1
|
Fukazawa H, Okada-Shudo Y. Photosynthetic Protein-Based Retinal Ganglion Cell Receptive Fields for Detecting Edges and Brightness Illusions. NANO LETTERS 2023; 23:10983-10990. [PMID: 38048176 PMCID: PMC10723062 DOI: 10.1021/acs.nanolett.3c03257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Bacteriorhodopsin, isolated from a halophilic bacterium, is a photosynthetic protein with a structure and function similar to those of the visual pigment rhodopsin. A voltaic cell with bacteriorhodopsin sandwiched between two transparent electrodes exhibits a time-differential response akin to that observed in retinal ganglion cells. It is intriguing as a means to emulate excitation and inhibition in the neural response. Here, we present a neuromorphic device emulating the retinal ganglion cell receptive field fabricated by patterning bacteriorhodopsin onto two transparent electrodes and encapsulating them with an electrolyte solution. This protein-based artificial ganglion cell receptive field is characterized as a bandpass filter that simultaneously replicates excitatory and inhibitory responses within a single element, successfully detecting image edges and phenomena of brightness illusions. The device naturally emulates the highly interacting ganglion cell receptive fields by exploiting the inherent properties of proteins without the need for electronic components, bias power supply, or an external operating circuit.
Collapse
Affiliation(s)
- Hikaru Fukazawa
- Department of Engineering Science, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Yoshiko Okada-Shudo
- Department of Engineering Science, The University of Electro-Communications, Tokyo 182-8585, Japan
| |
Collapse
|
2
|
Hegemann P, Michel H. Dieter Oesterhelt (1940-2022): Life with light and color, pioneer of membrane protein research. Biophys Physicobiol 2023; 20:e201010. [PMID: 38362317 PMCID: PMC10865852 DOI: 10.2142/biophysico.bppb-v20.s010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023] Open
Affiliation(s)
| | - Hartmut Michel
- Max Planck Institute of Biophysics, Frankfurt 60438, Germany
| |
Collapse
|
3
|
Mikhailov OV. Gelatin as It Is: History and Modernity. Int J Mol Sci 2023; 24:ijms24043583. [PMID: 36834993 PMCID: PMC9963746 DOI: 10.3390/ijms24043583] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
The data concerning the synthesis and physicochemical characteristics of one of the practically important proteins-gelatin, as well as the possibilities of its practical application, are systematized and discussed. When considering the latter, emphasis is placed on the use of gelatin in those areas of science and technology that are associated with the specifics of the spatial/molecular structure of this high-molecular compound, namely, as a binder for the silver halide photographic process, immobilized matrix systems with a nano-level organization of an immobilized substance, matrices for creating pharmaceutical/dosage forms and protein-based nanosystems. It was concluded that the use of this protein is promising in the future.
Collapse
Affiliation(s)
- Oleg V Mikhailov
- Department of Analytical Chemistry, Certification and Quality Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
4
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
5
|
Abstract
Research on type 1 rhodopsins spans now a history of 50 years. Originally, just archaeal ion pumps and sensors have been discovered. However, with modern genetic techniques and gene sequencing tools, more and more proteins were identified in all kingdoms of life. Spectroscopic and other biophysical studies revealed quite diverse functions. Ion pumps, sensors, and channels are imprinted in the same seven-helix transmembrane protein scaffold carrying a retinal prosthetic group. In this review, molecular biology methods are described, which enabled the elucidation of their function and structure leading to optogenetic applications.
Collapse
Affiliation(s)
- Martin Engelhard
- Department Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|
6
|
Mei G, Cavini CM, Mamaeva N, Wang P, DeGrip WJ, Rothschild KJ. Optical Switching Between Long-lived States of Opsin Transmembrane Voltage Sensors. Photochem Photobiol 2021; 97:1001-1015. [PMID: 33817800 PMCID: PMC8596844 DOI: 10.1111/php.13428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/27/2022]
Abstract
Opsin-based transmembrane voltage sensors (OTVSs) are membrane proteins increasingly used in optogenetic applications to measure voltage changes across cellular membranes. In order to better understand the photophysical properties of OTVSs, we used a combination of UV-Vis absorption, fluorescence and FT-Raman spectroscopy to characterize QuasAr2 and NovArch, two closely related mutants derived from the proton pump archaerhodopsin-3 (AR3). We find both QuasAr2 and NovArch can be optically cycled repeatedly between O-like and M-like states using 5-min exposure to red (660 nm) and near-UV (405 nm) light. Longer red-light exposure resulted in the formation of a long-lived photoproduct similar to pink membrane, previously found to be a photoproduct of the BR O intermediate with a 9-cis retinylidene chromophore configuration. However, unlike QuasAr2 whose O-like state is stable in the dark, NovArch exhibits an O-like state which slowly partially decays in the dark to a stable M-like form with a deprotonated Schiff base and a 13-cis,15-anti retinylidene chromophore configuration. These results reveal a previously unknown complexity in the photochemistry of OTVSs including the ability to optically switch between different long-lived states. The possible molecular basis of these newly discovered properties along with potential optogenetic and biotechnological applications are discussed.
Collapse
Affiliation(s)
- Gaoxiang Mei
- Molecular Biophysics LaboratoryDepartment of PhysicsPhotonics CenterBoston UniversityBostonMA
| | - Cesar M. Cavini
- Molecular Biophysics LaboratoryDepartment of PhysicsPhotonics CenterBoston UniversityBostonMA
| | - Natalia Mamaeva
- Molecular Biophysics LaboratoryDepartment of PhysicsPhotonics CenterBoston UniversityBostonMA
| | | | - Willem J. DeGrip
- Department of Biophysical Organic ChemistryLeiden Institute of ChemistryLeiden UniversityLeidenThe Netherlands
- Department of BiochemistryRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Kenneth J. Rothschild
- Molecular Biophysics LaboratoryDepartment of PhysicsPhotonics CenterBoston UniversityBostonMA
| |
Collapse
|
7
|
Kooijman L, Schuster M, Baumann C, Jurt S, Löhr F, Fürtig B, Güntert P, Zerbe O. Dynamics of Bacteriorhodopsin in the Dark‐Adapted State from Solution Nuclear Magnetic Resonance Spectroscopy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Laurens Kooijman
- Department of Chemistry University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Matthias Schuster
- Department of Chemistry University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Christian Baumann
- Department of Chemistry University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Simon Jurt
- Department of Chemistry University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Frank Löhr
- Institute of Biophysical Chemistry Center for Biomolecular Magnetic Resonance Goethe University Frankfurt Max-von-Laue-Straße 9 60438 Frankfurt am Main Germany
| | - Boris Fürtig
- Institute of Organic Chemistry and Chemical Biology Goethe University Frankfurt Max-von-Laue-Straße 7 60438 Frankfurt am Main Germany
| | - Peter Güntert
- Institute of Biophysical Chemistry Center for Biomolecular Magnetic Resonance Goethe University Frankfurt Max-von-Laue-Straße 9 60438 Frankfurt am Main Germany
- Laboratory of Physical Chemistry ETH Zürich Vladimir-Prelog-Weg 2 8093 Zurich Switzerland
| | - Oliver Zerbe
- Department of Chemistry University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| |
Collapse
|
8
|
Kooijman L, Schuster M, Baumann C, Jurt S, Löhr F, Fürtig B, Güntert P, Zerbe O. Dynamics of Bacteriorhodopsin in the Dark-Adapted State from Solution Nuclear Magnetic Resonance Spectroscopy. Angew Chem Int Ed Engl 2020; 59:20965-20972. [PMID: 32726501 DOI: 10.1002/anie.202004393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/15/2020] [Indexed: 01/02/2023]
Abstract
To achieve efficient proton pumping in the light-driven proton pump bacteriorhodopsin (bR), the protein must be tightly coupled to the retinal to rapidly convert retinal isomerization into protein structural rearrangements. Methyl group dynamics of bR embedded in lipid nanodiscs were determined in the dark-adapted state, and were found to be mostly well ordered at the cytosolic side. Methyl groups in the M145A mutant of bR, which displays only 10 % residual proton pumping activity, are less well ordered, suggesting a link between side-chain dynamics on the cytosolic side of the bR cavity and proton pumping activity. In addition, slow conformational exchange, attributed to low frequency motions of aromatic rings, was indirectly observed for residues on the extracellular side of the bR cavity. This may be related to reorganization of the water network. These observations provide a detailed picture of previously undescribed equilibrium dynamics on different time scales for ground-state bR.
Collapse
Affiliation(s)
- Laurens Kooijman
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Matthias Schuster
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Christian Baumann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Simon Jurt
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Frank Löhr
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Boris Fürtig
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Peter Güntert
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany.,Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Oliver Zerbe
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
9
|
Giani M, Garbayo I, Vílchez C, Martínez-Espinosa RM. Haloarchaeal Carotenoids: Healthy Novel Compounds from Extreme Environments. Mar Drugs 2019; 17:md17090524. [PMID: 31500208 PMCID: PMC6780574 DOI: 10.3390/md17090524] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 01/08/2023] Open
Abstract
Haloarchaea are halophilic microorganisms belonging to the archaea domain that inhabit salty environments (mainly soils and water) all over the world. Most of the genera included in this group can produce carotenoids at significant concentrations (even wild-type strains). The major carotenoid produced by the cells is bacterioruberin (and its derivatives), which is only produced by this kind of microbes and few bacteria, like Micrococcus roseus. Nevertheless, the understanding of carotenoid metabolism in haloarchaea, its regulation, and the roles of carotenoid derivatives in this group of extreme microorganisms remains mostly unrevealed. Besides, potential biotechnological uses of haloarchaeal pigments are poorly explored. This work summarises what it has been described so far about carotenoids from haloarchaea and their production at mid- and large-scale, paying special attention to the most recent findings on the potential uses of haloarchaeal pigments in biomedicine.
Collapse
Affiliation(s)
- Micaela Giani
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain.
| | - Inés Garbayo
- Algal Biotechnology Group, University of Huelva and Marine International Campus of Excellence (CEIMAR), CIDERTA and Faculty of Sciences, 21071 Huelva, Spain.
| | - Carlos Vílchez
- Algal Biotechnology Group, University of Huelva and Marine International Campus of Excellence (CEIMAR), CIDERTA and Faculty of Sciences, 21071 Huelva, Spain.
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain.
| |
Collapse
|
10
|
Krivenkov V, Samokhvalov P, Nabiev I. Remarkably enhanced photoelectrical efficiency of bacteriorhodopsin in quantum dot – Purple membrane complexes under two-photon excitation. Biosens Bioelectron 2019; 137:117-122. [DOI: 10.1016/j.bios.2019.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/14/2019] [Accepted: 05/03/2019] [Indexed: 01/16/2023]
|
11
|
|
12
|
Modeling the Growth of Archaeon Halobacterium halobium Affected by Temperature and Light. Appl Biochem Biotechnol 2016; 181:1080-1095. [DOI: 10.1007/s12010-016-2270-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
|
13
|
Affiliation(s)
- Sundus Erbas-Cakmak
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - David A. Leigh
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Charlie T. McTernan
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Alina
L. Nussbaumer
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
14
|
Molaeirad A, Janfaza S, Karimi-Fard A, Mahyad B. Photocurrent generation by adsorption of two main pigments of Halobacterium salinarum on TiO2 nanostructured electrode. Biotechnol Appl Biochem 2014; 62:121-5. [PMID: 24823651 DOI: 10.1002/bab.1244] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/07/2014] [Indexed: 11/06/2022]
Abstract
Dye-sensitized solar cells (DSSCs), which are proposed as a substitute for silicon crystalline solar cells, have received considerable attention in the recent decade. They could be produced from inexpensive materials through low-cost processes. In the current work, a bio-sensitized solar cell is designed using abundant, cheap, and nontoxic materials. Bacteriorhodopsin and bacterioruberin are two natural biomolecules found in the cytoplasmic membrane of Halobacterium salinarum. These two pigments were immobilized on nanoporous titanium dioxide films successfully and employed as molecular sensitizers in DSSC with efficient photocurrent generation. The photovoltaic performance of DSSCs based on bacteriorhodopsin and bacterioruberin sensitizers was investigated. Under AM1.5 irradiation a short-circuit current of 0.45 mA cm(-2) , open circuit voltages of 0.57 V, fill factor of 0.62, and an overall energy conversion efficiency of 0.16% are achieved by employing a mixture of biomolecules as a sensitizer.
Collapse
Affiliation(s)
- Ahmad Molaeirad
- Department of Bioscience and Biotechnology, Malek-Ashtar University of Technology, Tehran, Iran
| | | | | | | |
Collapse
|
15
|
Grote M, Engelhard M, Hegemann P. Of ion pumps, sensors and channels - perspectives on microbial rhodopsins between science and history. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:533-45. [PMID: 23994288 DOI: 10.1016/j.bbabio.2013.08.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/20/2013] [Accepted: 08/22/2013] [Indexed: 10/26/2022]
Abstract
We present a historical overview of research on microbial rhodopsins ranging from the 1960s to the present date. Bacteriorhodopsin (BR), the first identified microbial rhodopsin, was discovered in the context of cell and membrane biology and shown to be an outward directed proton transporter. In the 1970s, BR had a big impact on membrane structural research and bioenergetics, that made it to a model for membrane proteins and established it as a probe for the introduction of various biophysical techniques that are widely used today. Halorhodopsin (HR), which supports BR physiologically by transporting negatively charged Cl⁻ into the cell, is researched within the microbial rhodopsin community since the late 1970s. A few years earlier, the observation of phototactic responses in halobacteria initiated research on what are known today as sensory rhodopsins (SR). The discovery of the light-driven ion channel, channelrhodopsin (ChR), serving as photoreceptors for behavioral responses in green alga has complemented inquiries into this photoreceptor family. Comparing the discovery stories, we show that these followed quite different patterns, albeit the objects of research being very similar. The stories of microbial rhodopsins present a comprehensive perspective on what can nowadays be considered one of nature's paradigms for interactions between organisms and light. Moreover, they illustrate the unfolding of this paradigm within the broader conceptual and instrumental framework of the molecular life sciences. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Mathias Grote
- Institut für Philosophie, Literatur-, Wissenschafts- und Technikgeschichte, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Martin Engelhard
- Max Planck Institut für Molekulare Physiologie, Otto Hahn Str. 11, 44227 Dortmund, Germany
| | - Peter Hegemann
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| |
Collapse
|
16
|
Wagner NL, Greco JA, Ranaghan MJ, Birge RR. Directed evolution of bacteriorhodopsin for applications in bioelectronics. J R Soc Interface 2013; 10:20130197. [PMID: 23676894 DOI: 10.1098/rsif.2013.0197] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In nature, biological systems gradually evolve through complex, algorithmic processes involving mutation and differential selection. Evolution has optimized biological macromolecules for a variety of functions to provide a comparative advantage. However, nature does not optimize molecules for use in human-made devices, as it would gain no survival advantage in such cooperation. Recent advancements in genetic engineering, most notably directed evolution, have allowed for the stepwise manipulation of the properties of living organisms, promoting the expansion of protein-based devices in nanotechnology. In this review, we highlight the use of directed evolution to optimize photoactive proteins, with an emphasis on bacteriorhodopsin (BR), for device applications. BR, a highly stable light-activated proton pump, has shown great promise in three-dimensional optical memories, real-time holographic processors and artificial retinas.
Collapse
Affiliation(s)
- Nicole L Wagner
- Department of Molecular & Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA
| | | | | | | |
Collapse
|
17
|
Mathesz A, Fábián L, Valkai S, Alexandre D, Marques PVS, Ormos P, Wolff EK, Dér A. High-speed integrated optical logic based on the protein bacteriorhodopsin. Biosens Bioelectron 2013; 46:48-52. [PMID: 23500476 DOI: 10.1016/j.bios.2013.02.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/04/2013] [Accepted: 02/06/2013] [Indexed: 10/27/2022]
Abstract
The principle of all-optical logical operations utilizing the unique nonlinear optical properties of a protein was demonstrated by a logic gate constructed from an integrated optical Mach-Zehnder interferometer as a passive structure, covered by a bacteriorhodopsin (bR) adlayer as the active element. Logical operations were based on a reversible change of the refractive index of the bR adlayer over one or both arms of the interferometer. Depending on the operating point of the interferometer, we demonstrated binary and ternary logical modes of operation. Using an ultrafast transition of the bR photocycle (BR-K), we achieved high-speed (nanosecond) logical switching. This is the fastest operation of a protein-based integrated optical logic gate that has been demonstrated so far. The results are expected to have important implications for finding novel, alternative solutions in all-optical data processing research.
Collapse
Affiliation(s)
- Anna Mathesz
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, PO Box 521, 6701 Szeged, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Grote M. Purple matter, membranes and 'molecular pumps' in rhodopsin research (1960s-1980s). JOURNAL OF THE HISTORY OF BIOLOGY 2013; 46:331-368. [PMID: 22907707 DOI: 10.1007/s10739-012-9333-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In the context of 1960s research on biological membranes, scientists stumbled upon a curiously coloured material substance, which became called the "purple membrane." Interactions with the material as well as chemical analyses led to the conclusion that the microbial membrane contained a photoactive molecule similar to rhodopsin, the light receptor of animals' retinae. Until 1975, the find led to the formation of novel objects in science, and subsequently to the development of a field in the molecular life sciences that comprised biophysics, bioenergetics as well as membrane and structural biology. Furthermore, the purple membrane and bacteriorhodopsin, as the photoactive membrane transport protein was baptized, inspired attempts at hybrid bio-optical engineering throughout the 1980s. A central motif of the research field was the identification of a functional biological structure, such as a membrane, with a reactive material substance that could be easily prepared and manipulated. Building on this premise, early purple membrane research will be taken as a case in point to understand the appearance and transformation of objects in science through work with material substances. Here, the role played by a perceptible material and its spontaneous change of colour, or reactivity, casts a different light on objects and experimental practices in the late twentieth century molecular life sciences. With respect to the impact of chemical working and thinking, the purple membrane and rhodopsins represent an influential domain straddling the life and chemical sciences as well as bio- and material technologies, which has received only little historical and philosophical attention. Re-drawing the boundary between the living and the non-enlivened, these researches explain and model organismic activity through the reactivity of macromolecular structures, and thus palpable material substances.
Collapse
Affiliation(s)
- Mathias Grote
- Institut für Philosophie, Literatur-, Wissenschafts- und Technikgeschichte, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany,
| |
Collapse
|
19
|
Prasad M, Roy S. Optoelectronic Logic Gates Based on Photovoltaic Response of Bacteriorhodopsin Polymer Composite Thin Films. IEEE Trans Nanobioscience 2012; 11:410-20. [DOI: 10.1109/tnb.2012.2213840] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
All-Optical Reversible Logic Gates with Optically Controlled Bacteriorhodopsin Protein-Coated Microresonators. ACTA ACUST UNITED AC 2012. [DOI: 10.1155/2012/727206] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We present designs of all-optical reversible gates, namely, Feynman, Toffoli, Peres, and Feynman double gates, with optically controlled microresonators. To demonstrate the applicability, a bacteriorhodopsin protein-coated silica microcavity in contact between two tapered single-mode fibers has been used as an all-optical switch. Low-power control signals (<200 μW) at 532 nm and at 405 nm control the conformational states of the protein to switch a near infrared signal laser beam at 1310 or 1550 nm. This configuration has been used as a template to design four-port tunable resonant coupler logic gates. The proposed designs are general and can be implemented in both fiber-optic and integrated-optic formats and with any other coated photosensitive material. Advantages of directed logic, high Q-factor, tunability, compactness, low-power control signals, high fan-out, and flexibility of cascading switches in 2D/3D architectures to form circuits make the designs promising for practical applications.
Collapse
|
21
|
Imhof M, Pudewills J, Rhinow D, Chizhik I, Hampp N. Stability of Purple Membranes from Halobacterium salinarum toward Surfactants: Inkjet Printing of a Retinal Protein. J Phys Chem B 2012; 116:9727-31. [DOI: 10.1021/jp3057459] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Martin Imhof
- Department of Chemistry, Philipps-University of Marburg, Hans-Meerwein-Str.
Bldg. H, D-35032 Marburg, Germany
| | - Jens Pudewills
- Department of Chemistry, Philipps-University of Marburg, Hans-Meerwein-Str.
Bldg. H, D-35032 Marburg, Germany
| | - Daniel Rhinow
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, D-60438 Frankfurt,
Germany
| | - Ivan Chizhik
- Department of Chemistry, Philipps-University of Marburg, Hans-Meerwein-Str.
Bldg. H, D-35032 Marburg, Germany
| | - Norbert Hampp
- Department of Chemistry, Philipps-University of Marburg, Hans-Meerwein-Str.
Bldg. H, D-35032 Marburg, Germany
- Material Sciences Center, Hans-Meerwein-Str. Bldg. H, D-35032
Marburg, Germany
| |
Collapse
|
22
|
Rhinow D, Imhof M, Chizhik I, Baumann RP, Hampp N. Structural Changes in Bacteriorhodopsin Caused by Two-Photon-Induced Photobleaching. J Phys Chem B 2012; 116:7455-62. [DOI: 10.1021/jp2112846] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel Rhinow
- Department of Structural
Biology, Max-Planck-Institute of Biophysics, Max-von-Laue-Str. 3, D-60438 Frankfurt, Germany
| | - Martin Imhof
- Department of Chemistry, Philipps-University of Marburg, Hans-Meerwein-Str. Bldg. H, D-35032 Marburg,
Germany
| | - Ivan Chizhik
- Department of Chemistry, Philipps-University of Marburg, Hans-Meerwein-Str. Bldg. H, D-35032 Marburg,
Germany
| | - Roelf-Peter Baumann
- Department of Chemistry, Philipps-University of Marburg, Hans-Meerwein-Str. Bldg. H, D-35032 Marburg,
Germany
| | - Norbert Hampp
- Department of Chemistry, Philipps-University of Marburg, Hans-Meerwein-Str. Bldg. H, D-35032 Marburg,
Germany
- Material Sciences Center, D-35032 Marburg, Germany
| |
Collapse
|
23
|
|
24
|
Roy S, Prasad M. Design of All-Optical Reconfigurable Logic Unit With Bacteriorhodopsin Protein Coated Microcavity Switches. IEEE Trans Nanobioscience 2011; 10:160-71. [DOI: 10.1109/tnb.2011.2163525] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Ranaghan MJ, Shima S, Ramos L, Poulin DS, Whited G, Rajasekaran S, Stuart JA, Albert AD, Birge RR. Photochemical and thermal stability of green and blue proteorhodopsins: implications for protein-based bioelectronic devices. J Phys Chem B 2011; 114:14064-70. [PMID: 20964279 DOI: 10.1021/jp106633w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The photochemical and thermal stability of the detergent-solubilized blue- and green-absorbing proteorhodpsins, BPR and GPR, respectively, are investigated to determine the viability of these proteins for photonic device applications. Photochemical stability is studied by using pulsed laser excitation and differential UV-vis spectroscopy to assign the photocyclicity. GPR, with a cyclicity of 7 × 10(4) photocycles protein(-1), is 4-5 times more stable than BPR (9 × 10(3) photocycles protein(-1)), but is less stable than native bacteriorhodopsin (9 × 10(5) photocycles protein(-1)) or the 4-keto-bacteriorhodopsin analogue (1 × 10(5) photocycles protein(-1)). The thermal stabilities are assigned by using differential scanning calorimetry and thermal bleaching experiments. Both proteorhodopsins display excellent thermal stability, with melting temperatures above 85 °C, and remain photochemically stable up to 75 °C. The biological relevance of our results is also discussed. The lower cyclicity of BPR is found to be adequate for the long-term biological function of the host organism at ocean depths of 50 m or more.
Collapse
Affiliation(s)
- Matthew J Ranaghan
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Clays K, Hendrickx E, Triest M, Verbiest T, Persoons A, Dehu C, Brédas JL. Nonlinear optical properties of proteins measured by hyper-rayleigh scattering in solution. Science 2010; 262:1419-22. [PMID: 17736822 DOI: 10.1126/science.262.5138.1419] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Hyper-Rayleigh scattering has been used to determine the nonlinear optical properties of a chromophore-containing protein in solution. Because the technique of hyper-Rayleigh scattering allows the measurement of hyperpolarizabilities in an isotropic solution without the application of an electric field, this method is ideally suited for the study of proteins that carry a net charge. The observed orientational correlation between the nonlinear optical chromophores in incompletely solubilized protein molecules suggests that guidelines from protein structures can be used for the engineering of supramolecular structures with high optical nonlinearity.
Collapse
|
27
|
Song L, El-Sayed MA, Lanyi JK. Protein catalysis of the retinal subpicosecond photoisomerization in the primary process of bacteriorhodopsin photosynthesis. Science 2010; 261:891-4. [PMID: 17783735 DOI: 10.1126/science.261.5123.891] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The rate of retinal photoisomerization in wild-type bacteriorhodopsin (wt bR) is compared with that in a number of mutants in which a positively charged (Arg(82)), a negatively charged (Asp(85) or Asp(212)), or neutral hydrogen bonding (Asp(115) or Tyr(185)) amino acid residue known to be functionally important within the retinal cavity is replaced by a neutral, non-hydrogen bonding one. Only the replacements of the charged residues reduced the photoisomerization rate of the 13-cis and all-trans isomers present in these mutants by factors of approximately 1/4 and approximately 1/20, respectively. Retinal photo- and thermal isomerization catalysis and selectivity in wt bR by charged residues is discussed in terms of the known protein structure, the valence-bond wave functions of the ground and excited state of the retinal, and the electrostatic stabilization interactions within the retinal cavity.
Collapse
|
28
|
Oren A. Industrial and environmental applications of halophilic microorganisms. ENVIRONMENTAL TECHNOLOGY 2010; 31:825-834. [PMID: 20662374 DOI: 10.1080/09593330903370026] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In comparison with the thermophilic and the alkaliphilic extremophiles, halophilic microorganisms have as yet found relatively few biotechnological applications. Halophiles are involved in centuries-old processes such as the manufacturing of solar salt from seawater and the production of traditional fermented foods. Two biotechnological processes involving halophiles are highly successful: the production of beta-carotene by the green alga Dunaliella and the production of ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid), used as a stabilizer for enzymes and now also applied in cosmetic products, from moderately halophilic bacteria. The potential use of bacteriorhodopsin, the retinal protein proton pump of Halobacterium, in optoelectronic devices and photochemical processes is being explored, and may well lead to commercial applications in the near future. Demand for salt-tolerant enzymes in current manufacturing or related processes is limited. Other possible uses of halophilic microorganisms such as treatment of saline and hypersaline wastewaters, and the production of exopolysaccharides, poly-beta-hydroxyalkanoate bioplastics and biofuel are being investigated, but no large-scale applications have yet been reported.
Collapse
Affiliation(s)
- Aharon Oren
- Department of Plant and Environmental Sciences, The Institute of Life Sciences, Moshe Shilo Minerva Center for Marine Biogeochemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel.
| |
Collapse
|
29
|
Collins AM, Mohd Kaus NH, Speranza F, Briscoe WH, Rhinow D, Hampp N, Mann S. Assembly of poly(methacrylate)/purple membrane lamellar nanocomposite films by intercalation and in situ polymerisation. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/c0jm01358g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Erokhina S, Benassi L, Bianchini P, Diaspro A, Erokhin V, Fontana MP. Light-Driven Release from Polymeric Microcapsules Functionalized with Bacteriorhodopsin. J Am Chem Soc 2009; 131:9800-4. [DOI: 10.1021/ja903066s] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Svetlana Erokhina
- Department of Biochemistry and Molecular Biology, University of Parma, Viale Usberti 23 A, 43100 Parma, Italy, Department of Physics, University of Parma, Viale Usberti 7 A, 43100 Parma, Italy, LAMBS-MicroSCoBiO Research Center, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146, Italy, and CRS SOFT CNR-INFM, Rome 00185, Italy
| | - Lucia Benassi
- Department of Biochemistry and Molecular Biology, University of Parma, Viale Usberti 23 A, 43100 Parma, Italy, Department of Physics, University of Parma, Viale Usberti 7 A, 43100 Parma, Italy, LAMBS-MicroSCoBiO Research Center, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146, Italy, and CRS SOFT CNR-INFM, Rome 00185, Italy
| | - Paolo Bianchini
- Department of Biochemistry and Molecular Biology, University of Parma, Viale Usberti 23 A, 43100 Parma, Italy, Department of Physics, University of Parma, Viale Usberti 7 A, 43100 Parma, Italy, LAMBS-MicroSCoBiO Research Center, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146, Italy, and CRS SOFT CNR-INFM, Rome 00185, Italy
| | - Alberto Diaspro
- Department of Biochemistry and Molecular Biology, University of Parma, Viale Usberti 23 A, 43100 Parma, Italy, Department of Physics, University of Parma, Viale Usberti 7 A, 43100 Parma, Italy, LAMBS-MicroSCoBiO Research Center, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146, Italy, and CRS SOFT CNR-INFM, Rome 00185, Italy
| | - Victor Erokhin
- Department of Biochemistry and Molecular Biology, University of Parma, Viale Usberti 23 A, 43100 Parma, Italy, Department of Physics, University of Parma, Viale Usberti 7 A, 43100 Parma, Italy, LAMBS-MicroSCoBiO Research Center, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146, Italy, and CRS SOFT CNR-INFM, Rome 00185, Italy
| | - M. P. Fontana
- Department of Biochemistry and Molecular Biology, University of Parma, Viale Usberti 23 A, 43100 Parma, Italy, Department of Physics, University of Parma, Viale Usberti 7 A, 43100 Parma, Italy, LAMBS-MicroSCoBiO Research Center, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146, Italy, and CRS SOFT CNR-INFM, Rome 00185, Italy
| |
Collapse
|
31
|
Ghosh S, Ranjini AS, Pandey R, Das PK. First hyperpolarizability of bacteriorhodopsin, retinal and related molecules revisited. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.04.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Pan Y, Stocks BB, Brown L, Konermann L. Structural Characterization of an Integral Membrane Protein in Its Natural Lipid Environment by Oxidative Methionine Labeling and Mass Spectrometry. Anal Chem 2008; 81:28-35. [DOI: 10.1021/ac8020449] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan Pan
- Departments of Chemistry and Biochemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada, and Department of Physics, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Bradley B. Stocks
- Departments of Chemistry and Biochemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada, and Department of Physics, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Leonid Brown
- Departments of Chemistry and Biochemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada, and Department of Physics, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Lars Konermann
- Departments of Chemistry and Biochemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada, and Department of Physics, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
33
|
Neebe M, Rhinow D, Schromczyk N, Hampp NA. Thermochromism of Bacteriorhodopsin and Its pH Dependence. J Phys Chem B 2008; 112:6946-51. [DOI: 10.1021/jp7111389] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Martin Neebe
- Department of Chemistry, University of Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany, and Material Sciences Center, D-35032 Marburg, Germany
| | - Daniel Rhinow
- Department of Chemistry, University of Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany, and Material Sciences Center, D-35032 Marburg, Germany
| | - Nina Schromczyk
- Department of Chemistry, University of Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany, and Material Sciences Center, D-35032 Marburg, Germany
| | - Norbert A. Hampp
- Department of Chemistry, University of Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany, and Material Sciences Center, D-35032 Marburg, Germany
| |
Collapse
|
34
|
|
35
|
Xi B, Tetley WC, Marcy DL, Zhong C, Whited G, Birge RR, Stuart JA. Evaluation of Blue and Green Absorbing Proteorhodopsins as Holographic Materials. J Phys Chem B 2008; 112:2524-32. [DOI: 10.1021/jp0740752] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bangwei Xi
- W.M. Keck Center for Molecular Electronics and Department of Chemistry, Syracuse University, Syracuse, New York 13244; Department of Electrical & Computer Engineering, Syracuse University, Syracuse, New York 13244; Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269; Genencor International, Inc., Palo Alto, California 94304; and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| | - William C. Tetley
- W.M. Keck Center for Molecular Electronics and Department of Chemistry, Syracuse University, Syracuse, New York 13244; Department of Electrical & Computer Engineering, Syracuse University, Syracuse, New York 13244; Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269; Genencor International, Inc., Palo Alto, California 94304; and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| | - Duane L. Marcy
- W.M. Keck Center for Molecular Electronics and Department of Chemistry, Syracuse University, Syracuse, New York 13244; Department of Electrical & Computer Engineering, Syracuse University, Syracuse, New York 13244; Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269; Genencor International, Inc., Palo Alto, California 94304; and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| | - Cheng Zhong
- W.M. Keck Center for Molecular Electronics and Department of Chemistry, Syracuse University, Syracuse, New York 13244; Department of Electrical & Computer Engineering, Syracuse University, Syracuse, New York 13244; Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269; Genencor International, Inc., Palo Alto, California 94304; and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| | - Gregg Whited
- W.M. Keck Center for Molecular Electronics and Department of Chemistry, Syracuse University, Syracuse, New York 13244; Department of Electrical & Computer Engineering, Syracuse University, Syracuse, New York 13244; Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269; Genencor International, Inc., Palo Alto, California 94304; and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| | - Robert R. Birge
- W.M. Keck Center for Molecular Electronics and Department of Chemistry, Syracuse University, Syracuse, New York 13244; Department of Electrical & Computer Engineering, Syracuse University, Syracuse, New York 13244; Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269; Genencor International, Inc., Palo Alto, California 94304; and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| | - Jeffrey A. Stuart
- W.M. Keck Center for Molecular Electronics and Department of Chemistry, Syracuse University, Syracuse, New York 13244; Department of Electrical & Computer Engineering, Syracuse University, Syracuse, New York 13244; Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269; Genencor International, Inc., Palo Alto, California 94304; and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
36
|
Jin Y, Honig T, Ron I, Friedman N, Sheves M, Cahen D. Bacteriorhodopsin as an electronic conduction medium for biomolecular electronics. Chem Soc Rev 2008; 37:2422-32. [DOI: 10.1039/b806298f] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Energy from photobioreactors: Bioencapsulation of photosynthetically active molecules, organelles, and whole cells within biologically inert matrices. PURE APPL CHEM 2008. [DOI: 10.1351/pac200880112345] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Photosynthesis is a highly efficient solar energy transformation process. Exploiting this natural phenomenon is one way to overcome the shortage in the Earth’s fuel resources. This review summarizes the work carried out in the field of photobioreactor design via the immobilization of photosynthetically active matter within biologically inert matrices and the potential biotechnological applications of the obtained hybrid materials within the domain of solar energy to chemical energy transformation. The first part deals with the design of artificial photosynthetic reaction centers (RCs) by the encapsulation of pigments, proteins, and complexes. The action of thylakoids, chloroplasts, and whole plant cells, immobilized in biocompatible supports, in the conversion of CO2 into chemical energy, is also addressed. Finally, the latest advances in the exploitation of the bioactivity of photosynthetically active micro-organisms are explored in terms of the production of secondary metabolites and hydrogen.
Collapse
|
38
|
Fischer T, Hampp NA. Purple membranes as microscaled nanopatterned biosubstrates for reversible attachment of biocomponents. SOFT MATTER 2007; 3:707-712. [PMID: 32900132 DOI: 10.1039/b618657b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
One of the key challenges in the construction of complex bionanotechnological building blocks and devices is the controlled linkage and release of biomolecular components to and from a biomolecular surface. Here we report a versatile, easy and universally applicable method for the reversible assembly of protein-protein conjugates. The process is demonstrated using green fluorescent protein (GFP) and purple membranes (PM) as model compounds. GFP was reversibly bound to PM patches which served as a biomolecular model surface. Due to its size in the micrometre range PM is, as far as its Brownian diffusion is considered, like a solid surface. PMs comprising the mutated bacteriorhodopsin BR-D36C were employed, where aspartic acid in position 36 was replaced with cysteine. The introduced cysteine is accessible from the cytoplasmic side of the membrane. The cysteine group was first functionalized with a nitrilotriacetic acid group (NTA) and then, after loading with Ni, histidine-tagged GFP was bound to the chemically modified PM surface the well-known NTA-His complex. Binding and release of GFP from the PM surface was monitored by atomic force microscopy (AFM).
Collapse
Affiliation(s)
- Thorsten Fischer
- Department of Chemistry, Philipps Universität Marburg, Hans Meerwein-Str. Bldg. H, 35032 Marburg, Germany
| | - Norbert A Hampp
- Department of Chemistry, Philipps Universität Marburg, Hans Meerwein-Str. Bldg. H, 35032 Marburg, Germany
| |
Collapse
|
39
|
|
40
|
Kay ER, Leigh DA, Zerbetto F. Synthetic molecular motors and mechanical machines. Angew Chem Int Ed Engl 2007; 46:72-191. [PMID: 17133632 DOI: 10.1002/anie.200504313] [Citation(s) in RCA: 2059] [Impact Index Per Article: 114.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The widespread use of controlled molecular-level motion in key natural processes suggests that great rewards could come from bridging the gap between the present generation of synthetic molecular systems, which by and large rely upon electronic and chemical effects to carry out their functions, and the machines of the macroscopic world, which utilize the synchronized movements of smaller parts to perform specific tasks. This is a scientific area of great contemporary interest and extraordinary recent growth, yet the notion of molecular-level machines dates back to a time when the ideas surrounding the statistical nature of matter and the laws of thermodynamics were first being formulated. Here we outline the exciting successes in taming molecular-level movement thus far, the underlying principles that all experimental designs must follow, and the early progress made towards utilizing synthetic molecular structures to perform tasks using mechanical motion. We also highlight some of the issues and challenges that still need to be overcome.
Collapse
Affiliation(s)
- Euan R Kay
- School of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh EH9 3JJ, UK
| | | | | |
Collapse
|
41
|
Kay E, Leigh D, Zerbetto F. Synthetische molekulare Motoren und mechanische Maschinen. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200504313] [Citation(s) in RCA: 587] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
Roy S, Kulshrestha K. All-optical switching in plant blue light photoreceptor phototropin. IEEE Trans Nanobioscience 2006; 5:281-7. [PMID: 17181028 DOI: 10.1109/tnb.2006.886549] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We theoretically analyze all-optical switching in the recently characterized LOV2 domain from Avena sativa (oat) phot1 phototropin, a blue-light plant photoreceptor, based on nonlinear intensity-induced excited-state absorption. The transmission of a cw probe laser beam at 660 nm corresponding to the peak absorption of the first excited L-state, through the LOV2 sample, is switched by a pulsed pump laser beam at 442 nm that corresponds to the maximum initial D state absorption. The switching characteristics have been analyzed using the rate equation approach, considering all the three intermediate states and transitions in the LOV2 photocycle. It is shown that for a given pump pulse intensity, there is an optimum pump pulsewidth for which the switching contrast is maximum. It is shown that the probe laser beam can be completely switched off (100% modulation) by the pump laser beam at 50 kW/cm2 for a concentration of 1 mM with sample thickness of 5.5 mm. The switching characteristics are sensitive to various parameters such as concentration, rate constant of L-state, peak pump intensity and pump pulse width. At typical values, the switch-off and switch-on time is 1.6 and 22.3 micros, respectively. The switching characteristics have also been used to design all-optical NOT and the universal NOR and NAND logic gates.
Collapse
Affiliation(s)
- Sukhdev Roy
- Department of Physics and Computer Science, Dayalbagh Educational Institute, Deemed University, Agra 282 005, India.
| | | |
Collapse
|
43
|
Roy S, Kikukawa T, Sharma P, Kamo N. All-Optical Switching in Pharaonis Phoborhodopsin Protein Molecules. IEEE Trans Nanobioscience 2006; 5:178-87. [PMID: 16999243 DOI: 10.1109/tnb.2006.880828] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Low-power all-optical switching with pharaonis phoborhodopsin (ppR) protein is demonstrated based on nonlinear excited-state absorption at different wavelengths. A modulating pulsed 532-nm laser beam is shown to switch the transmission of a continuous-wave signal light beam at: 1) 390 nm; 2) 500 nm; 3) 560 nm; and 4) 600 nm, respectively. Simulations based on the rate equation approach considering all seven states in the ppR photocycle are in good agreement with experimental results. It is shown that the switching characteristics at 560 and 600 nm, respectively, can exhibit negative to positive switching. The switching characteristics at 500 nm can be inverted by increasing the signal beam intensity. The profile of switched signal beam is also sensitive to the modulating pulse frequency and signal beam intensity and wavelength. The switching characteristics are also shown to be sensitive to the lifetimes of ppR(M) and ppR(O) intermediates. The results show the applicability of ppR as a low-power wavelength tunable all-optical switch.
Collapse
Affiliation(s)
- Sukhdev Roy
- Department of Physics and Computer Science, Dayalbagh Educational Institute, Deemed University, Agra 282 005, India.
| | | | | | | |
Collapse
|
44
|
Wang L, Shen Z, Wang J, Li B, Chen F, Yang W, Feng X. The pH-dependence of photochemical intermediates of O and P in bacteriorhodopsin by continuous light. Biochem Biophys Res Commun 2006; 343:899-903. [PMID: 16564498 DOI: 10.1016/j.bbrc.2006.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 03/07/2006] [Indexed: 05/08/2023]
Abstract
The pH-dependence of the O and P intermediates in the photocycle of bacteriorhodopsin (bR) on the intensity and duration of the exciting flash was investigated for bR glycerol suspensions and bR gelatin films. Green and red laser flashes (532 and 670 nm) were utilized to generate a photoequilibrium state of bR and O at ambient temperature, and UV-vis spectroscopy was used to determine the photoconversion for the bR suspensions and films. The maximal concentration of the O intermediate was observed to be pH-dependent and the dependency was most pronounced at a slightly alkaline pH values. The photochemical conversion from the O to P intermediate was investigated for both bR suspensions and films. The P intermediate was only found in bR gelatin film. These results indicate that bR gelatin film may be an attractive candidate for the information storage based on P intermediate. It is possible, with red light, to create photoproducts which are thermally stable at ambient temperature and that can be photochemically erased.
Collapse
Affiliation(s)
- Liping Wang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
| | | | | | | | | | | | | |
Collapse
|
45
|
Lee I, Greenbaum E, Budy S, Hillebrecht JR, Birge RR, Stuart JA. Photoinduced Surface Potential Change of Bacteriorhodopsin Mutant D96N Measured by Scanning Surface Potential Microscopy. J Phys Chem B 2006; 110:10982-90. [PMID: 16771351 DOI: 10.1021/jp052948r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the direct measurement of photoinduced surface potential differences of wild-type (WT) and mutant D96N bacteriorhodopsin (BR) membranes at pH 7 and 10.5. Atomic force microscopy (AFM) and scanning surface potential microscopy (SSPM) were used to measure the BR membrane with the extracellular side facing up. We present AFM and SSPM images of WT and mutant D96N in which the light-dark transition occurred in the mid-scan of a single BR membrane. Photosteady-state populations of the M state were generated to facilitate measurement in each sample. The photoinduced surface potential of D96N is 63 mV (peak to valley) at pH 10.5 and is 48 mV at pH 7. The photoinduced surface potential of WT is 37 mV at pH 10.5 and approximately 0 at pH 7. Signal magnitudes are proportional to the amount of M produced at each pH. The results indicated that the surface potentials were generated by photoformation of surface charges on the extracellular side of the membrane. Higher surface potential correlated with a longer lifetime of the charges. A mechanistic basis for these signals is proposed, and it is concluded that they represent a steady-state measurement of the B2 photovoltage.
Collapse
Affiliation(s)
- Ida Lee
- Department of Electrical and Computer Engineering, University of Tennessee, Knoxville, Tennessee 37996-2100, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Kamihira M, Watts A. Functionally Relevant Coupled Dynamic Profile of Bacteriorhodopsin and Lipids in Purple Membranes. Biochemistry 2006; 45:4304-13. [PMID: 16566605 DOI: 10.1021/bi051756j] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dynamics of bacteriorhodopsin (bR) and the lipid headgroups in oriented purple membranes (PMs) was determined at various temperatures and relative humidity (rh) using solid-state NMR spectroscopy. The 31P NMR spectra of the alpha- and gamma-phosphate groups in methyl phosphatidylglycerophosphate (PGP-Me), which is the major phospholipid in the PM, changed sensitively with hydration levels. Between 253 and 233 K, the signals from a fully hydrated sample became broadened similarly to those of a dry sample at 293 K. The 15N cross polarization (CP) NMR spectral intensities from [15N]Gly bR incorporated into fully hydrated PMs were suppressed in 15N CP NMR spectra at 293 K compared with those of dry membranes but gradually recovered at low temperatures or at lower hydration (75%) levels. The suppression of the NMR signals, which is due to interference with proton decoupling frequency (approximately 45 kHz), coupled with short spin-spin relaxation times (T2) indicates that the loops of bR, in particular, have motional components around this frequency. The motion of the transmembrane alpha-helices in bR was largely affected by the freezing of excess water at low temperatures. While between 253 and 233 K, where a dynamic phase transition-like change was observed in the 31P NMR spectra for the phosphate lipid headgroups, the molecular motion of the loops and the C- and N-termini slowed, suggesting lipid-loop interactions, although protein-protein interactions between stacks cannot be excluded. The results of T2 measurements of dry samples, which do not have proton pumping activity, were similar to those for fully hydrated samples below 213 K where the M-intermediates can be trapped. These results suggest that motions in the 10s micros correlation regime may be functionally important for the photocycle of bR, and protein-lipid interactions are motionally coupled in this dynamic regime.
Collapse
Affiliation(s)
- Miya Kamihira
- Biomembrane Structure Unit, Department of Biochemistry, Oxford University, South Parks Road, Oxford OX1 3QU, UK
| | | |
Collapse
|
47
|
López CS, Faza ON, Estévez SL, de Lera AR. Computation of vertical excitation energies of retinal and analogs: Scope and limitations. J Comput Chem 2006; 27:116-23. [PMID: 16273505 DOI: 10.1002/jcc.20305] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A comprehensive survey of computational methods: semiempirical (ZINDO/S), Time-Dependent Hartree-Fock (TD-HF), Configuration Interaction Singles (CIS), and several approximate functionals within the Time-Dependent Density Functional Theory (TD-DFT) has been carried out for the description of vertical excitation energies and oscillator strengths of retinal and related polyenals. ZINDO and TD-DFT computations showed the best agreement with the experimental data. In particular, hybrid functionals including approximately 25% of exact exchange (B3LYP, B3P86, and PBE0) were found to perform best with these highly conjugated polyenes. A systematic average error of 0.18-0.22 eV has been found after a simple one-parameter correction. Thus, 0.18 eV might be considered the upper limit of accuracy for current one-determinant methods in the computation of vertical excitation energies. The consideration of adiabatic excitations, conformational sampling, solvation, and nondynamic correlation should describe this processes more accurately, but this leads to highly demanding methods beyond feasibility for these large polyenes. The trends observed, particularly the good performance of the ZINDO/S method, should pave the way for the prediction of excited states properties in natural and artificial photoreceptor proteins, thus advancing towards the description of their light-transducing biological role in Nature.
Collapse
Affiliation(s)
- Carlos Silva López
- Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, Lagoas Marcosende, E-36310, Vigo, Galicia, Spain
| | | | | | | |
Collapse
|
48
|
Wu P, Rao DVGLN. Controllable snail-paced light in biological bacteriorhodopsin thin film. PHYSICAL REVIEW LETTERS 2005; 95:253601. [PMID: 16384460 DOI: 10.1103/physrevlett.95.253601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Indexed: 05/05/2023]
Abstract
We observe that the group velocity of light is reduced to an extremely low value of 0.091 mm/s in a biological thin film of bacteriorhodopsin at room temperature. By exploiting unique features of a flexible photoisomerization process for coherent population oscillation, the velocity is all-optically controlled over an enormous span, from snail-paced to normal light speed, with no need of modifying the characteristics of the incident pulse. Because of the large quantum yield for the photoreaction in this biochemical system, the ultraslow light is observed even at low light levels of microwatts, indicating high energy efficiency.
Collapse
Affiliation(s)
- Pengfei Wu
- Physics Department, University of Massachusetts, Boston, Massachusetts 02125, USA.
| | | |
Collapse
|
49
|
Imasheva ES, Shimono K, Balashov SP, Wang JM, Zadok U, Sheves M, Kamo N, Lanyi JK. Formation of a Long-Lived Photoproduct with a Deprotonated Schiff Base in Proteorhodopsin, and Its Enhancement by Mutation of Asp227. Biochemistry 2005; 44:10828-38. [PMID: 16086585 DOI: 10.1021/bi050438h] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteorhodopsin, a retinal protein of marine proteobacteria similar to bacteriorhodopsin of the archaea, is a light-driven proton pump. Absorption of a light quantum initiates a reaction cycle (turnover time of ca. 50 ms), which includes photoisomerization of the retinal from the all-trans to the 13-cis form and transient deprotonation of the retinal Schiff base, followed by recovery of the initial state. We report here that in addition to this fast cyclic conversion, illumination at high pH results in accumulation of a long-lived photoproduct absorbing at 362 nm. This photoconversion is much more efficient in the D227N mutant in which the anionic Asp227, which together with Asp97 constitutes the Schiff base counterion, is replaced with a neutral residue. Upon illumination at pH 8.5, most of the D227N pigment is converted to the 362 nm species, with a quantum efficiency of ca. 0.2. The pK(a) for this transition in the wild type is 9.6, but decreased to 7.5 after mutation of Asp227. The short wavelength of the absorption maximum of the photoproduct indicates that it has a deprotonated Schiff base. In the dark, this photoproduct is converted back to the initial pigment with a time constant of 30 min (in D227N, at pH 8.5), but it can be reconverted more rapidly by illumination with near-UV light. Experiments with "locked" retinal analogues which selectively exclude rotation around either the C9=C10, C11=C12, or C13=C14 bond show that formation of the 362 nm species involves isomerization around the C13=C14 bond. In agreement with this, retinal extraction indicates that the 362 nm photoproduct is 13-cis whereas the initial state is predominantly all-trans. A rapid shift of the pH from 8.5 to 4 greatly accelerates thermal reconversion of the 362 nm species to the initial pigment, suggesting that its recovery involving the thermal isomerization of the chromophore is controlled by ionizable residues, primarily the Schiff base and Asp97. The transformation to the long-lived 362 nm photoproduct is apparently a side reaction of the photocycle, a response to high pH, caused by alteration of the normal reprotonation and reisomerization pathway of the Schiff base.
Collapse
Affiliation(s)
- Eleonora S Imasheva
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kothapalli SR, Wu P, Yelleswarapu CS, Rao DVGLN. Nonlinear optical Fourier filtering technique for medical image processing. JOURNAL OF BIOMEDICAL OPTICS 2005; 10:44028. [PMID: 16178661 DOI: 10.1117/1.1953287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Real-time nonlinear optical Fourier filtering for medical image processing is demonstrated, exploiting light modulating characteristics of thin films of the biophotonic material bacteriorhodopsin (bR). The nonlinear transmission of bR films for a 442 nm probe beam with a 568 nm control beam and vice versa is experimentally studied in detail. The spatial frequency information carried by the blue probe beam is selectively manipulated in the bR film by changing the position and intensity of the yellow control beam. The feasibility of the technique is first established with different shapes and sizes of phantom objects. The technique is applied to filter out low spatial frequencies corresponding to soft dense breast tissue and displaying only high spatial frequencies corresponding to microcalcifications in clinical screen film mammograms. With the aid of an electrically addressed spatial light modulator (SLM), we successfully adapt the technique for processing digital phantoms and digital mammograms. Unlike conventional optical spatial filtering techniques that use masks, the technique proposed can easily accommodate the changes in size and shape of details in a mammogram.
Collapse
|