1
|
Ratajczyk EJ, Šulc P, Turberfield AJ, Doye JPK, Louis AA. Coarse-grained modeling of DNA-RNA hybrids. J Chem Phys 2024; 160:115101. [PMID: 38497475 DOI: 10.1063/5.0199558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/26/2024] [Indexed: 03/19/2024] Open
Abstract
We introduce oxNA, a new model for the simulation of DNA-RNA hybrids that is based on two previously developed coarse-grained models-oxDNA and oxRNA. The model naturally reproduces the physical properties of hybrid duplexes, including their structure, persistence length, and force-extension characteristics. By parameterizing the DNA-RNA hydrogen bonding interaction, we fit the model's thermodynamic properties to experimental data using both average-sequence and sequence-dependent parameters. To demonstrate the model's applicability, we provide three examples of its use-calculating the free energy profiles of hybrid strand displacement reactions, studying the resolution of a short R-loop, and simulating RNA-scaffolded wireframe origami.
Collapse
Affiliation(s)
- Eryk J Ratajczyk
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Petr Šulc
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85281, USA
- School of Natural Sciences, Department of Bioscience, Technical University Munich, 85748 Garching, Germany
| | - Andrew J Turberfield
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| |
Collapse
|
2
|
Konieczna J, Wrońska K, Kalińska M, Liberek B, Nowacki A. Conformational preferences of guanine-containing threose nucleic acid building blocks in B3LYP studies. Carbohydr Res 2024; 537:109055. [PMID: 38373388 DOI: 10.1016/j.carres.2024.109055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/22/2024] [Accepted: 02/08/2024] [Indexed: 02/21/2024]
Abstract
In this paper, detailed and systematic gas-phase B3LYP conformational studies of four monomers of threose nucleic acid (TNA) with guanine attached at the C1' atom and bearing different substituents (OH, OP(=O)OH2 and OCH3) in the C2' and C3' positions of the α-l-threofuranose moiety are presented. All exocyclic single-bond (χ, ε and γ) rotations, as well as the ν0-ν4 endocyclic torsion angles, were taken into consideration. Three (threoguanosines TG1-TG3) or two (TG4) energy minima were found for the rotation about the χ torsion angle. The syn orientation (the A rotamer family) is strongly privileged in geometries TG1 and TG2, whereas the anti orientation (the C rotamer family) and the syn orientation are observed to be in equilibrium (with populations of 56% and 44%, respectively) for TG3. In the case of TG4, the high-anti orientation (the B rotamer family) turned out to be by far the most favourable, with the contribution exceeding 90% in equilibrium. Such a preference can be attributed to the inability of H-bonding between sugar and nucleobase and possibly because of the steric strains. The low-energy conformers of TG1-TG4 occupy the northeastern (P ∼ 40°) and/or southern (P ∼ 210°) parts of the pseudorotational wheel, which fits the A- and B-type DNA helices quite well. Additionally, in the case of TG4, some relatively stable geometries have the furanoid ring in conformation lying on the northwestern part of the pseudorotational wheel (P ∼ 288°).
Collapse
Affiliation(s)
- Justyna Konieczna
- Faculty of Chemistry, Department of Organic Chemistry, University of Gdańsk, Wita Stwosza 63, PL-80-308, Gdańsk, Poland
| | - Karolina Wrońska
- Faculty of Chemistry, Department of Organic Chemistry, University of Gdańsk, Wita Stwosza 63, PL-80-308, Gdańsk, Poland
| | - Marta Kalińska
- Faculty of Chemistry, Department of Organic Chemistry, University of Gdańsk, Wita Stwosza 63, PL-80-308, Gdańsk, Poland
| | - Beata Liberek
- Faculty of Chemistry, Department of Organic Chemistry, University of Gdańsk, Wita Stwosza 63, PL-80-308, Gdańsk, Poland
| | - Andrzej Nowacki
- Faculty of Chemistry, Department of Organic Chemistry, University of Gdańsk, Wita Stwosza 63, PL-80-308, Gdańsk, Poland.
| |
Collapse
|
3
|
|
4
|
Minguirbara A, Vamhindi BSDR, Koyambo-Konzapa SJ, Nsangou M. Effects of counterions and solvents on the geometrical and vibrational features of dinucleoside-monophosphate (dNMP): case of 3',5'-dideoxycytidine-monophosphate (dDCMP). J Mol Model 2020; 26:99. [PMID: 32285211 DOI: 10.1007/s00894-020-04369-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/25/2020] [Indexed: 11/26/2022]
Abstract
The effects of the interaction of the monovalent (Li+, Na+, K+) and divalent (Mg2+) counterions hexahydrated (6H2O), with the PO2- group, on the geometrical and vibrational characteristics of 3', 5'-dDCMP, were studied using the DFT/B3LYP/6-31++G(d) method. These calculations were performed using the explicit (6H2O) and hybrid (6H2O/Continuum) solvation models. The optimizations reveal that in the conformation g-g- and in the explicit model of solvation, the small ions (Li+, Na+) deviate from the bisector plane of the angle O1-P-O2 and the large ions (K+ and Mg2+) remain in this plane, whereas in the hybrid model of solvation, the counterions deviate from this plane. However, when the conformer is g+g+, the monovalent counterions deviate and divide the remainder of the plane regardless of the type of solvation model. In addition, the g-g- conformer is the most stable in the presence of the explicit solvent, while the g+g+ conformer is the most stable in the presence of the hybrid solvent. Finally, the normal modes of the conformers g-g- and g+g+ in the presence of the counterions in the hybrid model show a better agreement with the available experimental data of the DNA forms A, B (g-g-), and Z (g+g+) relatively to the explicit model. This very good agreement is illustrated by the very small deviations ≤ 0.08% (g-g-) and ≤ 0.41% (g+g+) observed between the calculated and experimental data for the PO2- (asymmetric) stretching mode in the presence of the counterion K+ in the hybrid model. Graphical abstract.
Collapse
Affiliation(s)
- Alain Minguirbara
- Department of Physics, Faculty of Science, University of Maroua, Maroua, P.O.Box 814, Cameroon
| | | | | | - Mama Nsangou
- CERDISFA, Department of Physics, Higher Teacher's Training College, University of Maroua, Maroua, P.O.Box 46, Cameroon.
- Department of Physics, Faculty of Science, University of Ngaoundere, Ngaoundere, P.O.Box 454, Cameroon.
| |
Collapse
|
5
|
Salsbury AM, Lemkul JA. Molecular Dynamics Simulations of the c-kit1 Promoter G-Quadruplex: Importance of Electronic Polarization on Stability and Cooperative Ion Binding. J Phys Chem B 2018; 123:148-159. [DOI: 10.1021/acs.jpcb.8b11026] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
6
|
Li MR, Zhang N, Zhang FS. Computational investigation of the conformation transitions of DNA in modified water models. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Minguirbara A, Nsangou M. DFT study of geometrical and vibrational features of a 3',5'-deoxydisugar-monophosphate (dDSMP) DNA model in the presence of counterions and solvent. J Mol Model 2018. [PMID: 29516189 DOI: 10.1007/s00894-018-3629-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The B3LYP/6-31++G* theoretical level was used to study the influence of various hexahydrated monovalent (Li+, Na+, K+) and divalent (Mg2+) metal counterions in interaction with the charged PO2- group, on the geometrical and vibrational characteristics of the DNA fragments of 3',5'-dDSMP, represented by four conformers (g+g+, g+t, g-g- and g-t). All complexes were optimized through two solvation models [the explicit model (6H2O) and the hybrid model (6H2O/Continuum)]. The results obtained established that, in the hybrid model, counterions (Li+, Na+, K+, Mg2+) always remain in the bisector plane of the O1-P-O2 angle. When these counterions are explicitly hydrated, the smallest counterions (Li+, Na+) deviate from the bisector plane, while the largest counterions (K+ and Mg2+) always remain in the same plane. On the other hand, the present calculations reveal that the g+g+ conformer is the most stable in the presence of monovalent counterions, while conformers g+t and g-t are the most stable in the presence of the divalent counterion Mg2+. Finally, the hybrid solvation model seems to be in better agreement with the available crystallographic and spectroscopic (Raman) experiments than the explicit model. Indeed, the six conformational torsions of the C4'-C3'-O3'-PO-2-O5'-C5'-C4' segment of all complexes of the g-g- conformer in 6H2O/Continuum remain similar to the available experimental data of A- and B-DNA forms. The calculated wavenumbers of the g+g+ conformer in the presence of the monovalent counterion and of g-t conformer in presence of the divalent counterion in the hybrid model are in good agreement with the Raman experimental data of A- and B-DNA forms. In addition, the maximum deviation between the calculated wavenumbers in the 6H2O/Continuum for the g+g+ conformer and experimental value measured in an aqueous solution of the DMP-Na+ complex, is <1.07% for the PO2- (asymmetric and symmetric) stretching modes and <2.03% for the O5'-C5' and O3'-C3' stretching modes. Graphical abstract dDSMP-(OO)- Mg2+/6W/Continuum.
Collapse
Affiliation(s)
- Alain Minguirbara
- Department of Physics, Higher Teachers' Training College, University of Maroua, PO Box 46, Maroua, Cameroon
| | - Mama Nsangou
- Department of Physics, Higher Teachers' Training College, University of Maroua, PO Box 46, Maroua, Cameroon.
| |
Collapse
|
8
|
Bednarko J, Stachurski O, Wielińska J, Kozakiewicz K, Liberek B, Nowacki A. Threocytidines: Insight into the Conformational Preferences of Artificial Threose Nucleic Acid (TNA) Building Blocks in B3LYP Studies. J Mol Graph Model 2018; 80:157-172. [PMID: 29366882 DOI: 10.1016/j.jmgm.2018.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 10/18/2022]
Abstract
A systematic DFT conformational studies of four building blocks of TNA with cytosine attached to the C1' atom of the α-L-threofuranose moiety are presented. Structures bearing 2'-OR and 3'-OR substituents, where R represents H, CH3 and phosphate groups, were used in the studies using a B3LYP functional in the gas phase. The χ angle (C2-N1-C1'-O4'), the ν0-ν4 endocyclic torsion angles and the exocyclic torsion angles ε (X-O2'-C2'-C1') and γ (X-O3'-C3'-C2') geometry parameter variations were taken into consideration. Three energy minima, high-anti, anti and syn, were found for the rotation about the C1'-N1 bond. The high-anti orientation of the base with respect to the sugar moiety, turned out to be preferred, regardless of the substituents at the C2' and C3' positions. Other orientations are at least 1.65 kcal/mol higher in Gibbs free energy than the high-anti one. It has been shown that intramolecular H-bonds and the anomeric effect of phosphate groups strongly affect the conformational preferences of the studied compounds. Further, the structure of substituents attached to the sugar moiety influence the pucker of the furanoid ring. The furanoid ring in the global minima of the compound with two OH groups (TC1) in the 2' and 3' positions, and the compound having a 3'-phosphate group (TC2), adopt roughly the same conformation located at the southern range of the pseudorotation wheel, and thus are close to those found in the B type DNA helix. The low-energy high-anti rotamers of the geometry with the phosphate group attached to the sugar ring in the 2' position (TC3) and the geometry with two methoxyl groups (TC4) have their furanoid rings in conformations resembling those found in A DNA and RNA helices (the northern range of the pseudorotation wheel).
Collapse
Affiliation(s)
- Justyna Bednarko
- Faculty of Chemistry, Department of Organic Chemistry, University of Gdańsk, Wita Stwosza 63, PL-80-308 Gdańsk, Poland
| | - Oktawian Stachurski
- Faculty of Chemistry, Department of Organic Chemistry, University of Gdańsk, Wita Stwosza 63, PL-80-308 Gdańsk, Poland
| | - Justyna Wielińska
- Faculty of Chemistry, Department of Organic Chemistry, University of Gdańsk, Wita Stwosza 63, PL-80-308 Gdańsk, Poland
| | - Karol Kozakiewicz
- Faculty of Chemistry, Department of Organic Chemistry, University of Gdańsk, Wita Stwosza 63, PL-80-308 Gdańsk, Poland
| | - Beata Liberek
- Faculty of Chemistry, Department of Organic Chemistry, University of Gdańsk, Wita Stwosza 63, PL-80-308 Gdańsk, Poland
| | - Andrzej Nowacki
- Faculty of Chemistry, Department of Organic Chemistry, University of Gdańsk, Wita Stwosza 63, PL-80-308 Gdańsk, Poland
| |
Collapse
|
9
|
Varizhuk AM, Zatsepin TS, Golovin AV, Belyaev ES, Kostyukevich YI, Dedkov VG, Shipulin GA, Shpakovski GV, Aralov AV. Synthesis of oligonucleotides containing novel G-clamp analogue with C8-tethered group in phenoxazine ring: Implication to qPCR detection of the low-copy Kemerovo virus dsRNA. Bioorg Med Chem 2017; 25:3597-3605. [PMID: 28396019 DOI: 10.1016/j.bmc.2017.03.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 01/20/2023]
Abstract
Nowadays modified oligonucleotides are widely used in diagnostics and as novel therapeutics. Introduction of modified or unnatural residues into oligonucleotides allows fine tuning of their binding properties to complementary nucleic acids and leads to improved stability both in vitro and in vivo. Previously it was demonstrated that insertion of phenoxazine nucleotides with various groups in C9-position into oligonucleotides leads to a significant increase of duplex stability with complementary DNA and RNA. Here the synthesis of a novel G-clamp nucleoside analogue (G8AE-clamp) bearing 2-aminoethyl tether at C8-atom is presented. Introduction of such modified residues into oligonucleotides lead to enhanced specificity of duplex formation towards complementary DNA and RNA targets with increased thermal and 3'-exonuclease stability. According to CD-spectroscopy studies G8AE-clamp does not substantially disrupt helix geometry. Primers containing G8AE-clamp demonstrated superior sensitivity in qPCR detection of dsRNA of Kemerovo virus in comparison to native oligonucleotides.
Collapse
Affiliation(s)
- Anna M Varizhuk
- Research and Clinical Center for Physical Chemical Medicine, 119435 Moscow, Russia; Department of Structure-Functional Analysis of Biopolymers, Engelhardt Institute of Molecular Biology, Vavilov Str. 32, Moscow 119991, Russia
| | - Timofei S Zatsepin
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia; Central Research Institute of Epidemiology, Novogireevskaya 3a, Moscow 111123, Russia; Skolkovo Institute of Science and Technology, 3 Nobel Street, Skolkovo, Moscow Region 143026, Russia.
| | - Andrey V Golovin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Evgeny S Belyaev
- Institute for Energy Problems of Chemical Physics of RAS, Leninskij pr. 38/2, Moscow 119334, Russia
| | - Yury I Kostyukevich
- Skolkovo Institute of Science and Technology, 3 Nobel Street, Skolkovo, Moscow Region 143026, Russia
| | - Vladimir G Dedkov
- Central Research Institute of Epidemiology, Novogireevskaya 3a, Moscow 111123, Russia
| | - German A Shipulin
- Central Research Institute of Epidemiology, Novogireevskaya 3a, Moscow 111123, Russia
| | - George V Shpakovski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, Moscow 117997, Russia
| | - Andrey V Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, Moscow 117997, Russia.
| |
Collapse
|
10
|
Zwang TJ, Hurlimann S, Hill MG, Barton JLK. Helix-Dependent Spin Filtering through the DNA Duplex. J Am Chem Soc 2016; 138:15551-15554. [PMID: 27934017 PMCID: PMC5175457 DOI: 10.1021/jacs.6b10538] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recent work suggests that electrons can travel through DNA and other chiral molecules in a spin-selective manner, but little is known about the origin of this spin selectivity. Here we describe experiments on magnetized DNA-modified electrodes to explore spin-selective electron transport through hydrated duplex DNA. Our results show that the two spins migrate through duplex DNA with a different yield and that spin selectivity requires charge transport through the DNA duplex. Significantly, shifting the same duplex DNA between right-handed B- and left-handed Z-forms leads to a diode-like switch in spin selectivity; which spin moves more efficiently through the duplex depends upon the DNA helicity. With DNA, the supramolecular organization of chiral moieties, rather than the chirality of the individual monomers, determines the selectivity in spin, and thus a conformational change can switch the spin selectivity.
Collapse
Affiliation(s)
- Theodore J. Zwang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Sylvia Hurlimann
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Michael G. Hill
- Division of Chemistry, Occidental College, Los Angeles, CA, 90041
| | - Jacque-line K. Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
11
|
Baschnagel J, Meyer H, Wittmer J, Kulić I, Mohrbach H, Ziebert F, Nam GM, Lee NK, Johner A. Semiflexible Chains at Surfaces: Worm-Like Chains and beyond. Polymers (Basel) 2016; 8:E286. [PMID: 30974563 PMCID: PMC6432221 DOI: 10.3390/polym8080286] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/29/2016] [Accepted: 07/29/2016] [Indexed: 12/27/2022] Open
Abstract
We give an extended review of recent numerical and analytical studies on semiflexible chains near surfaces undertaken at Institut Charles Sadron (sometimes in collaboration) with a focus on static properties. The statistical physics of thin confined layers, strict two-dimensional (2D) layers and adsorption layers (both at equilibrium with the dilute bath and from irreversible chemisorption) are discussed for the well-known worm-like-chain (WLC) model. There is mounting evidence that biofilaments (except stable d-DNA) are not fully described by the WLC model. A number of augmented models, like the (super) helical WLC model, the polymorphic model of microtubules (MT) and a model with (strongly) nonlinear flexural elasticity are presented, and some aspects of their surface behavior are analyzed. In many cases, we use approaches different from those in our previous work, give additional results and try to adopt a more general point of view with the hope to shed some light on this complex field.
Collapse
Affiliation(s)
- Jörg Baschnagel
- Institut Charles Sadron, CNRS-UdS, 23 rue du Loess, BP 84047, 67034 Strasbourg cedex 2, France.
| | - Hendrik Meyer
- Institut Charles Sadron, CNRS-UdS, 23 rue du Loess, BP 84047, 67034 Strasbourg cedex 2, France.
| | - Joachim Wittmer
- Institut Charles Sadron, CNRS-UdS, 23 rue du Loess, BP 84047, 67034 Strasbourg cedex 2, France.
| | - Igor Kulić
- Institut Charles Sadron, CNRS-UdS, 23 rue du Loess, BP 84047, 67034 Strasbourg cedex 2, France.
| | - Hervé Mohrbach
- Institut Charles Sadron, CNRS-UdS, 23 rue du Loess, BP 84047, 67034 Strasbourg cedex 2, France.
- Equipe BioPhysStat Université de Lorraine, 1 boulevard Arago, 57070 Metz, France.
| | - Falko Ziebert
- Institut Charles Sadron, CNRS-UdS, 23 rue du Loess, BP 84047, 67034 Strasbourg cedex 2, France.
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany.
| | - Gi-Moon Nam
- Institut Charles Sadron, CNRS-UdS, 23 rue du Loess, BP 84047, 67034 Strasbourg cedex 2, France.
- Department of Physics, Sejong University, Neundongro 209, Seoul 05006, Korea.
| | - Nam-Kyung Lee
- Institut Charles Sadron, CNRS-UdS, 23 rue du Loess, BP 84047, 67034 Strasbourg cedex 2, France.
- Department of Physics, Sejong University, Neundongro 209, Seoul 05006, Korea.
| | - Albert Johner
- Institut Charles Sadron, CNRS-UdS, 23 rue du Loess, BP 84047, 67034 Strasbourg cedex 2, France.
- Department of Physics, Sejong University, Neundongro 209, Seoul 05006, Korea.
| |
Collapse
|
12
|
Lou C, Martos-Maldonado MC, Madsen CS, Thomsen RP, Midtgaard SR, Christensen NJ, Kjems J, Thulstrup PW, Wengel J, Jensen KJ. Peptide-oligonucleotide conjugates as nanoscale building blocks for assembly of an artificial three-helix protein mimic. Nat Commun 2016; 7:12294. [PMID: 27464951 PMCID: PMC4974474 DOI: 10.1038/ncomms12294] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 06/15/2016] [Indexed: 01/22/2023] Open
Abstract
Peptide-based structures can be designed to yield artificial proteins with specific folding patterns and functions. Template-based assembly of peptide units is one design option, but the use of two orthogonal self-assembly principles, oligonucleotide triple helix and a coiled coil protein domain formation have never been realized for de novo protein design. Here, we show the applicability of peptide–oligonucleotide conjugates for self-assembly of higher-ordered protein-like structures. The resulting nano-assemblies were characterized by ultraviolet-melting, gel electrophoresis, circular dichroism (CD) spectroscopy, small-angle X-ray scattering and transmission electron microscopy. These studies revealed the formation of the desired triple helix and coiled coil domains at low concentrations, while a dimer of trimers was dominating at high concentration. CD spectroscopy showed an extraordinarily high degree of α-helicity for the peptide moieties in the assemblies. The results validate the use of orthogonal self-assembly principles as a paradigm for de novo protein design. Peptide and oligonucleotide systems are known to self-assemble both in nature and artificial systems. Here, the authors combine both forms of self-assembly through the synthesis of peptideoligonucleotide conjugates and show formation of a three-helix structure that dimerises at higher concentrations.
Collapse
Affiliation(s)
- Chenguang Lou
- Department of Physics, Chemistry and Pharmacy, Biomolecular Nanoscale Engineering Center, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark
| | - Manuel C Martos-Maldonado
- Department of Chemistry, Biomolecular Nanoscale Engineering Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Charlotte S Madsen
- Department of Chemistry, Biomolecular Nanoscale Engineering Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Rasmus P Thomsen
- Biomolecular Nanoscale Engineering Center and Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, Gustav Wieds Vej 14, Aarhus C 8000, Denmark
| | - Søren Roi Midtgaard
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark
| | - Niels Johan Christensen
- Department of Chemistry, Biomolecular Nanoscale Engineering Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Jørgen Kjems
- Biomolecular Nanoscale Engineering Center and Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, Gustav Wieds Vej 14, Aarhus C 8000, Denmark
| | - Peter W Thulstrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark
| | - Jesper Wengel
- Department of Physics, Chemistry and Pharmacy, Biomolecular Nanoscale Engineering Center, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark
| | - Knud J Jensen
- Department of Chemistry, Biomolecular Nanoscale Engineering Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| |
Collapse
|
13
|
Yurenko YP, Novotný J, Nikolaienko TY, Marek R. Nucleotides containing variously modified sugars: energetics, structure, and mechanical properties. Phys Chem Chem Phys 2015; 18:1615-28. [PMID: 26672740 DOI: 10.1039/c5cp05478h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The influence of various sugar residue modifications on intrinsic energetic, conformational, and mechanical properties of 2'-deoxyribonucleotide-5'-monophosphates (dNs) was comprehensively investigated using modern quantum chemical approaches. In total, fourteen sugar modifications, including double bonds and heteroatoms (S and N) inside the sugar ring, as well as fluorination in various positions, were analyzed. Among hundreds of possible conformational states of dNs, only two - AI and BI, corresponding to the most biologically significant forms of a double-helical DNA, were considered for each dN. It was established that the most of the studied modifications tend to strongly stabilize either AI or BI conformation of dNs both in the gas phase and in aqueous solution (modelled by implicit solvent models). Therefore, some of these modifications can be used as a tool for reducing structural polymorphism of nucleic acids in solution as well as for designing oligonucleotides with specific structural features. The evaluation of relaxed force constants (RFC) for glycosidic bonds suggests that the majority of the studied modifications of the sugar residue yield increased strengths of glycosidic bonds in dNs, and can therefore be used for designing modified nucleic acids with an increased resistance to abasic lesions. The most significant reinforcement of the glycosidic bond occurs in dNs containing the CF2 group instead of the O4' oxygen and the fluorine atom at the 2'-α-position. The calculation of the RFC and vibrational root-mean-square (VRMS) deviations for conformational degrees of freedom revealed a strong dependence between mechanical properties of dNs and their energetic characteristics. In particular, electronic energies of AI and BI conformers of dNs calculated in vacuo are closely connected with the values of relaxed force constants (RFC) for the δ angle: the higher RFC(δ) values correspond to more energetically favorable conformers.
Collapse
Affiliation(s)
- Yevgen P Yurenko
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic.
| | | | | | | |
Collapse
|
14
|
Peters JP, Mogil LS, McCauley MJ, Williams MC, Maher LJ. Mechanical properties of base-modified DNA are not strictly determined by base stacking or electrostatic interactions. Biophys J 2015; 107:448-459. [PMID: 25028886 DOI: 10.1016/j.bpj.2014.04.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 02/08/2023] Open
Abstract
This work probes the mystery of what balance of forces creates the extraordinary mechanical stiffness of DNA to bending and twisting. Here we explore the relationship between base stacking, functional group occupancy of the DNA minor and major grooves, and DNA mechanical properties. We study double-helical DNA molecules substituting either inosine for guanosine or 2,6-diaminopurine for adenine. These DNA variants, respectively, remove or add an amino group from the DNA minor groove, with corresponding changes in hydrogen-bonding and base stacking energy. Using the techniques of ligase-catalyzed cyclization kinetics, atomic force microscopy, and force spectroscopy with optical tweezers, we show that these DNA variants have bending persistence lengths within the range of values reported for sequence-dependent variation of the natural DNA bases. Comparison with seven additional DNA variants that modify the DNA major groove reveals that DNA bending stiffness is not correlated with base stacking energy or groove occupancy. Data from circular dichroism spectroscopy indicate that base analog substitution can alter DNA helical geometry, suggesting a complex relationship among base stacking, groove occupancy, helical structure, and DNA bend stiffness.
Collapse
Affiliation(s)
- Justin P Peters
- Department of Biochemistry and Molecular Biology and Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Lauren S Mogil
- Department of Biochemistry and Molecular Biology and Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Micah J McCauley
- Department of Physics, Northeastern University, Boston, Massachusetts
| | - Mark C Williams
- Department of Physics, Northeastern University, Boston, Massachusetts
| | - L James Maher
- Department of Biochemistry and Molecular Biology and Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, Minnesota.
| |
Collapse
|
15
|
Wong JR, Lee KJ, Shu JJ, Shao F. Magnetic Fields Facilitate DNA-Mediated Charge Transport. Biochemistry 2015; 54:3392-9. [DOI: 10.1021/acs.biochem.5b00295] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiun Ru Wong
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Kee Jin Lee
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Jian-Jun Shu
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Fangwei Shao
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
16
|
Savelyev A, MacKerell AD. Balancing the interactions of ions, water, and DNA in the Drude polarizable force field. J Phys Chem B 2014; 118:6742-57. [PMID: 24874104 PMCID: PMC4064693 DOI: 10.1021/jp503469s] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
![]()
Recently we presented a first-generation
all-atom Drude polarizable
force field for DNA based on the classical Drude oscillator model,
focusing on optimization of key dihedral angles followed by extensive
validation of the force field parameters. Presently, we describe the
procedure for balancing the electrostatic interactions between ions,
water, and DNA as required for development of the Drude force field
for DNA. The proper balance of these interactions is shown to impact
DNA stability and subtler conformational properties, including the
conformational equilibrium between the BI and BII states, and the
A and B forms of DNA. The parametrization efforts were simultaneously
guided by gas-phase quantum mechanics (QM) data on small model compounds
and condensed-phase experimental data on the hydration and osmotic
properties of biologically relevant ions and their solutions, as well
as theoretical predictions for ionic distribution around DNA oligomer.
In addition, fine-tuning of the internal base parameters was performed
to obtain the final DNA model. Notably, the Drude model is shown to
more accurately reproduce counterion condensation theory predictions
of DNA charge neutralization by the condensed ions as compared to
the CHARMM36 additive DNA force field, indicating an improved physical
description of the forces dictating the ionic solvation of DNA due
to the explicit treatment of electronic polarizability. In combination
with the polarizable DNA force field, the availability of Drude polarizable
parameters for proteins, lipids, and carbohydrates will allow for
simulation studies of heterogeneous biological systems.
Collapse
Affiliation(s)
- Alexey Savelyev
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | | |
Collapse
|
17
|
Lou C, Dallmann A, Marafini P, Gao R, Brown T. Enhanced H-bonding and π-stacking in DNA: a potent duplex-stabilizing and mismatch sensing nucleobase analogue. Chem Sci 2014. [DOI: 10.1039/c4sc00948g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Combining enhanced π-stacking, H-bonding and electrostatic attraction in a single C-monomer greatly increases DNA duplex stability and massively destabilises mismatches.
Collapse
Affiliation(s)
- Chenguang Lou
- School of Chemistry
- University of Southampton
- Highfield
- Southampton SO17 1BJ, UK
| | - Andre Dallmann
- Institute of Structural Biology
- Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Center for Integrated Protein Science Munich and Chair of Biomolecular NMR
- TU München
- 85747 Garching, Germany
| | - Pietro Marafini
- School of Chemistry
- University of Southampton
- Highfield
- Southampton SO17 1BJ, UK
- Department of Chemistry
| | - Rachel Gao
- School of Chemistry
- University of Southampton
- Highfield
- Southampton SO17 1BJ, UK
| | - Tom Brown
- School of Chemistry
- University of Southampton
- Highfield
- Southampton SO17 1BJ, UK
- Department of Chemistry
| |
Collapse
|
18
|
Ponomareva AG, Yurenko YP, Zhurakivsky RO, Mourik TV, Hovorun DM. Structural and energetic properties of the potential HIV-1 reverse transcriptase inhibitors d4A and d4G: a comprehensive theoretical investigation. J Biomol Struct Dyn 2013; 32:730-40. [DOI: 10.1080/07391102.2013.789401] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Foloppe N, Guéroult M, Hartmann B. Simulating DNA by molecular dynamics: aims, methods, and validation. Methods Mol Biol 2013; 924:445-468. [PMID: 23034759 DOI: 10.1007/978-1-62703-017-5_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The structure and dynamics of the B-DNA double helix involves subtle sequence-dependent effects which are decisive for its function, but difficult to characterize. These structural and dynamic effects can be addressed by simulations of DNA sequences in explicit solvent. Here, we present and discuss the state-of-art of B-DNA molecular dynamics simulations with the major force fields in use today. We explain why a critical analysis of the MD trajectories is required to assess their reliability, and estimate the value and limitations of these models. Overall, simulations of DNA bear great promise towards deciphering the structural and physical subtleties of this biopolymer, where much remains to be understood.
Collapse
|
20
|
Denning EJ, MacKerell AD. Intrinsic contribution of the 2'-hydroxyl to RNA conformational heterogeneity. J Am Chem Soc 2012; 134:2800-6. [PMID: 22242623 DOI: 10.1021/ja211328g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Canonical duplex RNA assumes only the A-form conformation at the secondary structure level while, in contrast, a wide range of noncanonical, tertiary conformations of RNA occur. Here, we show how the 2'-hydroxyl controls RNA conformational properties. Quantum mechanical calculations reveal that the orientation of the 2'-hydroxyl significantly alters the intrinsic flexibility of the phosphodiester backbone, favoring the A-form in duplex RNA when it is in the base orientation and facilitating sampling of a wide range of noncanonical, tertiary structures when it is in the O3' orientation. Influencing the orientation of the 2'-hydroxyl are interactions with the environment, as evidenced by crystallographic survey data, indicating the 2'-hydroxyl to sample more of the O3' orientation in noncanonical RNA structures. These results indicate that the 2'-hydroxyl acts as a "switch", both limiting the conformation of RNA to the A-form at the secondary structure level and allowing RNA to sample a wide range of noncanonical tertiary conformations.
Collapse
Affiliation(s)
- Elizabeth J Denning
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
21
|
Ponomareva AG, Yurenko YP, Zhurakivsky RO, van Mourik T, Hovorun DM. Complete conformational space of the potential HIV-1 reverse transcriptase inhibitors d4U and d4C. A quantum chemical study. Phys Chem Chem Phys 2012; 14:6787-95. [DOI: 10.1039/c2cp40290d] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
GLOBUS T, WOOLARD D, BYKHOVSKAIA M, GELMONT B, WERBOS L, SAMUELS A. THZ-FREQUENCY SPECTROSCOPIC SENSING OF DNA AND RELATED BIOLOGICAL MATERIALS. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s0129156403002083] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The terahertz frequency absorption spectra of DNA molecules reflect low-frequency internal helical vibrations involving rigidly bound subgroups that are connected by the weakest bonds, including the hydrogen bonds of the DNA base pairs, and/or non-bonded interactions. Although numerous difficulties make the direct identification of terahertz phonon modes in biological materials very challenging, recent studies have shown that such measurements are both possible and useful. Spectra of different DNA samples reveal a large number of modes and a reasonable level of sequence-specific uniqueness. This chapter utilizes computational methods for normal mode analysis and theoretical spectroscopy to predict the low-frequency vibrational absorption spectra of short artificial DNA and RNA. Here the experimental technique is described in detail, including the procedure for sample preparation. Careful attention was paid to the possibility of interference or etalon effects in the samples, and phenomena were clearly differentiated from the actual phonon modes. The results from Fourier-transform infrared spectroscopy of DNA macromolecules and related biological materials in the terahertz frequency range are presented. In addition, a strong anisotropy of terahertz characteristics is demonstrated. Detailed tests of the ability of normal mode analysis to reproduce RNA vibrational spectra are also conducted. A direct comparison demonstrates a correlation between calculated and experimentally observed spectra of the RNA polymers, thus confirming that the fundamental physical nature of the observed resonance structure is caused by the internal vibration modes in the macromolecules. Application of artificial neural network analysis for recognition and discrimination between different DNA molecules is discussed.
Collapse
Affiliation(s)
- T. GLOBUS
- Dept. of Electrical and Computer Engineering, UVA, Charlottesville, VA, USA
| | - D. WOOLARD
- U.S. Army Research Laboratory, ARO, Research Triangle Park, NC, USA
| | - M. BYKHOVSKAIA
- Dept. of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - B. GELMONT
- Dept. of Electrical and Computer Engineering, UVA, Charlottesville, VA, USA
| | | | - A. SAMUELS
- Edgewood Chemical and Biological Center, Aberdeen Proving Ground, MD, USA
| |
Collapse
|
23
|
Oguey C, Foloppe N, Hartmann B. Understanding the sequence-dependence of DNA groove dimensions: implications for DNA interactions. PLoS One 2010; 5:e15931. [PMID: 21209967 PMCID: PMC3012109 DOI: 10.1371/journal.pone.0015931] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 11/30/2010] [Indexed: 01/05/2023] Open
Abstract
Background The B-DNA major and minor groove dimensions are crucial for DNA-protein interactions. It has long been thought that the groove dimensions depend on the DNA sequence, however this relationship has remained elusive. Here, our aim is to elucidate how the DNA sequence intrinsically shapes the grooves. Methodology/Principal Findings The present study is based on the analysis of datasets of free and protein-bound DNA crystal structures, and from a compilation of NMR 31P chemical shifts measured on free DNA in solution on a broad range of representative sequences. The 31P chemical shifts can be interpreted in terms of the BI↔BII backbone conformations and dynamics. The grooves width and depth of free and protein-bound DNA are found to be clearly related to the BI/BII backbone conformational states. The DNA propensity to undergo BI↔BII backbone transitions is highly sequence-dependent and can be quantified at the dinucleotide level. This dual relationship, between DNA sequence and backbone behavior on one hand, and backbone behavior and groove dimensions on the other hand, allows to decipher the link between DNA sequence and groove dimensions. It also firmly establishes that proteins take advantage of the intrinsic DNA groove properties. Conclusions/Significance The study provides a general framework explaining how the DNA sequence shapes the groove dimensions in free and protein-bound DNA, with far-reaching implications for DNA-protein indirect readout in both specific and non specific interactions.
Collapse
Affiliation(s)
- Christophe Oguey
- Laboratoire de Physique Théorique et Modélisation, UMR-8089, Centre National de la Recherche Scientifique et Université de Cergy-Pontoise, Cergy-Pontoise, France
| | - Nicolas Foloppe
- UMR-S665, Institut National de la Santé et de la Recherche Médicale et Université Paris Diderot, Institut National de la Transfusion Sanguine, Paris, France
- * E-mail: (BH); (NF)
| | - Brigitte Hartmann
- UMR-S665, Institut National de la Santé et de la Recherche Médicale et Université Paris Diderot, Institut National de la Transfusion Sanguine, Paris, France
- * E-mail: (BH); (NF)
| |
Collapse
|
24
|
Sequence-Dependent DNA Flexibility Mediates DNase I Cleavage. J Mol Biol 2010; 395:123-33. [DOI: 10.1016/j.jmb.2009.10.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 10/09/2009] [Accepted: 10/12/2009] [Indexed: 11/17/2022]
|
25
|
Heddi B, Oguey C, Lavelle C, Foloppe N, Hartmann B. Intrinsic flexibility of B-DNA: the experimental TRX scale. Nucleic Acids Res 2009; 38:1034-47. [PMID: 19920127 PMCID: PMC2817485 DOI: 10.1093/nar/gkp962] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
B-DNA flexibility, crucial for DNA–protein recognition, is sequence dependent. Free DNA in solution would in principle be the best reference state to uncover the relation between base sequences and their intrinsic flexibility; however, this has long been hampered by a lack of suitable experimental data. We investigated this relationship by compiling and analyzing a large dataset of NMR 31P chemical shifts in solution. These measurements reflect the BI ↔ BII equilibrium in DNA, intimately correlated to helicoidal descriptors of the curvature, winding and groove dimensions. Comparing the ten complementary DNA dinucleotide steps indicates that some steps are much more flexible than others. This malleability is primarily controlled at the dinucleotide level, modulated by the tetranucleotide environment. Our analyses provide an experimental scale called TRX that quantifies the intrinsic flexibility of the ten dinucleotide steps in terms of Twist, Roll, and X-disp (base pair displacement). Applying the TRX scale to DNA sequences optimized for nucleosome formation reveals a 10 base-pair periodic alternation of stiff and flexible regions. Thus, DNA flexibility captured by the TRX scale is relevant to nucleosome formation, suggesting that this scale may be of general interest to better understand protein-DNA recognition.
Collapse
|
26
|
MacKerell AD. Contribution of the intrinsic mechanical energy of the phosphodiester linkage to the relative stability of the A, BI, and BII forms of duplex DNA. J Phys Chem B 2009; 113:3235-44. [PMID: 19708270 PMCID: PMC2784611 DOI: 10.1021/jp8102782] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Canonical forms of duplex DNA are known to sample well-defined regions of the alpha, beta, gamma, epsilon, and zeta dihedral angles that define the conformation of the phosphodiester linkage in the backbone of oligonucleotides. While extensive studies of base composition and base sequence dependent effects on the sampling of the A, B1, and BII canonical forms of duplex DNA have been presented, our understanding of the intrinsic contribution of the five dihedral degrees of freedom associated with the phosphodiester linkage to the conformational properties of duplex DNA is still limited. To better understand this contribution, ab initio quantum mechanical (QM) calculations were performed on a model compound representative of the phosphodiester backbone to systematically sample the energetics about the alpha, beta, gamma, epsilon, and zeta dihedral angles relevant to the conformational properties of duplex DNA. Low-energy regions of dihedral potential energy surfaces are shown to correlate with the regions of dihedral space sampled in experimental crystal structures of the canonical forms of DNA, validating the utility of the model compound and emphasizing the contribution of the intrinsic mechanical properties of the phosphodiester backbone to the conformational properties of duplex DNA. Those contributions include the relative stability of the A, BI, and BII conformations of duplex DNA, where the gas-phase energetics favor the BI form over the A and BII forms. In addition, subtle features of the potential energy surfaces mimic changes in the probability distributions of alpha, beta, gamma, epsilon, and zeta dihedral angles in A, BI, and BII forms of DNA as well as with conformations sampled in single-stranded DNA. These results show that the intrinsic mechanical properties of the phosphodiester backbone make a significant contribution to conformational properties of duplex DNA observed in the condensed phase and allow for the prediction that single-stranded DNA primarily samples folded conformations thereby possibly lowering the entropic barrier to the formation of duplex DNA.
Collapse
Affiliation(s)
- Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland 21201, USA.
| |
Collapse
|
27
|
Heddi B, Foloppe N, Oguey C, Hartmann B. Importance of Accurate DNA Structures in Solution: The Jun–Fos Model. J Mol Biol 2008; 382:956-70. [DOI: 10.1016/j.jmb.2008.07.047] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 07/11/2008] [Accepted: 07/19/2008] [Indexed: 01/10/2023]
|
28
|
Bergstrom DE. Characteristics of nucleic acids. ACTA ACUST UNITED AC 2008; Appendix 1:Appendix 1B. [PMID: 18428806 DOI: 10.1002/0471142700.nca01bs00] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This appendix is a compilation of information from Current Protocols in Molecular Biology (John Wiley & Sons, Inc.) and provides information about the major nucleoside/nucleotide constituents and structures for A-, B-, and Z-DNA. Tables and figures provide (1) experimentally useful properties of the nucleoside/nucleotide building blocks; (2) chemical structures of the nucleosides; (3) aspects of nucleotide stereochemistry that are important to an understanding of base pairing and secondary structure; (4) alternative (non-Watson-Crick) base pairings; and (5) the three best characterized helix structures for DNA: A-, B-, and Z-DNA.
Collapse
|
29
|
Yurenko YP, Zhurakivsky RO, Ghomi M, Samijlenko SP, Hovorun DM. Comprehensive Conformational Analysis of the Nucleoside Analogue 2‘-β-Deoxy-6-azacytidine by DFT and MP2 Calculations. J Phys Chem B 2007; 111:6263-71. [PMID: 17503799 DOI: 10.1021/jp066742h] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A comprehensive conformational analysis of isolated 2'-beta-deoxy-6-azacytidine (d6AC), an analogue of therapeutically active 6-azacytidine (6AC), has been performed by means of ab initio calculations at the MP2/6-311++G(2df,pd)//DFT B3LYP/6-31G(d,p) level of theory. Among the 81 conformers located within a 7.83 kcal/mol Gibbs energy range at T = 298.15 K, 38 contain syn-oriented bases with respect to 2'-deoxyribose; the other conformers include anti-oriented bases. Energetic analysis of these conformers shows that conformational equilibrium of isolated d6AC at T = 298.15 K is shifted to syn conformation with a syn/anti ratio estimated as 61.4%:38.6%. As far as the sugar conformation is concerned, 40 conformers contain north (N) (with 0.3 degrees < or = P < or = 40.1 degrees), and the rest possess south (S) (with 157.1 degrees < or = P < or = 207.0 degrees) puckers, where P is the pseudorotational angle of the furanose ring. The S/N occupancy ratio is estimated as 80.2%:19.8% (T = 298.15 K). The two most stable conformers are energetically quasidegenerate and correspond to both C2'-endo/syn conformers differing only by orientation of the O3'H hydroxyl group. They are both stabilized by means of similar intramolecular H-bonds, i.e., O5'H...O2, C2'H2...O2, and C2'H2...O5'. As examined by AIM criteria, from 1 to 3 H-bonds per conformer were identified among 13 possible interactions: O5'H...O2, O5'H...N6, O3'H...O5', O5'H...O3', C1'H...O2, C2'H2...O2, C2'H2...O5', C3'H...O2, C3'H...N6, C5'H1...O2, C5'H2...O2, C5'H1...N6, and C5'H2...N6. The biological effect of d6AC is conceived as an inhibition of replicative DNA polymerase caused by an unusual orientation of the sugar residue against the base in the only A form DNA-like conformer.
Collapse
Affiliation(s)
- Yevgen P Yurenko
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, vul. Zabolotnoho 150, 03143, Kyiv, Ukraine
| | | | | | | | | |
Collapse
|
30
|
Markovitsi D, Talbot F, Gustavsson T, Onidas D, Lazzarotto E, Marguet S. Molecular spectroscopy: complexity of excited-state dynamics in DNA. Nature 2006; 441:E7; discussion E8. [PMID: 16760929 DOI: 10.1038/nature04903] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Absorption of ultraviolet light by DNA is known to lead to carcinogenic mutations, but the processes between photon absorption and the photochemical reactions are poorly understood. In their study of the excited-stated dynamics of model DNA helices using femtosecond transient absorption spectroscopy, Crespo-Hernández et al. observe that the picosecond component of the transient signals recorded for the adenine-thymine oligonucleotide (dA)18.(dT)18 is close to that for (dA)18, but quite different from that for (dAdT)9.(dAdT)9; from this observation, they conclude that excimer formation limits excitation energy to one strand at a time. Here we use time-resolved fluorescence spectroscopy to probe the excited-state dynamics, which reveals the complexity of these systems and indicates that the interpretation of Crespo-Hernández et al. is an oversimplification. We also comment on the pertinence of separating base stacking and base pairing in excited-state dynamics of double helices and question the authors' assignment of the long-lived signal component found for (dA)18.(dT)18 to adenine excimers.
Collapse
Affiliation(s)
- Dimitra Markovitsi
- Laboratoire Francis Perrin, CEA/DSM/DRECAM/SPAM-CNRS URA 2453, CEA Saclay, 91191 Gif-sur-Yvette, France.
| | | | | | | | | | | |
Collapse
|
31
|
Grajcar L, El Amri C, Ghomi M, Fermandjian S, Huteau V, Mandel R, Lecomte S, Baron MH. Assessment of adenyl residue reactivity within model nucleic acids by surface enhanced Raman spectroscopy. Biopolymers 2006; 82:6-28. [PMID: 16425174 DOI: 10.1002/bip.20455] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We rank the reactivity of the adenyl residues (A) of model DNA and RNA molecules with electropositive subnano size [Ag]n+ sites as a function of nucleic acid primary sequences and secondary structures and in the presence of biological amounts of Cl- and Na+ or Mg2+ ions. In these conditions A is markedly more reactive than any other nucleic acid bases. A reactivity is higher in ribo (r) than in deoxyribo (d) species [pA>pdA and (pA)n>>(pdA)n]. Base pairing decreases A reactivity in corresponding duplexes but much less in r than in d. In linear single and paired dCAG or dGAC loci, base stacking inhibits A reactivity even if A is bulged or mispaired (A.A). dA tracts are highly reactive only when dilution prevents self-association and duplex structures. In d hairpins the solvent-exposed A residues are reactive in CAG and GAC triloops and even more in ATC loops. Among the eight rG1N2R3A4 loops, those bearing a single A (A4) are the least reactive. The solvent-exposed A2 is reactive, but synergistic structural transitions make the initially stacked A residues of any rGNAA loop much more reactive. Mg2+ cross-bridging single strands via phosphates may screen A reactivity. In contrast d duplexes cross-bridging enables "A flipping" much more in rA.U pairs than in dA.T. Mg2+ promotes A reactivity in unpaired strands. For hairpins Mg2+ binding stabilizes the stems, but according to A position in the loops, A reactivity may be abolished, reduced, or enhanced. It is emphasized that not only accessibility but also local flexibility, concerted docking, and cation and anion binding control A reactivity.
Collapse
Affiliation(s)
- Lydie Grajcar
- Laboratoire de Dynamique Interactions et Réactivité, UMR 7075, Université Paris 6 CNRS, 2 rue Henri Dunant, 94320, Thiais, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Xu QS, Roberts RJ, Guo HC. Two crystal forms of the restriction enzyme MspI-DNA complex show the same novel structure. Protein Sci 2005; 14:2590-600. [PMID: 16195548 PMCID: PMC2253285 DOI: 10.1110/ps.051565105] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The crystal structure of the Type IIP restriction endonuclease MspI bound to DNA containing its cognate recognition sequence has been determined in both monoclinic and orthorhombic space groups. Significantly, these two independent crystal forms present an identical structure of a novel monomer-DNA complex, suggesting a functional role for this novel enzyme-DNA complex. In both crystals, MspI interacts with the CCGG DNA recognition sequence as a monomer, using an asymmetric mode of recognition by two different structural motifs in a single polypeptide. In the crystallographic asymmetric unit, the two DNA molecules in the two MspI-DNA complexes appear to stack with each other forming an end-to-end pseudo-continuous 19-mer duplex. They are primarily B-form and no major bends or kinks are observed. For DNA recognition, most of the specific contacts between the enzyme and the DNA are preserved in the orthorhombic structure compared with the monoclinic structure. A cation is observed near the catalytic center in the monoclinic structure at a position homologous to the 74/45 metal site of EcoRV, and the orthorhombic structure also shows signs of this same cation. However, the coordination ligands of the metal are somewhat different from those of the 74/45 metal site of EcoRV. Combined with structural information from other solved structures of Type II restriction enzymes, the possible relationship between the structures of the enzymes and their cleavage behaviors is discussed.
Collapse
Affiliation(s)
- Qian Steven Xu
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | |
Collapse
|
33
|
Wibowo FR, Rauch C, Trieb M, Liedl KR. M.TaqI facilitates the base flipping via an unusual DNA backbone conformation. Biopolymers 2005; 79:128-38. [PMID: 16047360 DOI: 10.1002/bip.20341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MD simulations have been carried out to understand the dynamical behavior of the DNA substrate of the Thermus aquaticus DNA methyltransferase (M.TaqI) in the methylation process at N6 of adenine. As starting structures, an x-ray structure of M.TaqI in complex with DNA and cofactor analogue (PDB code: 1G 38) and free decamer d(GTTCGATGTC)(2) were taken. The x-ray structure shows two consecutive BII substates that are not observed in the free decamer. These consecutive BII substates are also observed during our simulation. Additionally, their facing backbones adopt the same conformations. These double facing BII substates are stable during the last 9 ns of the trajectories and result in a stretched DNA structure. On the other hand, protein-DNA contacts on 5' and 3' phosphodiester groups of the partner thymine of flipped adenine have changed. The sugar and phosphate parts of thymine have moved further into the empty space left by the flipping base without the influence of protein. Furthermore, readily high populated BII substates at the GpA step of palindromic tetrad TCGA rather than CpG step are observed in the free decamer. On the contrary, the BI substate at the GpA step is observed on the flipped adenine strand. A restrained MD simulation, reproducing the BI/BII pattern in the complex, demonstrated the influence of the unusual backbone conformation on the dynamical behavior of the target base. This finding along with the increased nearby interstrand phosphate distance is supportive to the N6-methylation mechanism.
Collapse
Affiliation(s)
- Fajar R Wibowo
- Institute of General, Inorganic, and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
34
|
Nina M, Fonné-Pfister R, Beaudegnies R, Chekatt H, Jung PMJ, Murphy-Kessabi F, De Mesmaeker A, Wendeborn S. Recognition of RNA by amide modified backbone nucleic acids: molecular dynamics simulations of DNA-RNA hybrids in aqueous solution. J Am Chem Soc 2005; 127:6027-38. [PMID: 15839703 DOI: 10.1021/ja0486566] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thermodynamic and structural properties of a chemically modified DNA-RNA hybrid in which a phosphodiester linkage is replaced by a neutral amide-3 linkage (3'-CH(2)-CONH-5') were investigated using UV melting experiments, molecular dynamics simulations in explicit water, and continuum solvent models. van't Hoff analysis of the experimental UV melting curves suggests that the significant increase of the thermodynamic stability of a 15-mer DNA-RNA with seven alternated amide-3 modifications (+11 degrees C) is mainly due to an increased binding enthalpy. To further evaluate the origin in the observed affinities differences, the electrostatic contribution to the binding free energy was calculated by solving the Poisson-Boltzmann equation numerically. The nonelectrostatic contribution was estimated as the product of a hydrophobic surface tension coefficient and the surface area that is buried upon double strand formation. Structures were taken from 10 ns molecular dynamics simulations computed in a consistent fashion using explicit solvent, counterions, and the particle-mesh Ewald procedure. The present preliminary thermodynamic study suggests that the favorable binding free energy of the amide-3 DNA single strand to the complementary RNA is equally driven by electrostatic and nonpolar contributions to the binding compared to their natural analogues. In addition, molecular dynamics simulations in explicit water were performed on an amide-3 DNA single strand and the corresponding natural DNA. Results from the conformations cluster analysis of the simulated amide-3 DNA single strand ensembles suggest that the 25% of the population sampled within 10 ns has a pre-organized conformation where the sugar C3' endo pucker is favored at the 3'-flanking nucleotides. These structural and thermodynamic features contribute to the understanding of the observed increased affinities of the amide-3 DNA-RNA hybrids at the microscopic level.
Collapse
Affiliation(s)
- Mafalda Nina
- Syngenta Crop Protection AG, P.O. Box, CH-4002 Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Shishkin OV, Gorb L, Zhikol OA, Leszczynski J. Conformational analysis of canonical 2-deoxyribonucleotides. 2. Purine nucleotides. J Biomol Struct Dyn 2005; 22:227-44. [PMID: 15317483 DOI: 10.1080/07391102.2004.10506998] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The molecular structure of different conformers of isolated canonical purine 2'-deoxyribonucleotides 2-deoxyadenosine-5'-phosphate (pdA) and 2'-deoxyguanosine-5'-phosphate (pdG) was optimized using the B3LYP/6-31G(d) method. The results of the calculations reveal that the geometrical parameters and relative stability of the conformers significantly depend on the nature of the nucleobase, its orientation, the conformation of the furanose ring, the charge of the phosphate group and the character of the intramolecular hydrogen bonds. Analysis of the electron density distribution in purine nucleotides reveals the existence of a number of intramolecular hydrogen bonds. In general, the south conformer has a lower energy at the anti orientation of the base, and both conformers occur as the most stable for the syn orientation of the nucleobases. The results of the calculations reveal that the geometry and relative energy of the conformers of purine DNTs may be easily tuned by the charge of the phosphate group.
Collapse
Affiliation(s)
- Oleg V Shishkin
- Institute for Scintillation Materials, National Academy of Science of Ukraine, 60 Lenina Ave., Kharkiv 61001, Ukraine.
| | | | | | | |
Collapse
|
36
|
Okamoto A, Ochi Y, Saito I. Fluorometric sensing of the salt-induced B–Z DNA transition by combination of two pyrene-labeled nucleobases. Chem Commun (Camb) 2005:1128-30. [PMID: 15726167 DOI: 10.1039/b416965d] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a new fluorescent DNA sensor containing two pyrene-labeled nucleobases, (Pet)G and (Py)C, and the fluorescence color was altered by the salt-induced B-Z DNA transition.
Collapse
Affiliation(s)
- Akimitsu Okamoto
- Department of Synthetic Chemistry and Biological Chemistry, Faculty of Engineering, Kyoto University, Kyoto 615-8510, Japan.
| | | | | |
Collapse
|
37
|
Wibowo FR, Trieb M, Rauch C, Wellenzohn B, Liedl KR. The N6-Methyl Group of Adenine Further Increases the BI Stability of DNA Compared to C5-Methyl Groups. J Phys Chem B 2004; 109:557-64. [PMID: 16851047 DOI: 10.1021/jp048519v] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Methylated DNA bases are natural modifications which play an important role in protein-DNA interactions. Recent experimental and theoretical results have shown an influence of the base modification on the conformational behavior of the DNA backbone. MD simulations of four different B-DNA dodecamers (d(GC)(6), d(AT)(6), d(G(5mCG)(5)C), and d(A(T6mA)(5)T)) have been performed with the aim to examine the influence of methyl groups on the B-DNA backbone behavior. An additional control simulation of d(AU)(6) has also been performed to examine the further influence of the C5-methyl group in thymine. Methyl groups in the major groove (as in C5-methylcytosine, thymine, or N6-methyladenine) decrease the BII substate population of RpY steps. Due to methylation a clearer distinction of the BI substate stability between YpR and RpY (CpG/GpC or TpA/ApT) steps arises. A positive correlation between the BII substate population and base stacking distances is seen only for poly(GC). A methyl group added into the major groove increases mean water residence times around the purine N7 atom, which may stabilize the BI substate by improving the hydration network between the DNA backbone and the major groove. The N6-methyl group also forms a water molecule bridge between the N6 and O4 atoms, and thus further stabilizes the BI substate.
Collapse
Affiliation(s)
- Fajar R Wibowo
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|
38
|
Lee J, Guelev V, Sorey S, Hoffman DW, Iverson BL. NMR Structural Analysis of a Modular Threading Tetraintercalator Bound to DNA. J Am Chem Soc 2004; 126:14036-42. [PMID: 15506767 DOI: 10.1021/ja046335o] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis and NMR structural studies are reported for a modular threading tetraintercalator bound to DNA. The tetraintercalator design is based on 1,4,5,8-tetracarboxylic naphthalene diimide units connected through flexible peptide linkers. Aided by an overall C(2) symmetry, NMR analysis verified a threading polyintercalation mode of binding, with linkers alternating in the order minor groove, major groove, minor groove, analogous to how a snake might climb a ladder. This study represents the first NMR analysis of a threading tetraintercalator and, as such, structurally characterizes a new topology for molecules that bind to relatively long DNA sequences with extensive access to both DNA grooves.
Collapse
Affiliation(s)
- Jeeyeon Lee
- Department of Chemistry and Biochemistry, The University of Texas, Austin, Texas 78712, USA
| | | | | | | | | |
Collapse
|
39
|
Shishkin OV, Gorb L, Zhikol OA, Leszczynski J. Conformational analysis of canonical 2-deoxyribonucleotides. 1. Pyrimidine nucleotides. J Biomol Struct Dyn 2004; 21:537-54. [PMID: 14692798 DOI: 10.1080/07391102.2004.10506947] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The molecular structure and relative stability of north and south conformers of 2'-deoxyribonucleotides containing pyrimidine nucleic acid bases ( 2'-deoxythymidilic (pdT), 2'-deoxycytidilic (pdC) acids and their mono- and dianions) have been obtained and analyzed at the DFT/B3LYP level using the standard 6-31G(d) basis set. We have revealed that, when the nucleobase moiety is incorporated into the nucleotides, it maintains a nonplanar and nonrigid conformation due to out-of-plane deformation of the amino group and pyrimidine ring. It has been demonstrated that an increase of negative charge of the phosphate group results in increase of amino group pyramidalization, discrimination between conformers with syn and anti orientation of base with respect to sugar, strengthening of intramolecular C-H.O hydrogen bonds leading to deformation and fixation of geometry of nucleotides, and weakening of phosphodiester bond. These results allow to make suggestions about sources of twist and buckle deformations of base pairs, mechanisms of repaire of DNA via change of base orientation, and conditions for breakage of the P-O bonds during hydrolysis.
Collapse
Affiliation(s)
- Oleg V Shishkin
- Institute for Scintillation Materials, National Academy of Science of Ukraine, 60 Lenina Ave, Kharkiv 61001, Ukraine.
| | | | | | | |
Collapse
|
40
|
Boon EM, Barton JK. DNA electrochemistry as a probe of base pair stacking in A-, B-, and Z-form DNA. Bioconjug Chem 2004; 14:1140-7. [PMID: 14624627 DOI: 10.1021/bc034139l] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA-mediated charge transport (CT) chemistry is sensitive to DNA structure and base pair stacking. In an electrochemical assay based upon DNA CT, DNA-modified electrode surfaces are used to examine the electrochemical reduction of methylene blue (MB), a small molecule that binds to the DNA film by intercalation. Here electrochemically we probe CT in the three primary conformations of double-stranded nucleic acids, A-, B-, and Z-form DNA. The A-form is examined in the context of a DNA/RNA hybrid duplex and Z-DNA, in duplexes containing d((m)CG)(8) sequences at high Mg(2+) concentrations. We find that both A- and B-DNA support efficient DNA CT as measured by MB reduction in the DNA film; a lower level of reduction is evident with the Z-form film. Furthermore, mismatches incorporated into A-form duplexes, as in B-form duplexes, disrupt MB reduction, thus providing a strategy for mutation detection through testing of RNA transcripts at DNA electrodes.
Collapse
Affiliation(s)
- Elizabeth M Boon
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
41
|
Beveridge DL, Dixit SB, Barreiro G, Thayer KM. Molecular dynamics simulations of DNA curvature and flexibility: helix phasing and premelting. Biopolymers 2004; 73:380-403. [PMID: 14755574 DOI: 10.1002/bip.20019] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent studies of DNA axis curvature and flexibility based on molecular dynamics (MD) simulations on DNA are reviewed. The MD simulations are on DNA sequences up to 25 base pairs in length, including explicit consideration of counterions and waters in the computational model. MD studies are described for ApA steps, A-tracts, for sequences of A-tracts with helix phasing. In MD modeling, ApA steps and A-tracts in aqueous solution are essentially straight, relatively rigid, and exhibit the characteristic features associated with the B'-form of DNA. The results of MD modeling of A-tract oligonucleotides are validated by close accord with corresponding crystal structure results and nuclear magnetic resonance (NMR) nuclear Overhauser effect (NOE) and residual dipolar coupling (RDC) structures of d(CGCGAATTCGCG) and d(GGCAAAAAACGG). MD simulation successfully accounts for enhanced axis curvature in a set of three sequences with phased A-tracts studied to date. The primary origin of the axis curvature in the MD model is found at those pyrimidine/purine YpR "flexible hinge points" in a high roll, open hinge conformational substate. In the MD model of axis curvature in a DNA sequence with both phased A-tracts and YpR steps, the A-tracts appear to act as positioning elements that make the helix phasing more precise, and key YpR steps in the open hinge state serve as curvature elements. Our simulations on a phased A-tract sequence as a function of temperature show that the MD simulations exhibit a premelting transition in close accord with experiment, and predict that the mechanism involves a B'-to-B transition within A-tracts coupled with the prediction of a transition in key YpR steps from the high roll, open hinge, to a low roll, closed hinge substate. Diverse experimental observations on DNA curvature phenomena are examined in light of the MD model with no serious discrepancies. The collected MD results provide independent support for the "non-A-tract model" of DNA curvature. The "junction model" is indicated to be a special case of the non-A-tract model when there is a Y base at the 5' end of an A-tract. In accord with crystallography, the "ApA wedge model" is not supported by MD.
Collapse
Affiliation(s)
- D L Beveridge
- Department of Chemistry, Wesleyan University, Middletown CT 06459, USA.
| | | | | | | |
Collapse
|
42
|
Pan Y, MacKerell AD. Altered structural fluctuations in duplex RNA versus DNA: a conformational switch involving base pair opening. Nucleic Acids Res 2004; 31:7131-40. [PMID: 14654688 PMCID: PMC291876 DOI: 10.1093/nar/gkg941] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA and RNA are known to have different structural properties. In the present study, molecular dynamics (MD) simulations on a series of RNA and DNA duplexes indicate differential structural flexibility for the two classes of oligonucleotides. In duplex RNA, multiple base pairs experienced local opening events into the major groove on the nanosecond time scale, while such events were not observed in the DNA simulations. Three factors are indicated to be responsible for the base opening events in RNA: solvent-base interactions, 2'OH(n)-O4'(n+1) intra-strand hydrogen bonding, and enhanced rigid body motion of RNA at the nucleoside level. Water molecules in the major groove of RNA contribute to initiation of base pair opening. Stabilization of the base pair open state is due to a 'conformational switch' comprised of 2'OH(n)-O4'(n+1) hydrogen bonding and a rigid body motion of the nucleoside moiety in RNA. This rigid body motion is associated with decreased flexibility of the glycosyl linkage and sugar moieties in A-form structures. The observed opening rates in RNA are consistent with the imino proton exchange experiments for AU base pairs, although not for GC base pairs, while structural and flexibility changes associated with the proposed conformational switch are consistent with survey data of RNA and DNA crystal structures. The possible relevance of base pair opening events in RNA to its many biological functions is discussed.
Collapse
Affiliation(s)
- Yongping Pan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | | |
Collapse
|
43
|
Wibowo FR, Rauch C, Trieb M, Wellenzohn B, Liedl KR. Water-mediated contacts in thetrp-repressor operator complex recognition process. Biopolymers 2004; 73:668-81. [PMID: 15048770 DOI: 10.1002/bip.20023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Water-mediated contacts are known as an important recognition tool in trp-repressor operator systems. One of these contacts involves two conserved base pairs (G(6).C(-6) and A(5). T(-5)) and three amino acids (Lys 72, Ile 79, and Ala 80). To investigate the nature of these contacts, we analyzed the X-ray structure (PDB code: 1TRO) of the trp-repressor operator complex by means of molecular dynamics simulations. This X-ray structure contains two dimers that exhibit structural differences. From these two different starting structures, two 10 ns molecular dynamics simulations have been performed. Both of our simulations show an increase of water molecules in the major groove at one side of the dimer, while the other side remains unchanged compared to the X-ray structure. Though the maximum residence time of the concerned water molecules decreases with an increase of solvent at the interface, these water molecules continue to play an important role in mediating DNA-protein contacts. This is shown by new stable amino acids-DNA distances and a long water residence time compared to free DNA simulation. To maintain stability of the new contacts, the preferential water binding site on O6(G6) is extended. This extension agrees with mutation experiment data on A5 and G6, which shows different relative affinity due to mutation on these bases [A. Joachimiak, T. E. Haran, P. B. Sigler, EMBO Journal 1994, Vol. 13, No. (2) pp. 367-372]. Due to the rearrangements in the system, the phosphate of the base G6 is able to interconvert to the B(II) substate, which is not observed on the other half side of the complex. The decrease of the number of hydrogen bonds between protein and DNA backbone could be the initial step of the dissociation process of the complex, or in other words an intermediate complex conformation of the association process. Thus, we surmise that these features show the importance of water-mediated contacts in the trp-repressor operator recognition process.
Collapse
Affiliation(s)
- Fajar R Wibowo
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|
44
|
Djuranovic D, Hartmann B. Conformational characteristics and correlations in crystal structures of nucleic acid oligonucleotides: evidence for sub-states. J Biomol Struct Dyn 2003; 20:771-88. [PMID: 12744707 DOI: 10.1080/07391102.2003.10506894] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Sugar phosphate backbone conformations are a structural element inextricably involved in a complete understanding of specific recognition nucleic acid ligand interactions, from early stage discrimination of the correct target to complexation per se, including any structural adaptation on binding. The collective results of high resolution DNA, RNA and protein/DNA crystal structures provide an opportunity for an improved and enhanced statistical analysis of standard and unusual sugar-phosphate backbone conformations together with corresponding dinucleotide sequence effects as a basis for further exploration of conformational effects on binding. In this study, we have analyzed the conformations of all relevant crystal structures in the nucleic acids data base, determined the frequency distribution of all possible epsilon, zeta, alpha, beta and gamma backbone angle arrangements within four nucleic acid categories (A-RNA and A-DNA, free and bound B-DNA) and explored the relationships between backbone angles, sugar puckers and selected helical parameters. The trends in the correlations are found to be similar regardless of the nucleic acid category. It is interesting that specific structural effects exhibited by the different unusual backbone sub-states are in some cases contravariant. Certain alpha/gamma changes are accompanied by C3' endo (north) sugars, small twist angles and positive values of base pair roll, and favor a displacement of nucleotide bases towards the minor groove compared to that of canonical B form structures. Unusual epsilon/zeta combinations occur with C2' (south) sugars, high twist angles, negative values of base pair roll, and base displacements towards the major groove. Furthermore, any unusual backbone correlates with a reduced dispersion of equilibrium structural parameters of the whole double helix, as evidenced by the reduced standard deviations of almost all conformational parameters. Finally, a strong sequence effect is displayed in the free oligomers, but reduced somewhat in the ligand bound forms. The most variable steps are GpA and CpA, and, to a lesser extent, their partners TpC and TpG. The results provide a basis for considering if the variable and non-variable steps within a biological active sequence precisely determine morphological structural features as the curvature direction, the groove depth, and the accessibility of base pair for non covalent associations.
Collapse
Affiliation(s)
- D Djuranovic
- Laboratoire de Biochimie Theorique, CNRS UPR 9080, Institut de Biologie Physico-chimique, 13 rue P. et M. Curie, Paris 75005, France.
| | | |
Collapse
|
45
|
Markovitsi D, Sharonov A, Onidas D, Gustavsson T. The effect of molecular organisation in DNA oligomers studied by femtosecond fluorescence spectroscopy. Chemphyschem 2003; 4:303-5. [PMID: 12674606 DOI: 10.1002/cphc.200390050] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dimitra Markovitsi
- Laboratoire Francis Perrin, CEA/DSM/DRECAM/SPAM-CNRS URA 2453, CEA Saclay, 91191 Gif-sur-Yvette, France.
| | | | | | | |
Collapse
|
46
|
Hartmann B, Sullivan MR, Harris LF. Operator recognition by the phage 434 cI repressor: MD simulations of free and bound 50-bp DNA reveal important differences between the OR1 and OR2 sites. Biopolymers 2003; 68:250-64. [PMID: 12548627 DOI: 10.1002/bip.10243] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Using molecular dynamics simulations in explicit solvent, we investigated the behavior of a 50-bp DNA sequence containing the 434 bacteriophage operators OR1 and OR2 separated by an 8-bp spacer. Two simulations of 1 ns each were carried out, with DNA alone and with DNA complexed to dimers of the R1-69 DNA binding domain of the phage 434 cI repressor protein at the OR1 and OR2 sites. Strong correlations among average structural parameters are observed between our simulations and available experimental data for the bound OR1/OR2 subsites. In the free state, some differences appear between the three relevant fragments (OR1, the spacer, and OR2). Unbound OR1 exhibits a large, shallow major groove into which the base atoms protrude and is also bent toward the major groove. This structure is maintained because structural fluctuations are weak. Unbound OR2 resembles canonical B-DNA although the structural parameters show greater fluctuations, essentially due to a malleable step (the innermost CpA/TpG), absent in OR1. Complexation with the proteins slightly alters the base positions but strongly modifies the sugar and backbone motions. The most crucial repressor effects are changes in the flexibility of the OR1/OR2 sites. Structural fluctuations are enhanced for OR1, conferring a favorable energetic contribution to the OR1 binding, whereas they are reduced for OR2. Therefore, both structural and dynamic properties of DNA suggest OR1 is the most attractive site for the repressor, which may explain the different binding association constants observed for the OR1 and OR2 sites. Finally, we also investigated the impact of the protein on the DNA backbone dynamics and find that direct or indirect interactions facilitate the DNA structural variations required for achieving complementarity with the protein.
Collapse
Affiliation(s)
- Brigitte Hartmann
- Laboratoire de Biochimie Théorique, CNRS UPR 9080, Institut de Biologie Physico-Chimique, 13 rue P et M Curie, 75005 Paris, France.
| | | | | |
Collapse
|
47
|
O'Neill MA, Barton JK. 2-Aminopurine: a probe of structural dynamics and charge transfer in DNA and DNA:RNA hybrids. J Am Chem Soc 2002; 124:13053-66. [PMID: 12405832 DOI: 10.1021/ja0208198] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Spectroscopic techniques are employed to probe relationships between structural dynamics and charge transfer (CT) efficiency in DNA duplexes and DNA:RNA hybrids containing photoexcited 2-aminopurine (Ap). To better understand the variety of interactions and reactions, including CT, between Ap and DNA, the fluorescence behavior of Ap is investigated in a full series of redox-inactive as well as redox-active assemblies. Thus, Ap is developed as a dual reporter of structural dynamics and base-base CT reactions in nucleic acid duplexes. CD, NMR, and thermal denaturation profiles are consistent with the family of DNA duplexes adopting a distinct conformation versus the DNA:RNA hybrids. Fluorescence measurements establish that the d(A)-r(U) tract of the DNA:RNA hybrid exhibits enhanced structural flexibility relative to that of the d(A)-d(T) tract of the DNA duplexes. The yield of CT from either G or 7-deazaguanine (Z) to Ap in the assemblies was determined by comparing Ap emission in redox-active G- or Z-containing duplexes to otherwise identical duplexes in which the G or Z is replaced by inosine (I), the redox-inactive nucleoside analogue. Investigations of CT not only demonstrate efficient intrastrand base-base CT in the DNA:RNA hybrids but also reveal a distance dependence of CT yield that is more shallow through the d(A)-r(U) bridge of the A-form DNA:RNA hybrids than through the d(A)-d(T) bridge of the B-form DNA duplexes. The shallow distance dependence of intrastrand CT in DNA:RNA hybrids correlates with the increased conformational flexibility of bases within the hybrid duplexes. Measurements of interstrand base-base CT provide another means to distinguish between the A- and B-form helices. Significantly, in the A-form DNA:RNA hybrids, a similar distance dependence is obtained for inter- and intrastrand reactions, while, in B-DNA, a more shallow distance dependence is evident with interstrand CT reactions. These observations are consistent with evaluations of intra- and interstrand base overlap in A- versus B-form duplexes. Overall, these data underscore the sensitivity of CT chemistry to nucleic acid structure and structural dynamics.
Collapse
Affiliation(s)
- Melanie A O'Neill
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
48
|
Foloppe N, Nilsson L, MacKerell AD. Ab initio conformational analysis of nucleic acid components: intrinsic energetic contributions to nucleic acid structure and dynamics. Biopolymers 2002; 61:61-76. [PMID: 11891629 DOI: 10.1002/1097-0282(2001)61:1<61::aid-bip10047>3.0.co;2-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In recent years, the use of high-level ab initio calculations has allowed for the intrinsic conformational properties of nucleic acid building blocks to be revisited. This has provided new insights into the intrinsic conformational energetics of these compounds and its relationship to nucleic acids structure and dynamics. In this article we review recent developments and present new results. New data include comparison of various levels of theory on conformational properties of nucleic acid building blocks, calculations on the abasic sugar, known to occur in vivo in DNA, on the TA conformation of DNA observed in the complex with the TATA box binding protein, and on inosine. Tests of the Hartree-Fock (HF), second-order Møller-Plesset (MP2), and Density Functional Theory/Becke3, Lee, Yang and Par (DFT/B3LYP) levels of theory show the overall shape of backbone torsional energy profiles (for gamma, epsilon, and chi) to be similar for the different levels, though some systematic differences are identified between the MP2 and DFT/B3LYP profiles. The east pseudorotation energy barrier in deoxyribonucleosides is also sensitive to the level of theory, with the HF and DFT/B3LYP east barriers being significantly lower (approximately 2.5 kcal/mol) than the MP2 counterpart (approximately 4.0 kcal/mol). Additional calculations at various levels of theory suggest that the east barrier in deoxyribonucleosides is between 3.0 and 4.0 kcal/mol. In the abasic sugar, the west pseudorotation energy barrier is found to be slightly lower than the east barrier and the south pucker is favored more than in standard nucleosides. Results on the TA conformation suggest that, at the nucleoside level, this conformation is significantly destabilized relative to the global energy minimum, or relative to the A- and B-DNA conformations. Deoxyribocytosine would destabilize the TA conformation more than other bases relative to the A-DNA conformation, but not relative to the B-DNA conformation.
Collapse
Affiliation(s)
- N Foloppe
- Center for Structural Biology, Department of Bioscience, Karolinska Institutet, S-141 57, Huddinge, Sweden
| | | | | |
Collapse
|
49
|
Wellenzohn B, Flader W, Winger RH, Hallbrucker A, Mayer E, Liedl KR. Indirect readout of the trp-repressor-operator complex by B-DNA's backbone conformation transitions. Biochemistry 2002; 41:4088-95. [PMID: 11900552 DOI: 10.1021/bi015642t] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although the trp-repressor-operator complex is one of the best studied transcriptional controlling systems, some questions regarding the specific recognition of the operator by the repressor remain. We performed a 2.35 ns long molecular dynamics simulation to clarify the influence of the two B-DNA backbone conformational substates B(I) and B(II) on complexation. The trp-repressor-operator is an ideal biological system for this study because experimental results have already figured out that the interaction between the internucleotide phosphates and the protein is essential for the formation of the high affinity complex. Our simulation supports these results, but more important it shows a strong correlation between the B(I)/B(II) phosphate substate and the number of interactions with this phosphate. In particular the B(I) <==> B(II) transitions occur synchronous to hydrogen bond breaking or formation. To the best of our knowledge, this was observed for the first time. Thus, we conclude that the sequence specific B(I)/B(II) behavior contributes via indirect readout to sequence specific recognition. These results have implication for the design of transcription-controlling drugs in view of the recently published influence of minor groove binders on the B(I)/B(II) pattern. The simulation also agrees with crystallographically observed hydration sites. This is consistent with experimental results and indicates the correctness of the model used.
Collapse
Affiliation(s)
- Bernd Wellenzohn
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
50
|
Foloppe N, Hartmann B, Nilsson L, MacKerell AD. Intrinsic conformational energetics associated with the glycosyl torsion in DNA: a quantum mechanical study. Biophys J 2002; 82:1554-69. [PMID: 11867468 PMCID: PMC1301954 DOI: 10.1016/s0006-3495(02)75507-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The glycosyl torsion (chi) in nucleic acids has long been recognized to be a major determinant of their conformational properties. chi torsional energetics were systematically mapped in deoxyribonucleosides using high-level quantum mechanical methods, for north and south sugar puckers and with gamma in the g(+) and trans conformations. In all cases, the syn conformation is found higher in energy than the anti. When gamma is changed from g(+) to trans, the anti orientation of the base is strongly destabilized, and the energy difference and barrier between anti and syn are significantly decreased. The barrier between anti and syn in deoxyribonucleosides is found to be less than 10 kcal/mol and tends to be lower with purines than with pyrimidines. With gamma = g(+)/chi = anti, a south sugar yields a significantly broader energy well than a north sugar with no energy barrier between chi values typical of A or B DNA. Contrary to the prevailing view, the syn orientation is not more stable with south puckers than with north puckers. The syn conformation is significantly more energetically accessible with guanine than with adenine in 5-nucleotides but not in nucleosides. Analysis of nucleic acid crystal structures shows that gamma = trans/chi = anti is a minor but not negligible conformation. Overall, chi appears to be a very malleable structural parameter with the experimental chi distributions reflecting, to a large extent, the associated intrinsic torsional energetics.
Collapse
Affiliation(s)
- Nicolas Foloppe
- Center for Structural Biology, Department of Bioscience, Karolinska Institutet, S-141 57, Huddinge, Sweden
| | | | | | | |
Collapse
|