1
|
Viader-Godoy X, Manosas M, Ritort F. Stacking correlation length in single-stranded DNA. Nucleic Acids Res 2024:gkae934. [PMID: 39460618 DOI: 10.1093/nar/gkae934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 09/18/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Base stacking is crucial in nucleic acid stabilization, from DNA duplex hybridization to single-stranded DNA (ssDNA) protein binding. While stacking energies are tiny in ssDNA, they are inextricably mixed with hydrogen bonding in DNA base pairing, making their measurement challenging. We conduct unzipping experiments with optical tweezers of short poly-purine (dA and alternating dG and dA) sequences of 20-40 bases. We introduce a helix-coil model of the stacking-unstacking transition that includes finite length effects and reproduces the force-extension curves. Fitting the model to the experimental data, we derive the stacking energy per base, finding the salt-independent value $\Delta G_0^{ST}=0.14(3)$ kcal/mol for poly-dA and $\Delta G_0^{ST}=0.07(3)$ kcal/mol for poly-dGdA. Stacking in these polymeric sequences is predominantly cooperative with a correlation length of ∼4 bases at zero force . The correlation length reaches a maximum of ∼10 and 5 bases at the stacking-unstacking transition force of ∼10 and 20 pN for poly-dA and poly-dGdA, respectively. The salt dependencies of the cooperativity parameter in ssDNA and the energy of DNA hybridization are in agreement, suggesting that double-helix stability is primarily due to stacking. Analysis of poly-rA and poly-rC RNA sequences shows a larger stacking stability but a lower stacking correlation length of ∼2 bases.
Collapse
Affiliation(s)
- Xavier Viader-Godoy
- Small Biosystems Lab, Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Carrer de Martí i Franquès, 1, 08028 Barcelona, Spain
- Dipartimento di Fisica e Astronomia Galileo Galilei, Università degli Studi di Padova, Via Francesco Marzolo, 8, 35131 Padova, Italy
| | - Maria Manosas
- Small Biosystems Lab, Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Carrer de Martí i Franquès, 1, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, 08029 Barcelona, Spain
| | - Felix Ritort
- Small Biosystems Lab, Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Carrer de Martí i Franquès, 1, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, 08029 Barcelona, Spain
| |
Collapse
|
2
|
Rekvig OP. SLE: a cognitive step forward-a synthesis of rethinking theories, causality, and ignored DNA structures. Front Immunol 2024; 15:1393814. [PMID: 38895113 PMCID: PMC11183320 DOI: 10.3389/fimmu.2024.1393814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is classified by instinctual classification criteria. A valid proclamation is that these formally accepted SLE classification criteria legitimate the syndrome as being difficult to explain and therefore enigmatic. SLE involves scientific problems linked to etiological factors and criteria. Our insufficient understanding of the clinical condition uniformly denoted SLE depends on the still open question of whether SLE is, according to classification criteria, a well-defined one disease entity or represents a variety of overlapping indistinct syndromes. Without rational hypotheses, these problems harm clear definition(s) of the syndrome. Why SLE is not anchored in logic, consequent, downstream interdependent and interactive inflammatory networks may rely on ignored predictive causality principles. Authoritative classification criteria do not reflect consequent causality criteria and do not unify characterization principles such as diagnostic criteria. We need now to reconcile legendary scientific achievements to concretize the delimitation of what SLE really is. Not all classified SLE syndromes are "genuine SLE"; many are theoretically "SLE-like non-SLE" syndromes. In this study, progressive theories imply imperative challenges to reconsider the fundamental impact of "the causality principle". This may offer us logic classification and diagnostic criteria aimed at identifying concise SLE syndromes as research objects. Can a systems science approach solve this problem?
Collapse
Affiliation(s)
- Ole Petter Rekvig
- Fürst Medical Laboratory, Oslo, Norway
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
3
|
Mondal A, Bhattacherjee A. Understanding protein diffusion on force-induced stretched DNA conformation. Front Mol Biosci 2022; 9:953689. [PMID: 36545509 PMCID: PMC9760818 DOI: 10.3389/fmolb.2022.953689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/22/2022] [Indexed: 12/11/2022] Open
Abstract
DNA morphology is subjected to environmental conditions and is closely coupled with its function. For example, DNA experiences stretching forces during several biological processes, including transcription and genome transactions, that significantly alter its conformation from that of B-DNA. Indeed, a well-defined 1.5 times extended conformation of dsDNA, known as Σ-DNA, has been reported in DNA complexes with proteins such as Rad51 and RecA. A striking feature in Σ-DNA is that the nucleobases are partitioned into triplets of three locally stacked bases separated by an empty rise gap of ∼ 5 Å. The functional role of such a DNA base triplet was hypothesized to be coupled with the ease of recognition of DNA bases by DNA-binding proteins (DBPs) and the physical origin of three letters (codon/anti-codon) in the genetic code. However, the underlying mechanism of base-triplet formation and the ease of DNA base-pair recognition by DBPs remain elusive. To investigate, here, we study the diffusion of a protein on a force-induced stretched DNA using coarse-grained molecular dynamics simulations. Upon pulling at the 3' end of DNA by constant forces, DNA exhibits a conformational transition from B-DNA to a ladder-like S-DNA conformation via Σ-DNA intermediate. The resulting stretched DNA conformations exhibit non-uniform base-pair clusters such as doublets, triplets, and quadruplets, of which triplets are energetically more stable than others. We find that protein favors the triplet formation compared to its unbound form while interacting non-specifically along DNA, and the relative population of it governs the ruggedness of the protein-DNA binding energy landscape and enhances the efficiency of DNA base recognition. Furthermore, we analyze the translocation mechanism of a DBP under different force regimes and underscore the significance of triplet formation in regulating the facilitated diffusion of protein on DNA. Our study, thus, provides a plausible framework for understanding the structure-function relationship between triplet formation and base recognition by a DBP and helps to understand gene regulation in complex regulatory processes.
Collapse
Affiliation(s)
| | - Arnab Bhattacherjee
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
4
|
Berryman JT, Taghavi A, Mazur F, Tkatchenko A. Quantum machine learning corrects classical forcefields: Stretching DNA base pairs in explicit solvent. J Chem Phys 2022; 157:064107. [PMID: 35963717 DOI: 10.1063/5.0094727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In order to improve the accuracy of molecular dynamics simulations, classical forcefields are supplemented with a kernel-based machine learning method trained on quantum-mechanical fragment energies. As an example application, a potential-energy surface is generalized for a small DNA duplex, taking into account explicit solvation and long-range electron exchange-correlation effects. A long-standing problem in molecular science is that experimental studies of the structural and thermodynamic behavior of DNA under tension are not well confirmed by simulation; study of the potential energy vs extension taking into account a novel correction shows that leading classical DNA models have excessive stiffness with respect to stretching. This discrepancy is found to be common across multiple forcefields. The quantum correction is in qualitative agreement with the experimental thermodynamics for larger DNA double helices, providing a candidate explanation for the general and long-standing discrepancy between single molecule stretching experiments and classical calculations of DNA stretching. The new dataset of quantum calculations should facilitate multiple types of nucleic acid simulation, and the associated Kernel Modified Molecular Dynamics method (KMMD) is applicable to biomolecular simulations in general. KMMD is made available as part of the AMBER22 simulation software.
Collapse
Affiliation(s)
- Joshua T Berryman
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Amirhossein Taghavi
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Florian Mazur
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Alexandre Tkatchenko
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| |
Collapse
|
5
|
Rekvig OP. The Anti-DNA Antibodies: Their Specificities for Unique DNA Structures and Their Unresolved Clinical Impact-A System Criticism and a Hypothesis. Front Immunol 2022; 12:808008. [PMID: 35087528 PMCID: PMC8786728 DOI: 10.3389/fimmu.2021.808008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is diagnosed and classified by criteria, or by experience, intuition and traditions, and not by scientifically well-defined etiology(ies) or pathogenicity(ies). One central criterion and diagnostic factor is founded on theoretical and analytical approaches based on our imperfect definition of the term “The anti-dsDNA antibody”. “The anti-dsDNA antibody” holds an archaic position in SLE as a unique classification criterium and pathogenic factor. In a wider sense, antibodies to unique transcriptionally active or silent DNA structures and chromatin components may have individual and profound nephritogenic impact although not considered yet – not in theoretical nor in descriptive or experimental contexts. This hypothesis is contemplated here. In this analysis, our state-of-the-art conception of these antibodies is probed and found too deficient with respect to their origin, structural DNA specificities and clinical/pathogenic impact. Discoveries of DNA structures and functions started with Miescher’s Nuclein (1871), via Chargaff, Franklin, Watson and Crick, and continues today. The discoveries have left us with a DNA helix that presents distinct structures expressing unique operations of DNA. All structures are proven immunogenic! Unique autoimmune antibodies are described against e.g. ssDNA, elongated B DNA, bent B DNA, Z DNA, cruciform DNA, or individual components of chromatin. In light of the massive scientific interest in anti-DNA antibodies over decades, it is an unexpected observation that the spectrum of DNA structures has been known for decades without being implemented in clinical immunology. This leads consequently to a critical analysis of historical and contemporary evidence-based data and of ignored and one-dimensional contexts and hypotheses: i.e. “one antibody - one disease”. In this study radical viewpoints on the impact of DNA and chromatin immunity/autoimmunity are considered and discussed in context of the pathogenesis of lupus nephritis.
Collapse
Affiliation(s)
- Ole Petter Rekvig
- Section of Autoimmunity, Fürst Medical Laboratory, Oslo, Norway.,Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
6
|
Dohnalová H, Lankaš F. Deciphering the mechanical properties of
B‐DNA
duplex. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hana Dohnalová
- Department of Informatics and Chemistry University of Chemistry and Technology Prague Praha 6 Czech Republic
| | - Filip Lankaš
- Department of Informatics and Chemistry University of Chemistry and Technology Prague Praha 6 Czech Republic
| |
Collapse
|
7
|
Backer AS, King GA, Biebricher AS, Shepherd JW, Noy A, Leake MC, Heller I, Wuite GJL, Peterman EJG. Elucidating the Role of Topological Constraint on the Structure of Overstretched DNA Using Fluorescence Polarization Microscopy. J Phys Chem B 2021; 125:8351-8361. [PMID: 34309392 PMCID: PMC8350907 DOI: 10.1021/acs.jpcb.1c02708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/01/2021] [Indexed: 11/29/2022]
Abstract
The combination of DNA force spectroscopy and polarization microscopy of fluorescent DNA intercalator dyes can provide valuable insights into the structure of DNA under tension. These techniques have previously been used to characterize S-DNA-an elongated DNA conformation that forms when DNA overstretches at forces ≥ 65 pN. In this way, it was deduced that the base pairs of S-DNA are highly inclined, relative to those in relaxed (B-form) DNA. However, it is unclear whether and how topological constraints on the DNA may influence the base-pair inclinations under tension. Here, we apply polarization microscopy to investigate the impact of DNA pulling geometry, torsional constraint, and negative supercoiling on the orientations of intercalated dyes during overstretching. In contrast to earlier predictions, the pulling geometry (namely, whether the DNA molecule is stretched via opposite strands or the same strand) is found to have little influence. However, torsional constraint leads to a substantial reduction in intercalator tilting in overstretched DNA, particularly in AT-rich sequences. Surprisingly, the extent of intercalator tilting is similarly reduced when the DNA molecule is negatively supercoiled up to a critical supercoiling density (corresponding to ∼70% reduction in the linking number). We attribute these observations to the presence of P-DNA (an overwound DNA conformation). Our results suggest that intercalated DNA preferentially flanks regions of P-DNA rather than those of S-DNA and also substantiate previous suggestions that P-DNA forms predominantly in AT-rich sequences.
Collapse
Affiliation(s)
- Adam S. Backer
- Apple Inc, 1 Apple Park Way, Cupertino, California 95014, United States
| | - Graeme A. King
- Institute
of Structural and Molecular Biology, University
College London, Gower Street, London WC1E
6BT, U.K.
| | - Andreas S. Biebricher
- Department
of Physics and Astronomy, LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands
| | - Jack W. Shepherd
- Department
of Physics, University of York, York YO10 5DD, U.K.
- Department
of Biology, University of York, York YO10 5DD, U.K.
| | - Agnes Noy
- Department
of Physics, University of York, York YO10 5DD, U.K.
| | - Mark C. Leake
- Department
of Physics, University of York, York YO10 5DD, U.K.
- Department
of Biology, University of York, York YO10 5DD, U.K.
| | - Iddo Heller
- Department
of Physics and Astronomy, LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands
| | - Gijs J. L. Wuite
- Department
of Physics and Astronomy, LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands
| | - Erwin J. G. Peterman
- Department
of Physics and Astronomy, LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
8
|
Prokhorov VV, Barinov NA, Prusakov KA, Dubrovin EV, Frank-Kamenetskii MD, Klinov DV. Anomalous Laterally Stressed Kinetically Trapped DNA Surface Conformations. NANO-MICRO LETTERS 2021; 13:130. [PMID: 34138333 PMCID: PMC8141082 DOI: 10.1007/s40820-021-00626-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
DNA kinking is inevitable for the highly anisotropic 1D-1D electrostatic interaction with the one-dimensionally periodically charged surface. The double helical structure of the DNA kinetically trapped on positively charged monomolecular films comprising the lamellar templates is strongly laterally stressed and extremely perturbed at the nanometer scale. The DNA kinetic trapping is not a smooth 3D-> 2D conformational flattening but is a complex nonlinear in-plane mechanical response (bending, tensile and unzipping) driven by the physics beyond the scope of the applicability of the linear worm-like chain approximation. Up to now, the DNA molecule adsorbed on a surface was believed to always preserve its native structure. This belief implies a negligible contribution of lateral surface forces during and after DNA adsorption although their impact has never been elucidated. High-resolution atomic force microscopy was used to observe that stiff DNA molecules kinetically trapped on monomolecular films comprising one-dimensional periodically charged lamellar templates as a single layer or as a sublayer are oversaturated by sharp discontinuous kinks and can also be locally melted and supercoiled. We argue that kink/anti-kink pairs are induced by an overcritical lateral bending stress (> 30 pNnm) inevitable for the highly anisotropic 1D-1D electrostatic interaction of DNA and underlying rows of positive surface charges. In addition, the unexpected kink-inducing mechanical instability in the shape of the template-directed DNA confined between the positively charged lamellar sides is observed indicating the strong impact of helicity. The previously reported anomalously low values of the persistence length of the surface-adsorbed DNA are explained by the impact of the surface-induced low-scale bending. The sites of the local melting and supercoiling are convincingly introduced as other lateral stress-induced structural DNA anomalies by establishing a link with DNA high-force mechanics. The results open up the study in the completely unexplored area of the principally anomalous kinetically trapped DNA surface conformations in which the DNA local mechanical response to the surface-induced spatially modulated lateral electrostatic stress is essentially nonlinear. The underlying rich and complex in-plane nonlinear physics acts at the nanoscale beyond the scope of applicability of the worm-like chain approximation.
Collapse
Affiliation(s)
- Valery V Prokhorov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya, 1a, Moscow, 119435, Russian Federation.
- A.N.Frumkin Institute of Physical Chemistry and Electrochemistry, RAS, Leninsky prospect 31, Moscow, 199071, Russian Federation.
| | - Nikolay A Barinov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya, 1a, Moscow, 119435, Russian Federation
| | - Kirill A Prusakov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya, 1a, Moscow, 119435, Russian Federation
- Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, 141700, Moscow, Russian Federation
| | - Evgeniy V Dubrovin
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya, 1a, Moscow, 119435, Russian Federation
- Lomonosov Moscow State University, Leninskie gory, 1-2, Moscow, 119991, Russian Federation
| | | | - Dmitry V Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya, 1a, Moscow, 119435, Russian Federation.
- Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, 141700, Moscow, Russian Federation.
| |
Collapse
|
9
|
Nordén B, Brown T, Feng B. Mismatch detection in homologous strand exchange amplified by hydrophobic effects. Biopolymers 2021; 112:e23426. [PMID: 33780001 PMCID: PMC11475334 DOI: 10.1002/bip.23426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/16/2021] [Accepted: 03/10/2021] [Indexed: 12/19/2022]
Abstract
In contrast to DNA replication and transcription where nucleotides are added and matched one by one, homologous recombination by DNA strand exchange tests whole sequences for complementarity, which requires elimination of mismatched yet thermodynamically stable intermediates. To understand the remarkable sequence specificity of homologous recombination, we have studied strand exchange between a 20-mer duplex containing one single mismatch (placed at varied positions) with the matching single strand in presence of poly(ethylene glycol) representing a semi-hydrophobic environment. A FRET-based assay shows that rates and yields of strand exchange from mismatched to matched strands rapidly increase with semi-hydrophobic co-solute concentration, contrasting previously observed general strand exchange accelerating effect of ethyl glycol ethers. We argue that this effect is not caused simply by DNA melting or solvent-induced changes of DNA conformation but is more complex involving several mechanisms. The catalytic effects, we propose, involve strand invasion facilitated by reduced duplex stability due to weakened base stacking ("longitudinal breathing"). Secondly, decreased water activity makes base-pair hydrogen bonds stronger, increasing the relative energy penalty per mismatch. Finally, unstacked mismatched bases (gaps) are stabilized through partly intercalated hydrophobic co-solvent molecules, assisting nucleation of strand invasion at the point of mismatch. We speculate that nature long ago discovered, and now exploits in various enzymes, that sequence recognition power of nucleic acids may be modulated in a hydrophobic environment.
Collapse
Affiliation(s)
- Bengt Nordén
- Department of Chemistry & Chemical EngineeringChalmers University of TechnologyGothenburgSweden
| | - Tom Brown
- Chemistry Research Laboratory, Department of ChemistryUniversity of OxfordOxfordUK
| | - Bobo Feng
- Department of Chemistry & Chemical EngineeringChalmers University of TechnologyGothenburgSweden
| |
Collapse
|
10
|
Beyerle ER, Dinpajooh M, Ji H, von Hippel PH, Marcus AH, Guenza MG. Dinucleotides as simple models of the base stacking-unstacking component of DNA 'breathing' mechanisms. Nucleic Acids Res 2021; 49:1872-1885. [PMID: 33503257 PMCID: PMC7913701 DOI: 10.1093/nar/gkab015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/22/2020] [Accepted: 01/07/2021] [Indexed: 01/11/2023] Open
Abstract
Regulatory protein access to the DNA duplex ‘interior’ depends on local DNA ‘breathing’ fluctuations, and the most fundamental of these are thermally-driven base stacking-unstacking interactions. The smallest DNA unit that can undergo such transitions is the dinucleotide, whose structural and dynamic properties are dominated by stacking, while the ion condensation, cooperative stacking and inter-base hydrogen-bonding present in duplex DNA are not involved. We use dApdA to study stacking-unstacking at the dinucleotide level because the fluctuations observed are likely to resemble those of larger DNA molecules, but in the absence of constraints introduced by cooperativity are likely to be more pronounced, and thus more accessible to measurement. We study these fluctuations with a combination of Molecular Dynamics simulations on the microsecond timescale and Markov State Model analyses, and validate our results by calculations of circular dichroism (CD) spectra, with results that agree well with the experimental spectra. Our analyses show that the CD spectrum of dApdA is defined by two distinct chiral conformations that correspond, respectively, to a Watson–Crick form and a hybrid form with one base in a Hoogsteen configuration. We find also that ionic structure and water orientation around dApdA play important roles in controlling its breathing fluctuations.
Collapse
Affiliation(s)
- Eric R Beyerle
- Institute for Fundamental Science and Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
| | - Mohammadhasan Dinpajooh
- Institute for Fundamental Science and Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
| | - Huiying Ji
- Center for Optical, Molecular and Quantum Science and Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA.,Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
| | - Peter H von Hippel
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
| | - Andrew H Marcus
- Center for Optical, Molecular and Quantum Science and Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA.,Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
| | - Marina G Guenza
- Institute for Fundamental Science and Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA.,Center for Optical, Molecular and Quantum Science and Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA.,Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
11
|
Gorb L, Pekh A, Nyporko A, Ilchenko M, Golius A, Zubatiuk T, Zubatyuk R, Dubey I, Hovorun DM, Leszczynski J. Effect of Microenvironment on the Geometrical Structure of d(A)5 d(T)5 and d(G)5 d(C)5 DNA Mini-Helixes and the Dickerson Dodecamer: A Density Functional Theory Study. J Phys Chem B 2020; 124:9343-9353. [DOI: 10.1021/acs.jpcb.0c06154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Leonid Gorb
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Vul. Zabolotnogo, Kyiv 03143, Ukraine
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, P.O. Box 17910, 1325 Lynch Street, Jackson, Mississippi 39217, United States
| | - Anatolii Pekh
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv 03022, Ukraine
| | - Alexey Nyporko
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv 03022, Ukraine
| | - Mykola Ilchenko
- Department of Synthetic Bioregulators, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Vul. Zabolotnogo, Kyiv 03143, Ukraine
| | - Anastasiia Golius
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, P.O. Box 17910, 1325 Lynch Street, Jackson, Mississippi 39217, United States
| | - Tetiana Zubatiuk
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, P.O. Box 17910, 1325 Lynch Street, Jackson, Mississippi 39217, United States
| | - Roman Zubatyuk
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, P.O. Box 17910, 1325 Lynch Street, Jackson, Mississippi 39217, United States
| | - Igor Dubey
- Department of Synthetic Bioregulators, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Vul. Zabolotnogo, Kyiv 03143, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Vul. Zabolotnogo, Kyiv 03143, Ukraine
| | - Jerzy Leszczynski
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, P.O. Box 17910, 1325 Lynch Street, Jackson, Mississippi 39217, United States
| |
Collapse
|
12
|
Auboeuf D. Physicochemical Foundations of Life that Direct Evolution: Chance and Natural Selection are not Evolutionary Driving Forces. Life (Basel) 2020; 10:life10020007. [PMID: 31973071 PMCID: PMC7175370 DOI: 10.3390/life10020007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
The current framework of evolutionary theory postulates that evolution relies on random mutations generating a diversity of phenotypes on which natural selection acts. This framework was established using a top-down approach as it originated from Darwinism, which is based on observations made of complex multicellular organisms and, then, modified to fit a DNA-centric view. In this article, it is argued that based on a bottom-up approach starting from the physicochemical properties of nucleic and amino acid polymers, we should reject the facts that (i) natural selection plays a dominant role in evolution and (ii) the probability of mutations is independent of the generated phenotype. It is shown that the adaptation of a phenotype to an environment does not correspond to organism fitness, but rather corresponds to maintaining the genome stability and integrity. In a stable environment, the phenotype maintains the stability of its originating genome and both (genome and phenotype) are reproduced identically. In an unstable environment (i.e., corresponding to variations in physicochemical parameters above a physiological range), the phenotype no longer maintains the stability of its originating genome, but instead influences its variations. Indeed, environment- and cellular-dependent physicochemical parameters define the probability of mutations in terms of frequency, nature, and location in a genome. Evolution is non-deterministic because it relies on probabilistic physicochemical rules, and evolution is driven by a bidirectional interplay between genome and phenotype in which the phenotype ensures the stability of its originating genome in a cellular and environmental physicochemical parameter-depending manner.
Collapse
Affiliation(s)
- Didier Auboeuf
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie, Site Jacques Monod, F-69007, Lyon, France
| |
Collapse
|
13
|
RecA kinetically selects homologous DNA by testing a five- or six-nucleotide matching sequence and deforming the second DNA. Q Rev Biophys 2019; 51:e11. [PMID: 30912492 DOI: 10.1017/s0033583518000094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
RecA family proteins pair two DNAs with the same sequence to promote strand exchange during homologous recombination. To understand how RecA proteins search for and recognize homology, we sought to determine the length of homologous sequence that permits RecA to start its reaction. Specifically, we analyzed the effect of sequence heterogeneity on the association rate of homologous DNA with RecA/single-stranded DNA complex. We assumed that the reaction can start with equal likelihood at any point in the DNA, and that sequence heterogeneity abolishes some possible initiation sites. This analysis revealed that the effective recognition size is five or six nucleotides, larger than the three nucleotides recognized by a RecA monomer. Because the first DNA is elongated 1.5-fold by intercalation of amino acid residues of RecA every three bases, the second bound DNA must be elongated to pair with the first. Because this length is similar to estimates based on the strand-exchange reaction or DNA pair formation, the homology test is likely to occur primarily at the association step. The energetic difference due to the absence of hydrogen bonding is too small to discriminate single-nucleotide heterogeneity over a five- or six-nucleotide sequence. The selection is very likely to be made kinetically, and probably involves some structural factor other than Watson-Crick hydrogen bonding. It would be valuable to determine whether this is also the case for other biological reactions involving DNA base complementarity, such as replication, transcription, and translation.
Collapse
|
14
|
Hydrophobic catalysis and a potential biological role of DNA unstacking induced by environment effects. Proc Natl Acad Sci U S A 2019; 116:17169-17174. [PMID: 31413203 PMCID: PMC6717297 DOI: 10.1073/pnas.1909122116] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The main stabilizer of the DNA double helix is not the base-pair hydrogen bonds but coin-pile stacking of base pairs, whose hydrophobic cohesion, requiring abundant water, indirectly makes the DNA interior dry so that hydrogen bonds can exert full recognition power. We report that certain semihydrophobic agents depress the stacking energy (measurable in single-molecule experiments), leading to transiently occurring holes in the base-pair stack (monitorable via binding of threading intercalators). Similar structures observed in DNA complexes with RecA and Rad51, and previous observations of spontaneous strand exchange catalyzed in semihydrophobic model systems, make us propose that some hydrophobic protein residues may have roles in catalyzing homologous recombination. We speculate that hydrophobic catalysis is a general phenomenon in DNA enzymes. Hydrophobic base stacking is a major contributor to DNA double-helix stability. We report the discovery of specific unstacking effects in certain semihydrophobic environments. Water-miscible ethylene glycol ethers are found to modify structure, dynamics, and reactivity of DNA by mechanisms possibly related to a biologically relevant hydrophobic catalysis. Spectroscopic data and optical tweezers experiments show that base-stacking energies are reduced while base-pair hydrogen bonds are strengthened. We propose that a modulated chemical potential of water can promote “longitudinal breathing” and the formation of unstacked holes while base unpairing is suppressed. Flow linear dichroism in 20% diglyme indicates a 20 to 30% decrease in persistence length of DNA, supported by an increased flexibility in single-molecule nanochannel experiments in poly(ethylene glycol). A limited (3 to 6%) hyperchromicity but unaffected circular dichroism is consistent with transient unstacking events while maintaining an overall average B-DNA conformation. Further information about unstacking dynamics is obtained from the binding kinetics of large thread-intercalating ruthenium complexes, indicating that the hydrophobic effect provides a 10 to 100 times increased DNA unstacking frequency and an “open hole” population on the order of 10−2 compared to 10−4 in normal aqueous solution. Spontaneous DNA strand exchange catalyzed by poly(ethylene glycol) makes us propose that hydrophobic residues in the L2 loop of recombination enzymes RecA and Rad51 may assist gene recombination via modulation of water activity near the DNA helix by hydrophobic interactions, in the manner described here. We speculate that such hydrophobic interactions may have catalytic roles also in other biological contexts, such as in polymerases.
Collapse
|
15
|
Abstract
The behavior of benzoic acid in polyethylene inspired me to reflect on why water is a unique molecule that all living organisms depend upon. From properties of DNA in aqueous solution a seemingly counter-intuitive conjecture emerges: water is needed for the creation of certain dry low-dielectric nm-size environments where hydrogen bonding exerts strong recognition power. Such environments seem to be functionally crucial, and their interactions with other hydrophobic environments, or with hydrophobic agents that modulate the chemical potential of water, can cause structural transformations via ‘hydrophobic catalysis’. Possibly combined with an excluded volume osmosis effect (EVO), hydrophobic catalysis may have important biological roles, e.g., in genetic recombination. Hydrophobic agents are found to strongly accelerate spontaneous DNA strand exchange as well as certain other DNA rearrangement reactions. It is hypothesized that hydrophobic catalysis be involved in gene recognition and gene recombination mediated by bacterial RecA (one of the oldest proteins we know of) as well as in sexual recombination in higher organisms, by Rad51. Hydrophobically catalyzed unstacking fluctuations of DNA bases can favor elongated conformations, such as the recently proposed [Formula: see text]-DNA, with potential regulatory roles. That living cells can survive as dormant spores, with very low water content and in principle as such travel far in space is reflected upon: a random walk model with solar photon pressure as driving force indicates our life on earth could not have originated outside our galaxy but possibly from many solar systems within it — at some place, though, where there was plenty of liquid water.
Collapse
Affiliation(s)
- Bengt Nordén
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
16
|
Backer AS, Biebricher AS, King GA, Wuite GJL, Heller I, Peterman EJG. Single-molecule polarization microscopy of DNA intercalators sheds light on the structure of S-DNA. SCIENCE ADVANCES 2019; 5:eaav1083. [PMID: 30915395 PMCID: PMC6430628 DOI: 10.1126/sciadv.aav1083] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/04/2019] [Indexed: 05/22/2023]
Abstract
DNA structural transitions facilitate genomic processes, mediate drug-DNA interactions, and inform the development of emerging DNA-based biotechnology such as programmable materials and DNA origami. While some features of DNA conformational changes are well characterized, fundamental information such as the orientations of the DNA base pairs is unknown. Here, we use concurrent fluorescence polarization imaging and DNA manipulation experiments to probe the structure of S-DNA, an elusive, elongated conformation that can be accessed by mechanical overstretching. To this end, we directly quantify the orientations and rotational dynamics of fluorescent DNA-intercalated dyes. At extensions beyond the DNA overstretching transition, intercalators adopt a tilted (θ ~ 54°) orientation relative to the DNA axis, distinct from the nearly perpendicular orientation (θ ~ 90°) normally assumed at lower extensions. These results provide the first experimental evidence that S-DNA has substantially inclined base pairs relative to those of the standard (Watson-Crick) B-DNA conformation.
Collapse
Affiliation(s)
- Adam S. Backer
- Sandia National Laboratories, New Mexico, P.O. Box 5800, Albuquerque, NM 87185-1413, USA
- Corresponding author. (A.S.Ba.); (E.J.G.P.)
| | - Andreas S. Biebricher
- Department of Physics and Astronomy, LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands
| | - Graeme A. King
- Department of Physics and Astronomy, LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands
| | - Gijs J. L. Wuite
- Department of Physics and Astronomy, LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands
| | - Iddo Heller
- Department of Physics and Astronomy, LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands
| | - Erwin J. G. Peterman
- Department of Physics and Astronomy, LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands
- Corresponding author. (A.S.Ba.); (E.J.G.P.)
| |
Collapse
|
17
|
DNA partitions into triplets under tension in the presence of organic cations, with sequence evolutionary age predicting the stability of the triplet phase. Q Rev Biophys 2018; 50:e15. [PMID: 29233227 DOI: 10.1017/s0033583517000130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Using atomistic simulations, we show the formation of stable triplet structure when particular GC-rich DNA duplexes are extended in solution over a timescale of hundreds of nanoseconds, in the presence of organic salt. We present planar-stacked triplet disproportionated DNA (Σ DNA) as a possible solution phase of the double helix under tension, subject to sequence and the presence of stabilising co-factors. Considering the partitioning of the duplexes into triplets of base pairs as the first step of operation of recombinase enzymes like RecA, we emphasise the structure-function relationship in Σ DNA. We supplement atomistic calculations with thermodynamic arguments to show that codons for 'phase 1' amino acids (those appearing early in evolution) are more likely than a lower entropy GC-rich sequence to form triplets under tension. We further observe that the four amino acids supposed (in the 'GADV world' hypothesis) to constitute the minimal set to produce functional globular proteins have the strongest triplet-forming propensity within the phase 1 set, showing a series of decreasing triplet propensity with evolutionary newness. The weak form of our observation provides a physical mechanism to minimise read frame and recombination alignment errors in the early evolution of the genetic code.
Collapse
|
18
|
Aggarwal A, Bag S, Maiti PK. Remarkable similarity of force induced dsRNA conformational changes to stretched dsDNA and their detection using electrical measurements. Phys Chem Chem Phys 2018; 20:28920-28928. [DOI: 10.1039/c8cp03574a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We show the emergence of S-RNA under stretching in analogy to S-DNA and propose a method for its detection using electrical measurement.
Collapse
|