD vs. controls, and high vs. low axis I comorbidity were associated with TF-motifs that are known to regulate expression of toll-like receptor genes, cellular homeostatic-control genes, and genes involved in embryonic, cellular/organ, and brain development. Robust imaging-guided transcriptomics by using meta-analytic imaging results to guide independent postmortem dissection for RNA-sequencing was applied by targeting the gray matter volume reduction in the anterior insula in mood disorders, to guide independent postmortem identification of TF motifs regulating DEG. Our findings of TF-motifs that regulate the expression of immune, cellular homeostatic-control, and developmental genes provide novel information about the hierarchical relationship between gene regulatory networks, the TFs that control them, and proximate underlying neuroanatomical phenotypes in mood disorders.
Collapse
Affiliation(s)
- Dhivya Arasappan
- Center for Biomedical Research Support, University of Texas at Austin, Austin, TX, USA
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
| | - Charles B Nemeroff
- Department of Psychiatry, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- The Mulva Clinic for Neurosciences, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Institute of Early Life Adversity Research, Austin, TX, USA
| | - Hans A Hofmann
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Mbemba Jabbi
- Department of Psychiatry, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
- The Mulva Clinic for Neurosciences, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA.
- Department of Psychology, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
16
|
Čater M, Majdič G. How early maternal deprivation changes the brain and behavior? Eur J Neurosci 2021; 55:2058-2075. [PMID: 33870558 DOI: 10.1111/ejn.15238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 01/30/2023]
Abstract
Early life stress can adversely influence brain development and reprogram brain function and consequently behavior in adult life. Adequate maternal care in early childhood is therefore particularly important for the normal brain development, and adverse early life experiences can lead to altered emotional, behavioral, and neuroendocrine stress responses in the adulthood. As a form of neonatal stress, maternal deprivation/separation is often used in behavioral studies to examine the effects of early life stress and for modeling the development of certain psychiatric disorders and brain pathologies in animal models. The temporary loss of maternal care during the critical postpartum periods remodels the offspring's brain and provokes long-term effects on learning and cognition, the development of mental disorders, aggression, and an increased tendency for the drug abuse. Early life stress through maternal deprivation affects neuroendocrine responses to stress in adolescence and adulthood by dysregulating the hypothalamic-pituitary-adrenal axis and permanently disrupts stress resilience. In this review, we focused on how improper maternal care during early postnatal life affects brain development resulting in modified behavior later in life.
Collapse
Affiliation(s)
- Maša Čater
- Veterinary Faculty, Laboratory for Animal Genomics, Institute for Preclinical Studies, University of Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Gregor Majdič
- Veterinary Faculty, Laboratory for Animal Genomics, Institute for Preclinical Studies, University of Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| |
Collapse
|
17
|
Wang HQ, Wang ZZ, Chen NH. The receptor hypothesis and the pathogenesis of depression: Genetic bases and biological correlates. Pharmacol Res 2021; 167:105542. [PMID: 33711432 DOI: 10.1016/j.phrs.2021.105542] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/24/2021] [Accepted: 03/07/2021] [Indexed: 02/08/2023]
Abstract
Depression has become one of the most prevalent neuropsychiatric disorders characterized by anhedonia, anxiety, pessimism, or even suicidal thoughts. Receptor theory has been pointed out to explain the pathogenesis of depression, while it is still subject to debate. Additionally, gene abnormality accounts for nearly 40-50% of depression risk, which is a significant factor contributing to the onset of depression. Accordingly, studying on receptors and their gene abnormality are critical parts of the research on internal causes of depression. This review summarizes the pathogenesis of depression from six of the most related receptors and their associated genes, including N-methyl-D-aspartate receptor, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, glucocorticoid receptor, 5-hydroxytryptamine receptor, GABAA receptor α2, and dopamine receptor; and several "non-classic" receptors, such as metabotropic glutamate receptor, opioid receptor, and insulin receptor. These receptors have received considerable critical attention and are highly implicated in the onset of depression. We begin by providing the biological mechanisms of action of these receptors on the pathogenesis of depression. Then we review the historical and social context about these receptors. Finally, we discuss the limitations of the current state of knowledge and outline insights on future research directions, aiming to provide more novel targets and theoretical basis for the early prevention, accurate diagnosis and prompt treatment of depression.
Collapse
Affiliation(s)
- Hui-Qin Wang
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, Hunan, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Nai-Hong Chen
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, Hunan, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
18
|
Menke A, Nitschke F, Hellmuth A, Helmel J, Wurst C, Stonawski S, Blickle M, Weiß C, Weber H, Hommers L, Domschke K, Deckert J. Stress impairs response to antidepressants via HPA axis and immune system activation. Brain Behav Immun 2021; 93:132-140. [PMID: 33422640 DOI: 10.1016/j.bbi.2020.12.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 10/22/2022] Open
Abstract
Childhood trauma as well as severe events occurring later in life have been associated with the development of major depressive disorder (MDD). However, the interaction of early and later occurring adverse events in patients with MDD is understudied. This study aims to disentangle this interaction by investigating the effects on two of the main stress-response systems of the body, the hypothalamic-pituitaryadrenal (HPA-) axis and the immune system in depressed patients. The function of the HPA-axis was assessed by measuring FKBP5, SGK1 and NR3C1 mRNA-expression in peripheral blood after an in vivo glucocorticoid receptor (GR) challenge with 1.5 mg dexamethasone in 150 depressed in-patients (47.4% females). Childhood trauma was evaluated using the Childhood Trauma Questionnaire (CTQ), severe life events occurring one year prior to hospital admission were assessed with the List of Threatening Experiences (LTE). Multiple childhood traumata, i.e. ≥ 3, were present in 68 (45.5%) patients, 59 (39.3%) experienced ≥ 3 severe recent life events. The history of ≥ 3 severe recent life events was associated with an impaired GR-induction of SGK1 (F = 10.455; df = 1; p = 0.002) and FKBP5 mRNA expression (F = 8.720; df = 1; p = 0.004), and with elevated measures of the immune system such as CRP and lymphocyte count. In addition, severe recent life events were associated with a substantially impaired treatment response to antidepressants (F = 7.456; df = 1; p = 0.008). These effects could not be observed in relation to childhood trauma. Severe life events occurring prior to MDD development substantially impaired the stress-response systems and the response to treatment with antidepressants. This finding may indicate the need to employ additional treatment options such as psychotherapy right at the beginning of treatment or immune-modulating approaches.
Collapse
Affiliation(s)
- Andreas Menke
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080 Würzburg, Germany; Interdisciplinary Center for Clinical Research, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany; Comprehensive Hearth Failure Center (CHFC), University Hospital of Würzburg, Am Schwarzenberg 15, 97078 Würzburg, Germany; Medical Park Chiemseeblick, Department of Psychosomatic Medicine and Psychotherapy, Rasthausstr. 25, 83233 Bernau am Chiemsee; Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany.
| | - Felix Nitschke
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080 Würzburg, Germany
| | - Anna Hellmuth
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080 Würzburg, Germany
| | - Jacqueline Helmel
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080 Würzburg, Germany
| | - Catherina Wurst
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080 Würzburg, Germany; Interdisciplinary Center for Clinical Research, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany; Comprehensive Hearth Failure Center (CHFC), University Hospital of Würzburg, Am Schwarzenberg 15, 97078 Würzburg, Germany
| | - Saskia Stonawski
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080 Würzburg, Germany; Interdisciplinary Center for Clinical Research, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany; Comprehensive Hearth Failure Center (CHFC), University Hospital of Würzburg, Am Schwarzenberg 15, 97078 Würzburg, Germany
| | - Manuel Blickle
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080 Würzburg, Germany
| | - Carolin Weiß
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080 Würzburg, Germany
| | - Heike Weber
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080 Würzburg, Germany
| | - Leif Hommers
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080 Würzburg, Germany; Interdisciplinary Center for Clinical Research, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany; Comprehensive Hearth Failure Center (CHFC), University Hospital of Würzburg, Am Schwarzenberg 15, 97078 Würzburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 5, 79104 Freiburg, Germany; Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Breisacher Str.64, 79106 Freiburg, Germany
| | - Jürgen Deckert
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080 Würzburg, Germany
| |
Collapse
|
19
|
Smith R, Steklis HD, Steklis NG, Weihs KL, Lane RD. The evolution and development of the uniquely human capacity for emotional awareness: A synthesis of comparative anatomical, cognitive, neurocomputational, and evolutionary psychological perspectives. Biol Psychol 2020; 154:107925. [DOI: 10.1016/j.biopsycho.2020.107925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 01/09/2023]
|
20
|
The Effect of Four Weeks of Low-Level Laser Radiation (660 nm) on Movement Recovery and Fibroblasts Invasion. ARCHIVES OF NEUROSCIENCE 2019. [DOI: 10.5812/ans.87225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Sawyer KM, Zunszain PA, Dazzan P, Pariante CM. Intergenerational transmission of depression: clinical observations and molecular mechanisms. Mol Psychiatry 2019; 24:1157-1177. [PMID: 30283036 DOI: 10.1038/s41380-018-0265-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 02/06/2023]
Abstract
Maternal mental illness can have a devastating effect during the perinatal period, and has a profound impact on the care that the baby receives and on the relationships that the baby forms. This review summarises clinical evidence showing the effects of perinatal depression on offspring physical and behavioural development, and on the transmission of psychopathology between generations. We then evaluate a number of factors which influence this relationship, such as genetic factors, the use of psychotropic medications during pregnancy, the timing within the perinatal period, the sex of the foetus, and exposure to maltreatment in childhood. Finally, we examine recent findings regarding the molecular mechanisms underpinning these clinical observations, and identify relevant epigenetic and biomarker changes in the glucocorticoid, oxytocin, oestrogen and immune systems, as key biological mediators of these clinical findings. By understanding these molecular mechanisms in more detail, we will be able to improve outcomes for both mothers and their offspring for generations.
Collapse
Affiliation(s)
- Kristi M Sawyer
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Patricia A Zunszain
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paola Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| |
Collapse
|
22
|
Karstens AJ, Korzun I, Avery ET, Kassel MT, Keelan R, Kales H, Abercrombie H, Eisenlohr-Moul T, Langenecker SA, Weisenbach S. Examining HPA-axis functioning as a mediator of the relationship between depression and cognition across the adult lifespan. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2019; 26:507-520. [PMID: 29993318 PMCID: PMC6329657 DOI: 10.1080/13825585.2018.1495309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/22/2018] [Indexed: 10/28/2022]
Abstract
Altered HPA-axis functioning is a hypothesized mechanism for worsened cognition in depression. The current study examines the indirect effects of depression on processing speed, executive functioning, and memory as a function of the HPA-axis. 38 individuals with a depression diagnosis and 50 healthy controls (HCs) aged 18-86 underwent neuropsychological testing and at-home diurnal salivary cortisol collection. Depression was assessed via structured clinical interviews and rating scales. Cognitive composite scores were derived from factor analysis. Daytime cortisol exposure was estimated using area under the curve (AUC). Depression was associated with higher cortisol levels and slower processing speed . A significant suppression effect of AUC was present on the relationship between depression and processing speed. Limitations include the cross-sectional design and limited sample heterogeneity. Though poorly modulated HPA-axis is one proposed mechanism of cognitive alterations in depression, our results did not support this conclusion for processing speed. Alternative mechanisms should be considered to inform interventions to target cognitive alterations in depression.
Collapse
Affiliation(s)
- Aimee James Karstens
- University of Illinois at Chicago, Departments of Psychology & Psychiatry, Chicago, IL
| | - Inez Korzun
- University of Illinois at Chicago, Department of Neuroscience, Chicago, IL
| | - Erich T. Avery
- University of Michigan, Department of Psychiatry, Ann Arbor, MI
| | | | - Rachel Keelan
- University of Michigan, Department of Psychiatry, Ann Arbor, MI
- James A Haley VA, Tampa, FL
| | - Helen Kales
- University of Michigan, Department of Psychiatry, Ann Arbor, MI
| | | | - Tory Eisenlohr-Moul
- University of Illinois at Chicago, Departments of Psychology & Psychiatry, Chicago, IL
| | - Scott A. Langenecker
- University of Illinois at Chicago, Departments of Psychology & Psychiatry, Chicago, IL
- University of Michigan, Department of Psychiatry, Ann Arbor, MI
| | - Sara Weisenbach
- University of Illinois at Chicago, Departments of Psychology & Psychiatry, Chicago, IL
- University of Michigan, Department of Psychiatry, Ann Arbor, MI
- University of Utah, Department of Psychiatry, Salt Lake City, UT
- VA Salt Lake City, Mental Health Service, Salt Lake City, UT
| |
Collapse
|
23
|
Ong ML, Tuan TA, Poh J, Teh AL, Chen L, Pan H, MacIsaac JL, Kobor MS, Chong YS, Kwek K, Saw SM, Godfrey KM, Gluckman PD, Fortier MV, Karnani N, Meaney MJ, Qiu A, Holbrook JD. Neonatal amygdalae and hippocampi are influenced by genotype and prenatal environment, and reflected in the neonatal DNA methylome. GENES BRAIN AND BEHAVIOR 2019; 18:e12576. [PMID: 31020763 DOI: 10.1111/gbb.12576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/01/2019] [Accepted: 04/13/2019] [Indexed: 12/28/2022]
Abstract
The amygdala and hippocampus undergo rapid development in early life. The relative contribution of genetic and environmental factors to the establishment of their developmental trajectories has yet to be examined. We performed imaging on neonates and examined how the observed variation in volume and microstructure of the amygdala and hippocampus varied by genotype, and compared with prenatal maternal mental health and socioeconomic status. Gene × Environment models outcompeted models containing genotype or environment only to best explain the majority of measures but some, especially of the amygdaloid microstructure, were best explained by genotype only. Models including DNA methylation measured in the neonate umbilical cords outcompeted the Gene and Gene × Environment models for the majority of amygdaloid measures and minority of hippocampal measures. This study identified brain region-specific gene networks associated with individual differences in fetal brain development. In particular, genetic and epigenetic variation within CUX1 was highlighted.
Collapse
Affiliation(s)
- Mei-Lyn Ong
- Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore
| | - Ta A Tuan
- Department of Biomedical Engineering, Clinical Imaging research Centre, National University of Singapore, Singapore
| | - Joann Poh
- Department of Biomedical Engineering, Clinical Imaging research Centre, National University of Singapore, Singapore
| | - Ai L Teh
- Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore
| | - Li Chen
- Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore
| | - Hong Pan
- Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore.,School of Computer Engineering, Nanyang Technological University (NTU), Singapore
| | - Julia L MacIsaac
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yap S Chong
- Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Kenneth Kwek
- KK Women's and Children's Hospital, Duke National University of Singapore, Singapore
| | - Seang M Saw
- Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Peter D Gluckman
- Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore.,Centre for Human Evolution, Adaptation and disease, Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Marielle V Fortier
- KK Women's and Children's Hospital, Duke National University of Singapore, Singapore
| | - Neerja Karnani
- Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore
| | - Michael J Meaney
- Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore.,Ludmer Centre for Neuroinformatics and Mental Health, Sackler Program for Epigenetics & Psychobiology at McGill University, Douglas University Mental Health Institute, McGill University, Montreal, Canada
| | - Anqi Qiu
- Department of Biomedical Engineering, Clinical Imaging research Centre, National University of Singapore, Singapore.,Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore
| | - Joanna D Holbrook
- Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore
| |
Collapse
|
24
|
Abstract
Stress is an adaptive response to environment aversive stimuli and a common life experience of one's daily life. Chronic or excessive stress especially that happened in early life is found to be deleterious to individual's physical and mental health, which is highly related to depressive disorders onset. Stressful life events are consistently considered to be the high-risk factors of environment for predisposing depressive disorders. In linking stressful life events with depressive disorder onset, dysregulated HPA axis activity is supposed to play an important role in mediating aversive impacts of life stress on brain structure and function. Increasing evidence have indicated the strong association of stress, especially the chronic stress and early life stress, with depressive disorders development, while the association of stress with depression is moderated by genetic risk factors, including polymorphism of SERT, BDNF, GR, FKBP5, MR, and CRHR1. Meanwhile, stressful life experience particularly early life stress will exert epigenetic modification in these risk genes via DNA methylation and miRNA regulation to generate long-lasting effects on these genes expression, which in turn cause brain structural and functional alteration, and finally increase the vulnerability to depressive disorders. Therefore, the interaction of environment with gene, in which stressful life exposure interplay with genetic risk factors and epigenetic modification, is essential in predicting depressive disorders development. As the mediator of environmental risk factors, stress will function together with genetic and epigenetic mechanism to influence brain structure and function, physiology and psychology, and finally the vulnerability to depressive disorders.
Collapse
|
25
|
Wilkinson L, Verhoog NJD, Louw A. Disease- and treatment-associated acquired glucocorticoid resistance. Endocr Connect 2018; 7:R328-R349. [PMID: 30352419 PMCID: PMC6280593 DOI: 10.1530/ec-18-0421] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/11/2018] [Indexed: 12/16/2022]
Abstract
The development of resistance to glucocorticoids (GCs) in therapeutic regimens poses a major threat. Generally, GC resistance is congenital or acquired over time as a result of disease progression, prolonged GC treatment or, in some cases, both. Essentially, disruptions in the function and/or pool of the glucocorticoid receptor α (GRα) underlie this resistance. Many studies have detailed how alterations in GRα function lead to diminished GC sensitivity; however, the current review highlights the wealth of data concerning reductions in the GRα pool, mediated by disease-associated and treatment-associated effects, which contribute to a significant decrease in GC sensitivity. Additionally, the current understanding of the molecular mechanisms involved in driving reductions in the GRα pool is discussed. After highlighting the importance of maintaining the level of the GRα pool to combat GC resistance, we present current strategies and argue that future strategies to prevent GC resistance should involve biased ligands with a predisposition for reduced GR dimerization, a strategy originally proposed as the SEMOGRAM-SEDIGRAM concept to reduce the side-effect profile of GCs.
Collapse
Affiliation(s)
- Legh Wilkinson
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Ann Louw
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
- Correspondence should be addressed to A Louw:
| |
Collapse
|
26
|
Tiwari A, Gonzalez A. Biological alterations affecting risk of adult psychopathology following childhood trauma: A review of sex differences. Clin Psychol Rev 2018; 66:69-79. [DOI: 10.1016/j.cpr.2018.01.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 01/10/2023]
|
27
|
Clark JE, Watson S, Friston KJ. What is mood? A computational perspective. Psychol Med 2018; 48:2277-2284. [PMID: 29478431 PMCID: PMC6340107 DOI: 10.1017/s0033291718000430] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 01/08/2018] [Accepted: 02/01/2018] [Indexed: 12/25/2022]
Abstract
The neurobiological understanding of mood, and by extension mood disorders, remains elusive despite decades of research implicating several neuromodulator systems. This review considers a new approach based on existing theories of functional brain organisation. The free energy principle (a.k.a. active inference), and its instantiation in the Bayesian brain, offers a complete and simple formulation of mood. It has been proposed that emotions reflect the precision of - or certainty about - the predicted sensorimotor/interoceptive consequences of action. By extending this reasoning, in a hierarchical setting, we suggest mood states act as (hyper) priors over uncertainty (i.e. emotions). Here, we consider the same computational pathology in the proprioceptive and interoceptive (behavioural and autonomic) domain in order to furnish an explanation for mood disorders. This formulation reconciles several strands of research at multiple levels of enquiry.
Collapse
Affiliation(s)
| | - Stuart Watson
- Newcastle University, Newcastle Upon Tyne, UK
- Northumberland Tyne and Wear NHS Foundation Trust, Newcastle Upon Tyne, UK
| | | |
Collapse
|
28
|
Lacal I, Ventura R. Epigenetic Inheritance: Concepts, Mechanisms and Perspectives. Front Mol Neurosci 2018; 11:292. [PMID: 30323739 PMCID: PMC6172332 DOI: 10.3389/fnmol.2018.00292] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/02/2018] [Indexed: 01/07/2023] Open
Abstract
Parents’ stressful experiences can influence an offspring’s vulnerability to many pathological conditions, including psychopathologies, and their effects may even endure for several generations. Nevertheless, the cause of this phenomenon has not been determined, and only recently have scientists turned to epigenetics to answer this question. There is extensive literature on epigenetics, but no consensus exists with regard to how and what can (and must) be considered to study and define epigenetics processes and their inheritance. In this work, we aimed to clarify and systematize these concepts. To this end, we analyzed the dynamics of epigenetic changes over time in detail and defined three types of epigenetics: a direct form of epigenetics (DE) and two indirect epigenetic processes—within (WIE) and across (AIE). DE refers to changes that occur in the lifespan of an individual, due to direct experiences with his environment. WIE concerns changes that occur inside of the womb, due to events during gestation. Finally, AIE defines changes that affect the individual’s predecessors (parents, grandparents, etc.), due to events that occur even long before conception and that are somehow (e.g., through gametes, the intrauterine environment setting) transmitted across generations. This distinction allows us to organize the main body of epigenetic evidence according to these categories and then focus on the latter (AIE), referring to it as a faster route of informational transmission across generations—compared with genetic inheritance—that guides human evolution in a Lamarckian (i.e., experience-dependent) manner. Of the molecular processes that are implicated in this phenomenon, well-known (methylation) and novel (non-coding RNA, ncRNA) regulatory mechanisms are converging. Our discussion of the chief methods that are used to study epigenetic inheritance highlights the most compelling technical and theoretical problems of this discipline. Experimental suggestions to expand this field are provided, and their practical and ethical implications are discussed extensively.
Collapse
Affiliation(s)
- Irene Lacal
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Rossella Ventura
- Department of Psychology and "Daniel Bovet" Center, Sapienza University of Rome, Rome, Italy.,Fondazione Santa Lucia, IRCCS, Rome, Italy
| |
Collapse
|
29
|
Childhood Trauma, DNA Methylation of Stress-Related Genes, and Depression: Findings From Two Monozygotic Twin Studies. Psychosom Med 2018; 80:599-608. [PMID: 29781947 PMCID: PMC6113110 DOI: 10.1097/psy.0000000000000604] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE DNA methylation has been associated with both early life stress and depression. This study examined the combined association of DNA methylation at multiple CpG probes in five stress-related genes with depressive symptoms and tested whether these genes methylation mediated the association between childhood trauma and depression in two monozygotic (MZ) twin studies. METHODS The current analysis comprised 119 MZ twin pairs (84 male pairs [mean = 55 years] and 35 female pairs [mean = 36 years]). Peripheral blood DNA methylation of five stress-related genes (BDNF, NR3C1, SLC6A4, MAOA, and MAOB) was quantified by bisulfite pyrosequencing or 450K BeadChip. We applied generalized Poisson linear-mixed models to examine the association between each single CpG methylation and depressive symptoms. The joint associations of multiple CpGs in a single gene or all five stress-related genes as a pathway were tested by weighted truncated product method. Mediation analysis was conducted to test the potential mediating effect of stress gene methylation on the relationship between childhood trauma and depressive symptoms. RESULTS Multiple CpG probes showed nominal individual associations, but very few survived multiple testing. Gene-based or gene-set approach, however, revealed significant joint associations of DNA methylation in all five stress-related genes with depressive symptoms in both studies. Moreover, two CpG probes in the BDNF and NR3C1 mediated approximately 20% of the association between childhood trauma and depressive symptoms. CONCLUSIONS DNA methylation at multiple CpG sites are jointly associated with depressive symptoms and partly mediates the association between childhood trauma and depression. Our results highlight the importance of testing the combined effects of multiple CpG loci on complex traits and may unravel a molecular mechanism through which adverse early life experiences are biologically embedded.
Collapse
|
30
|
Godoy LD, Rossignoli MT, Delfino-Pereira P, Garcia-Cairasco N, de Lima Umeoka EH. A Comprehensive Overview on Stress Neurobiology: Basic Concepts and Clinical Implications. Front Behav Neurosci 2018; 12:127. [PMID: 30034327 PMCID: PMC6043787 DOI: 10.3389/fnbeh.2018.00127] [Citation(s) in RCA: 389] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022] Open
Abstract
Stress is recognized as an important issue in basic and clinical neuroscience research, based upon the founding historical studies by Walter Canon and Hans Selye in the past century, when the concept of stress emerged in a biological and adaptive perspective. A lot of research after that period has expanded the knowledge in the stress field. Since then, it was discovered that the response to stressful stimuli is elaborated and triggered by the, now known, stress system, which integrates a wide diversity of brain structures that, collectively, are able to detect events and interpret them as real or potential threats. However, different types of stressors engage different brain networks, requiring a fine-tuned functional neuroanatomical processing. This integration of information from the stressor itself may result in a rapid activation of the Sympathetic-Adreno-Medullar (SAM) axis and the Hypothalamus-Pituitary-Adrenal (HPA) axis, the two major components involved in the stress response. The complexity of the stress response is not restricted to neuroanatomy or to SAM and HPA axes mediators, but also diverge according to timing and duration of stressor exposure, as well as its short- and/or long-term consequences. The identification of neuronal circuits of stress, as well as their interaction with mediator molecules over time is critical, not only for understanding the physiological stress responses, but also to understand their implications on mental health.
Collapse
Affiliation(s)
- Lívea Dornela Godoy
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Polianna Delfino-Pereira
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Norberto Garcia-Cairasco
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Eduardo Henrique de Lima Umeoka
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
31
|
Farrell C, Doolin K, O' Leary N, Jairaj C, Roddy D, Tozzi L, Morris D, Harkin A, Frodl T, Nemoda Z, Szyf M, Booij L, O'Keane V. DNA methylation differences at the glucocorticoid receptor gene in depression are related to functional alterations in hypothalamic-pituitary-adrenal axis activity and to early life emotional abuse. Psychiatry Res 2018; 265:341-348. [PMID: 29793048 DOI: 10.1016/j.psychres.2018.04.064] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/22/2018] [Accepted: 04/24/2018] [Indexed: 01/07/2023]
Abstract
Depression is associated with alterations in hypothalamic-pituitary-adrenal (HPA) axis activity. A proposed mechanism to explain these alterations are changes in DNA methylation levels, secondary to early life adversity (ELA), at stress-related genes. Two gene regions that have been implicated in the literature, the glucocorticoid receptor gene (NR3C1) exon 1F and the FKBP5 gene intron 7 were examined in 67 individuals (33 depressed patients and 34 controls). We investigated whether cortisol concentrations, evaluated in 25 depressed patients and 20 controls, and measures of ELA were associated with the degree of methylation at these candidate gene regions. Mean NR3C1 exon 1F DNA methylation levels were significantly increased in the depressed cohort and the degree of methylation was found to be positively associated with morning cortisol concentrations. DNA methylation levels at specific CG sites within the NR3C1 exon 1F were related to childhood emotional abuse severity. DNA methylation at CG38 was related to both HPA axis and childhood emotional abuse measures in the depressed group. No FKBP5 differences were revealed. Our findings suggest that hypermethylation at the NR3C1 exon 1F may occur in depression. This locus-specific epigenetic change is associated with higher basal HPA axis activity, possibly reflecting acquired glucocorticoid receptor resistance.
Collapse
Affiliation(s)
- Chloё Farrell
- Department of Psychiatry, School of Medicine, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.
| | - Kelly Doolin
- Department of Psychiatry, School of Medicine, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Niamh O' Leary
- Department of Psychiatry, School of Medicine, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Chaitra Jairaj
- Department of Psychiatry, School of Medicine, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Darren Roddy
- Department of Psychiatry, School of Medicine, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Leonardo Tozzi
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Derek Morris
- Discipline of Biochemistry, NUI Galway, Galway, Ireland
| | - Andrew Harkin
- School of Pharmacy and Pharmaceutical Studies, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Thomas Frodl
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Zsófia Nemoda
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Linda Booij
- Department of Psychology, Concordia University, Montreal, Quebec, Canada; Sainte-Justine Hospital Research Centre, Montreal, Quebec, Canada
| | - Veronica O'Keane
- Department of Psychiatry, School of Medicine, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland; Trinity Centre for Health Sciences, AMNCH (Tallaght Hospital), Tallaght, Dublin 24, Ireland
| |
Collapse
|
32
|
He Y, Vinkers CH, Houtepen LC, de Witte LD, Boks MP. Childhood Adversity Is Associated With Increased KITLG Methylation in Healthy Individuals but Not in Bipolar Disorder Patients. Front Psychiatry 2018; 9:743. [PMID: 30723428 PMCID: PMC6349722 DOI: 10.3389/fpsyt.2018.00743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/14/2018] [Indexed: 12/16/2022] Open
Abstract
Background: Childhood adversity increases the risk of a range of mental disorders including bipolar disorder, but the underlying mechanisms are still unknown. Previous studies identified DNA methylation levels at the cg27512205 locus on the KIT Ligand (KITLG) gene as a mediator between childhood adversity and stress responsivity. This raises the question whether this locus also plays a role in stress related disorders such as bipolar disorder. Therefore, the current study aims to compare the level of KITLG (cg27512205) methylation between bipolar patients and healthy individuals and its relation to childhood adversity. Methods: KITLG (cg27512205) methylation was measured in 50 bipolar disorder patients and 91 healthy control participants using the HumanMethylation450K BeadChip platform. Childhood adversity in each individual was assessed using the Childhood Trauma Questionnaire. Analyses of the association of KITLG methylation with bipolar disorder, the association of childhood adversity with bipolar disorder as well as the association of KITLG methylation with childhood adversity in bipolar patients and controls were conducted using linear regression with age, gender, childhood adversity, smoking, and cell-type composition estimates as covariates. Results: KITLG (cg27512205) methylation level was significantly lower in bipolar disorder patients (β = -0.351, t = -6.316 p < 0.001). Childhood adversity levels were significantly higher in the bipolar disorder group (β = 4.903, t = 2.99, p = 0.003). In the bipolar disorder patients KITLG methylation was not associated with childhood adversity (β = 0.004, t = 1.039, p = 0.304) in contrast to the healthy controls (β = 0.012, t = 3.15, p = 0.002). Conclusions: KITLG methylation was lower in bipolar disorder despite high levels of childhood adversity, whereas childhood adversity was associated with higher KITLG methylation in healthy controls. In addition to lower methylation at this locus there is an indication that failure to adjust KITLG methylation to high levels of childhood adversity is a risk factor for bipolar disorder.
Collapse
Affiliation(s)
- Yujie He
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Christiaan H Vinkers
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Lotte C Houtepen
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Lot D de Witte
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Marco P Boks
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
33
|
Epigenetic Programming by Early-Life Stress. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:133-150. [DOI: 10.1016/bs.pmbts.2018.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
34
|
Vaiserman AM, Koliada AK. Early-life adversity and long-term neurobehavioral outcomes: epigenome as a bridge? Hum Genomics 2017; 11:34. [PMID: 29246185 PMCID: PMC5732459 DOI: 10.1186/s40246-017-0129-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/04/2017] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence suggests that adversities at critical periods in early life, both pre- and postnatal, can lead to neuroendocrine perturbations, including hypothalamic-pituitary-adrenal axis dysregulation and inflammation persisting up to adulthood. This process, commonly referred to as biological embedding, may cause abnormal cognitive and behavioral functioning, including impaired learning, memory, and depressive- and anxiety-like behaviors, as well as neuropsychiatric outcomes in later life. Currently, the regulation of gene activity by epigenetic mechanisms is suggested to be a key player in mediating the link between adverse early-life events and adult neurobehavioral outcomes. Role of particular genes, including those encoding glucocorticoid receptor, brain-derived neurotrophic factor, as well as arginine vasopressin and corticotropin-releasing factor, has been demonstrated in triggering early adversity-associated pathological conditions. This review is focused on the results from human studies highlighting the causal role of epigenetic mechanisms in mediating the link between the adversity during early development, from prenatal stages through infancy, and adult neuropsychiatric outcomes. The modulation of epigenetic pathways involved in biological embedding may provide promising direction toward novel therapeutic strategies against neurological and cognitive dysfunctions in adult life.
Collapse
Affiliation(s)
- Alexander M Vaiserman
- Laboratory of Epigenetics, Institute of Gerontology, Vyshgorodskaya st. 67, Kiev, 04114, Ukraine.
| | - Alexander K Koliada
- Laboratory of Epigenetics, Institute of Gerontology, Vyshgorodskaya st. 67, Kiev, 04114, Ukraine
| |
Collapse
|
35
|
Hamiel D, Wolmer L, Pardo-Aviv L, Laor N. Addressing the Needs of Preschool Children in the Context of Disasters and Terrorism: Clinical Pictures and Moderating Factors. Curr Psychiatry Rep 2017; 19:38. [PMID: 28534295 DOI: 10.1007/s11920-017-0793-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE OF REVIEW This paper surveys the existent theoretical and research literature regarding the needs of preschool children in the context of disasters and terrorism with the aim of understanding (a) the consequences of such events for young children and (b) the main moderating variables influencing the event-consequence association to learn how to enhance their resilience. RECENT FINDINGS Consequences include a variety of emotional, behavioral, and biological outcomes. Implications for refugee children are discussed. Main moderating variables were mother's sensitivity and mother's PTSD symptoms. Exposure to disasters and terrorism may have severe effects on the mental health and development among preschool children. Future research should explore the implications of different levels of exposure and the effects of moderating psychosocial and biological variables, including the parent-child triad, on the event-consequence relationship.
Collapse
Affiliation(s)
- Daniel Hamiel
- Donald J. Cohen & Irving B. Harris Resilience Center, Association for Children at Risk, Tel-Aviv, Israel. .,Baruch Ivcher School of Psychology, Herzlyia Interdisciplinary Center, Herzliya, Israel. .,Tel-Aviv-Brüll Community Mental Health Center, Clalit Health Services, Tel-Aviv, Israel.
| | - Leo Wolmer
- Donald J. Cohen & Irving B. Harris Resilience Center, Association for Children at Risk, Tel-Aviv, Israel.,Baruch Ivcher School of Psychology, Herzlyia Interdisciplinary Center, Herzliya, Israel
| | - Lee Pardo-Aviv
- Donald J. Cohen & Irving B. Harris Resilience Center, Association for Children at Risk, Tel-Aviv, Israel
| | - Nathaniel Laor
- Donald J. Cohen & Irving B. Harris Resilience Center, Association for Children at Risk, Tel-Aviv, Israel.,Departments of Psychiatry and Medical Education, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Child Study Center, Yale University, New Haven, CT, USA
| |
Collapse
|
36
|
An epigenome-wide DNA methylation study of PTSD and depression in World Trade Center responders. Transl Psychiatry 2017; 7:e1158. [PMID: 28654093 PMCID: PMC5537648 DOI: 10.1038/tp.2017.130] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 01/03/2023] Open
Abstract
Previous epigenome-wide association studies (EWAS) of posttraumatic stress disorder (PTSD) and major depressive disorder (MDD) have been inconsistent. This may be due to small sample sizes, and measurement and tissue differences. The current two EWA analyses of 473 World Trade Center responders are the largest to date for both PTSD and MDD. These analyses investigated DNA methylation patterns and biological pathways influenced by differentially methylated genes associated with each disorder. Methylation was profiled on blood samples using Illumina 450 K Beadchip. Two EWA analyses compared current versus never PTSD, and current versus never MDD, adjusting for cell types and demographic confounders. Pathway and gene set enrichment analyses were performed to understand the complex biological systems of PTSD and MDD. No significant epigenome-wide associations were found for PTSD or MDD at an FDR P<0.05. The majority of genes with differential methylation at a suggestive threshold did not overlap between the two disorders. Pathways significant in PTSD included a regulator of synaptic plasticity, oxytocin signaling, cholinergic synapse and inflammatory disease pathways, while only phosphatidylinositol signaling and cell cycle pathways emerged in MDD. The failure of the current EWA analyses to detect significant epigenome-wide associations is in contrast with disparate findings from previous, smaller EWA and candidate gene studies of PTSD and MDD. Enriched gene sets involved in several biological pathways, including stress response, inflammation and physical health, were identified in PTSD, supporting the view that multiple genes play a role in this complex disorder.
Collapse
|
37
|
Click BH, Greer JB, Regueiro MD, Hartman DJ, Davis PL, Siegel CA, Herfarth HH, Rosh JR, Shah SA, Koltun WA, Binion DG, Baidoo L, Szigethy E. IBD LIVE Series-Case 7: The Brain-Gut Connection and the Importance of Integrated Care in IBD. Inflamm Bowel Dis 2017; 23:681-694. [PMID: 28426450 DOI: 10.1097/mib.0000000000001101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Benjamin H Click
- 1Gastroenterology Fellow II, Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; 2Assistant Professor of Medicine, Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; 3Professor of Medicine, Associate Chief for Education, Co-Director, Inflammatory Bowel Disease Center, Head, IBD Clinical Program, Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; 4Associate Professor of Pathology, Associate Director of Pathology Informatics, Department of Pathology, Division of Anatomic Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; 5Clinical Associate Professor of Radiology, Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; 6Associate Professor of Medicine and of The Dartmouth Institute for Health Policy & Clinical Practice, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire; 7Director of the Inflammatory Bowel Disease Center at the Dartmouth-Hitchcock Medical Center in Lebanon, New Hampshire; 8Professor of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, North Carolina; 9Director, Division of Gastroenterology and Nutrition, Goryeb Children's Hospital, Atlantic Health System, Morristown, New Jersey; 10Professor of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York; 11Chief of Gastroenterology, The Miriam Hospital, Providence, Rhode Island; 12Clinical Professor of Medicine, Warren Alpert School of Medicine at Brown University, Providence, Rhode Island; 13Chief, Division of Colon and Rectal Surgery, Milton S. Hershey Medical Center, Hershey, Pennsylvania; 14Director, Hershey Penn State IBD Center, Professor of Surgery, Peter and Marshia Carlino Chair in IBD, Penn State College of Medicine, Hershey, Pennsylvania; 15Professor of Medicine, Clinical and Translational Science, Co-Director of the IBD Center, Director of Translational IBD Research, Director, Nutrition Support Service, Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; 16Associate Professor of Medicine, Director, Inflammatory Bowel Disease Center, Department of Gastroenterology and Hepatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; and 17Associate Professor of Psychiatry, Pediatrics, and Medicine, University of Pittsburgh School of Medicine, Director, Visceral Inflammation and Pain Center, Co-Director Total Care-IBD, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kaye EC, Brinkman TM, Baker JN. Development of depression in survivors of childhood and adolescent cancer: a multi-level life course conceptual framework. Support Care Cancer 2017; 25:2009-2017. [PMID: 28281048 DOI: 10.1007/s00520-017-3659-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 03/01/2017] [Indexed: 12/25/2022]
Abstract
As therapeutic and supportive care interventions become increasingly effective, growing numbers of childhood and adolescent cancer survivors face a myriad of physical and psychological sequelae secondary to their disease and treatment. Mental health issues, in particular, present a significant problem in this unique patient population, with depression affecting a sizable number of childhood and adolescent cancer survivors. Multiple key determinants impact a survivor's risk of developing depression, with variables traversing across biologic, individual, family, community, and global levels, as well as spanning throughout the life course of human development from the preconception and prenatal periods to adulthood. A multi-level life course conceptual model offers a valuable framework to identify and organize the diverse variables that modulate the risk of developing depression in survivors of childhood and adolescent cancer. This review describes the first multi-level life course perspective applied to development of depression in childhood and adolescent cancer survivors. This conceptual framework may be used to guide the investigation of mental health interventions for SCACs to ensure that key determinants of depression occurrence are adequately addressed across various levels and throughout the life trajectory.
Collapse
Affiliation(s)
- Erica C Kaye
- Department of Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 260, Memphis, TN, 38105, USA.
| | - Tara M Brinkman
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Justin N Baker
- Department of Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 260, Memphis, TN, 38105, USA
- Division of Quality of Life and Palliative Care, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
39
|
Farrell C, O'Keane V. Epigenetics and the glucocorticoid receptor: A review of the implications in depression. Psychiatry Res 2016; 242:349-356. [PMID: 27344028 DOI: 10.1016/j.psychres.2016.06.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 06/11/2016] [Accepted: 06/15/2016] [Indexed: 12/22/2022]
Abstract
Depression is a serious psychiatric disorder that effects at least 350 million people worldwide today. Dysregulation of the hypothalamic-pituitary-adrenal axis (HPAA) is a robust finding in the pathophysiology of depression. This dysregulation is hypothesized to result from altered central glucocorticoid receptor (GR) levels and/or function as a consequence of chronic glucocorticoid (GC) release, leading to receptor resistance. Pivotal animal and human research to date has identified that early life exposure to prolonged levels of GCs, stress and/or depression, can induce epigenetic modifications at key regions on the GR gene that lead to alterations in GR expression and function. Epigenetics provides an attractive mechanism to explain how ones' genes and environment can interact to produce different disease phenotypes. This review aims to compile the information that has been collected to date and to identify key areas for further investigation.
Collapse
Affiliation(s)
- Chloe Farrell
- Department of Psychiatry, School of Medicine, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Veronica O'Keane
- Department of Psychiatry, School of Medicine, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland; Trinity Centre for Health Sciences, AMNCH (Tallaght) Hospital, Tallaght, Dublin 24, Ireland
| |
Collapse
|
40
|
Young JJ, Silber T, Bruno D, Galatzer-Levy IR, Pomara N, Marmar CR. Is there Progress? An Overview of Selecting Biomarker Candidates for Major Depressive Disorder. Front Psychiatry 2016; 7:72. [PMID: 27199779 PMCID: PMC4843170 DOI: 10.3389/fpsyt.2016.00072] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/11/2016] [Indexed: 01/01/2023] Open
Abstract
Major depressive disorder (MDD) contributes to a significant worldwide disease burden, expected to be second only to heart disease by 2050. However, accurate diagnosis has been a historical weakness in clinical psychiatry. As a result, there is a demand for diagnostic modalities with greater objectivity that could improve on current psychiatric practice that relies mainly on self-reporting of symptoms and clinical interviews. Over the past two decades, literature on a growing number of putative biomarkers for MDD increasingly suggests that MDD patients have significantly different biological profiles compared to healthy controls. However, difficulty in elucidating their exact relationships within depression pathology renders individual markers inconsistent diagnostic tools. Consequently, further biomarker research could potentially improve our understanding of MDD pathophysiology as well as aid in interpreting response to treatment, narrow differential diagnoses, and help refine current MDD criteria. Representative of this, multiplex assays using multiple sources of biomarkers are reported to be more accurate options in comparison to individual markers that exhibit lower specificity and sensitivity, and are more prone to confounding factors. In the future, more sophisticated multiplex assays may hold promise for use in screening and diagnosing depression and determining clinical severity as an advance over relying solely on current subjective diagnostic criteria. A pervasive limitation in existing research is heterogeneity inherent in MDD studies, which impacts the validity of biomarker data. Additionally, small sample sizes of most studies limit statistical power. Yet, as the RDoC project evolves to decrease these limitations, and stronger studies with more generalizable data are developed, significant advances in the next decade are expected to yield important information in the development of MDD biomarkers for use in clinical settings.
Collapse
Affiliation(s)
- Juan Joseph Young
- Nathan Kline Institute, Orangeburg, NY, USA; Case Western Reserve University, Cleveland, OH, USA; MetroHealth Medical Center, Cleveland, OH, USA
| | - Tim Silber
- Nathan Kline Institute , Orangeburg, NY , USA
| | - Davide Bruno
- Liverpool John Moores University , Liverpool , UK
| | | | - Nunzio Pomara
- Nathan Kline Institute, Orangeburg, NY, USA; New York University School of Medicine, New York, NY, USA; NYU Cohen Veterans Center, New York, NY, USA
| | - Charles Raymond Marmar
- New York University School of Medicine, New York, NY, USA; NYU Cohen Veterans Center, New York, NY, USA
| |
Collapse
|