1
|
Bao Y, Zhou B, Yu X, Mao L, Gutyrchik E, Paolini M, Logothetis N, Pöppel E. Conscious vision in blindness: A new perceptual phenomenon implemented on the "wrong" side of the brain. Psych J 2024; 13:885-892. [PMID: 39019467 PMCID: PMC11608789 DOI: 10.1002/pchj.787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 06/04/2024] [Indexed: 07/19/2024]
Abstract
Patients with lesions in the visual cortex are blind in corresponding regions of the visual field, but they still may process visual information, a phenomenon referred to as residual vision or "blindsight". Here we report behavioral and fMRI observations with a patient who reports conscious vision across an extended area of blindness for moving, but not for stationary stimuli. This completion effect is shown to be of perceptual and not of conceptual origin, most likely mediated by spared representations of the visual field in the striate cortex. The neural output to extra-striate areas from regions of the deafferented striate cortex is apparently still intact; this is, for instance, indicated by preserved size constancy of visually completed stimuli. Neural responses as measured with fMRI reveal an activation only for moving stimuli, but importantly on the ipsilateral side of the brain. In a conceptual model this shift of activation to the "wrong" hemisphere is explained on the basis of an imbalance of excitatory and inhibitory interactions within and between the striate cortices due to the brain injury. The observed neuroplasticity indicated by this shift together with the behavioral observations provide important new insights into the functional architecture of the human visual system and provide new insight into the concept of consciousness.
Collapse
Affiliation(s)
- Yan Bao
- School of Psychological and Cognitive SciencesPeking UniversityBeijingChina
- Beijing Key Laboratory of Behavior and Mental HealthPeking UniversityBeijingChina
| | - Bin Zhou
- State Key Laboratory of Brain and Cognitive Science, Institute of PsychologyChinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Xinchi Yu
- Program in Neuroscience and Cognitive ScienceUniversity of MarylandCollege ParkMarylandUSA
- Department of LinguisticsUniversity of MarylandCollege ParkMarylandUSA
| | - Lihua Mao
- School of Psychological and Cognitive SciencesPeking UniversityBeijingChina
- Beijing Key Laboratory of Behavior and Mental HealthPeking UniversityBeijingChina
| | - Evgeny Gutyrchik
- Institute of Medical PsychologyLudwig Maximilian University MunichMunichGermany
| | - Marco Paolini
- Department of RadiologyUniversity Hospital, Ludwig Maximilian University MunichMunichGermany
| | - Nikos Logothetis
- International Center for Primate Brain ResearchChinese Academy of SciencesShanghaiChina
| | - Ernst Pöppel
- School of Psychological and Cognitive SciencesPeking UniversityBeijingChina
- Institute of Medical PsychologyLudwig Maximilian University MunichMunichGermany
| |
Collapse
|
2
|
Nartker M, Firestone C, Egeth H, Phillips I. Six ways of failing to see (and why the differences matter). Iperception 2023; 14:20416695231198762. [PMID: 37781486 PMCID: PMC10536858 DOI: 10.1177/20416695231198762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/17/2023] [Indexed: 10/03/2023] Open
Abstract
Sometimes we look but fail to see: our car keys on a cluttered desk, a repeated word in a carefully proofread email, or a motorcycle at an intersection. Wolfe and colleagues present a unifying, mechanistic framework for understanding these "Looked But Failed to See" errors, explaining how such misses arise from natural constraints on human visual processing. Here, we offer a conceptual taxonomy of six distinct ways we might be said to fail to see, and explore: how these relate to processes in Wolfe et al.'s model; how they can be distinguished experimentally; and, why the differences matter.
Collapse
Affiliation(s)
- Makaela Nartker
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Chaz Firestone
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA;
Department of Philosophy, Johns Hopkins University, Baltimore, MD, USA
| | - Howard Egeth
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Ian Phillips
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
- Department of Philosophy, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
3
|
Olkoniemi H, Hurme M, Railo H. Neurologically Healthy Humans' Ability to Make Saccades Toward Unseen Targets. Neuroscience 2023; 513:111-125. [PMID: 36702371 DOI: 10.1016/j.neuroscience.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
Some patients with a visual field loss due to a lesion in the primary visual cortex (V1) can shift their gaze to stimuli presented in their blind visual field. The extent to which a similar "blindsight" capacity is present in neurologically healthy individuals remains unknown. Using retinotopically navigated transcranial magnetic stimulation (TMS) of V1 (Experiment 1) and metacontrast masking (Experiment 2) to suppress conscious vision, we examined neurologically healthy humans' ability to make saccadic eye movements toward visual targets that they reported not seeing. In the TMS experiment, the participants were more likely to initiate a saccade when a stimulus was presented, and they reported not seeing it, than in trials which no stimulus was presented. However, this happened only in a very small proportion (∼8%) of unseen trials, suggesting that saccadic reactions were largely based on conscious perception. In both experiments, saccade landing location was influenced by unconscious information: When the participants denied seeing the target but made a saccade, the saccade was made toward the correct location (TMS: 68%, metacontrast: 63%) more often than predicted by chance. Signal detection theoretic measures suggested that in the TMS experiment, saccades toward unseen targets may have been based on weak conscious experiences. In both experiments, reduced visibility of the target stimulus was associated with slower and less precise gaze shifts. These results suggest that saccades made by neurologically healthy humans may be influenced by unconscious information, although the initiation of saccades is largely based on conscious vision.
Collapse
Affiliation(s)
- Henri Olkoniemi
- Division of Psychology, Faculty of Education and Psychology, University of Oulu, Finland; Department of Psychology and Speech Language Pathology, University of Turku, Finland.
| | - Mikko Hurme
- Department of Psychology and Speech Language Pathology, University of Turku, Finland; Turku Brain and Mind Centre, University of Turku, Finland
| | - Henry Railo
- Department of Psychology and Speech Language Pathology, University of Turku, Finland; Turku Brain and Mind Centre, University of Turku, Finland
| |
Collapse
|
4
|
Werth R. A Scientific Approach to Conscious Experience, Introspection, and Unconscious Processing: Vision and Blindsight. Brain Sci 2022; 12:1305. [PMID: 36291239 PMCID: PMC9599441 DOI: 10.3390/brainsci12101305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/15/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022] Open
Abstract
Although subjective conscious experience and introspection have long been considered unscientific and banned from psychology, they are indispensable in scientific practice. These terms are used in scientific contexts today; however, their meaning remains vague, and earlier objections to the distinction between conscious experience and unconscious processing, remain valid. This also applies to the distinction between conscious visual perception and unconscious visual processing. Damage to the geniculo-striate pathway or the visual cortex results in a perimetrically blind visual hemifield contralateral to the damaged hemisphere. In some cases, cerebral blindness is not absolute. Patients may still be able to guess the presence, location, shape or direction of movement of a stimulus even though they report no conscious visual experience. This "unconscious" ability was termed "blindsight". The present paper demonstrates how the term conscious visual experience can be introduced in a logically precise and methodologically correct way and becomes amenable to scientific examination. The distinction between conscious experience and unconscious processing is demonstrated in the cases of conscious vision and blindsight. The literature on "blindsight" and its neurobiological basis is reviewed. It is shown that blindsight can be caused by residual functions of neural networks of the visual cortex that have survived cerebral damage, and may also be due to an extrastriate pathway via the midbrain to cortical areas such as areas V4 and MT/V5.
Collapse
Affiliation(s)
- Reinhard Werth
- Social Pediatrics and Adolescent Medicine, Ludwig-Maximilians-University of Munich, Haydnstr. 5, D-80336 München, Germany
| |
Collapse
|
5
|
Kwon S, Fahrenthold BK, Cavanaugh MR, Huxlin KR, Mitchell JF. Perceptual restoration fails to recover unconscious processing for smooth eye movements after occipital stroke. eLife 2022; 11:67573. [PMID: 35730931 PMCID: PMC9255960 DOI: 10.7554/elife.67573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/21/2022] [Indexed: 11/28/2022] Open
Abstract
The visual pathways that guide actions do not necessarily mediate conscious perception. Patients with primary visual cortex (V1) damage lose conscious perception but often retain unconscious abilities (e.g. blindsight). Here, we asked if saccade accuracy and post-saccadic following responses (PFRs) that automatically track target motion upon saccade landing are retained when conscious perception is lost. We contrasted these behaviors in the blind and intact fields of 11 chronic V1-stroke patients, and in 8 visually intact controls. Saccade accuracy was relatively normal in all cases. Stroke patients also had normal PFR in their intact fields, but no PFR in their blind fields. Thus, V1 damage did not spare the unconscious visual processing necessary for automatic, post-saccadic smooth eye movements. Importantly, visual training that recovered motion perception in the blind field did not restore the PFR, suggesting a clear dissociation between pathways mediating perceptual restoration and automatic actions in the V1-damaged visual system.
Collapse
Affiliation(s)
- Sunwoo Kwon
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, United States
| | | | - Matthew R Cavanaugh
- Center for Visual Science, University of Rochester, Rochester, United States
| | - Krystel R Huxlin
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, United States
| | - Jude F Mitchell
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, United States
| |
Collapse
|
6
|
Schmid D, Schneider S, Schenk T. How to test blindsight without light-scatter artefacts? Neuropsychologia 2022; 173:108308. [PMID: 35716799 DOI: 10.1016/j.neuropsychologia.2022.108308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 11/27/2022]
Abstract
Light-scatter artefacts are a methodological problem in testing residual visual capacities (RVCs), for instance blindsight, in patients with homonymous visual field defects (HVFDs). The term light-scatter artefact describes the phenomenon that light from targets directed towards the HVFD can stray into the sighted visual field. This might enable an observer to respond correctly to information directed at her blind field despite the fact that she is unable to process that information in the blind field itself. In this manuscript, we present a review of the relevance of light-scatter in visual neuroscience, discuss factors that influence the impact of light-scatter and evaluate means to test for light-scatter artefacts. Furthermore, we present findings from an empirical study that was aimed at developing tests for RVCs that are free of light-scatter artefacts. Previous studies on light scatter only used small sample sizes and equipment that is no longer in use. Hence, their results cannot be generalized to future experiments making it necessary to run laborious light-scatter tests for every new study on RVCs. To avoid this, we hereby start a pool of stimuli and paradigms which demonstrably do not elicit light-scatter artefacts. To this end, we investigated 21 healthy young participants in three frequently used RVC-paradigms: (1) temporal 2AFC task, (2) movement direction discrimination, and (3) redundant target paradigm. For each paradigm, we applied the blind-spot method. But first, we had to establish that our testing paradigm was sufficiently sensitive to detect light-scatter artefacts. For this, we used conditions that are known to produce strong light scatter and a paradigm that is very sensitive to such effects. Specifically, we presented white targets on a black background in a dark room. The stimuli were presented to observers' blind spot. To check for light-scatter artefacts, we used a target-detection task in a temporal 2AFC format. We obtained clear light-scatter artefacts. Participants produced reliably above-chance detection performance under these conditions. The other two luminance conditions, measured in an illuminated room, did not produce light-scatter artefacts. Accuracy in the temporal 2AFC task was at chance level for white targets on a grey background at the blind-spot position. Additionally, black targets on a grey background avoided light-scatter artefacts in all three RVC-paradigms. In future, researchers can apply these stimulus and illumination conditions when using one of the three above paradigms in their studies. Using these conditions, they will be able to avoid light-scatter artefacts without having to perform their own blind-spot tests.
Collapse
Affiliation(s)
- Doris Schmid
- Department of Psychology, Ludwig-Maximilians-Universität München, Leopoldstr. 13, 80802, Munich, Germany.
| | - Sebastian Schneider
- Department of Psychology, Ludwig-Maximilians-Universität München, Leopoldstr. 13, 80802, Munich, Germany.
| | - Thomas Schenk
- Department of Psychology, Ludwig-Maximilians-Universität München, Leopoldstr. 13, 80802, Munich, Germany.
| |
Collapse
|
7
|
Derrien D, Garric C, Sergent C, Chokron S. The nature of blindsight: implications for current theories of consciousness. Neurosci Conscious 2022; 2022:niab043. [PMID: 35237447 PMCID: PMC8884361 DOI: 10.1093/nc/niab043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 11/08/2021] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
Blindsight regroups the different manifestations of preserved discriminatory visual capacities following the damage to the primary visual cortex. Blindsight types differentially impact objective and subjective perception, patients can report having no visual awareness whilst their behaviour suggests visual processing still occurs at some cortical level. This phenomenon hence presents a unique opportunity to study consciousness and perceptual consciousness, and for this reason, it has had an historical importance for the development of this field of research. From these studies, two main opposing models of the underlying mechanisms have been established: (a) blindsight is perception without consciousness or (b) blindsight is in fact degraded vision, two views that mirror more general theoretical options about whether unconscious cognition truly exists or whether it is only a degraded form of conscious processing. In this article, we want to re-examine this debate in the light of recent advances in the characterization of blindsight and associated phenomena. We first provide an in-depth definition of blindsight and its subtypes, mainly blindsight type I, blindsight type II and the more recently described blindsense. We emphasize the necessity of sensitive and robust methodology to uncover the dissociations between perception and awareness that can be observed in brain-damaged patients with visual field defects at different cognitive levels. We discuss these different profiles of dissociation in the light of both contending models. We propose that the different types of dissociations reveal a pattern of relationship between perception, awareness and metacognition that is actually richer than what is proposed by either of the existing models. Finally, we consider this in the framework of current theories of consciousness and touch on the implications the findings of blindsight have on these.
Collapse
Affiliation(s)
- Diane Derrien
- Integrative Neuroscience and Cognition Center, UMR 8002, CNRS & Université de Paris, Paris 75006, France
- Institut de Neuropsychologie, Neurovision, NeuroCognition, Fondation Ophtalmologique Rothschild, Paris 75019, France
| | - Clémentine Garric
- Inserm, CHU Lille, U1172—LilNCog (JPARC)—Lille Neuroscience & Cognition, University of Lille, Lille 59000, France
| | - Claire Sergent
- Integrative Neuroscience and Cognition Center, UMR 8002, CNRS & Université de Paris, Paris 75006, France
| | - Sylvie Chokron
- Integrative Neuroscience and Cognition Center, UMR 8002, CNRS & Université de Paris, Paris 75006, France
- Institut de Neuropsychologie, Neurovision, NeuroCognition, Fondation Ophtalmologique Rothschild, Paris 75019, France
| |
Collapse
|
8
|
Robinson DA. Neurophysiology of the saccadic system: The reticular formation. PROGRESS IN BRAIN RESEARCH 2022; 267:355-378. [PMID: 35074062 DOI: 10.1016/bs.pbr.2021.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This chapter discusses the neurophysiology and function of subcortical circuits and cortical areas involved in saccade generation. While cells within the different nuclei of the brainstem reticular formation shape the temporal details of ipsiversive horizontal and vertical/cyclotorsional saccade components, the cerebellar flocculus, vermis and fastigial nucleus are thought to modulate these saccadic waveforms. Burst neurons in the deep layers of the superior colliculus encode the saccade vector in the contralateral field by a localized population in a motor-error map. The complexity of the saccadic system is evident in the different subclasses of SC cells, ranging from purely visual, to visual-motor, purely motor, and quasi-visual cells. Movement-related activity in all SC cells is dissociated from the retinotopic visual activity. The chapter further discusses neurophysiological findings obtained from the substantia nigra (pars reticulata), the medial thalamus, the frontal eye fields, the supplementary motor area and the parietal lobes, discussing the ever more complex response patterns of their neurons in relation to saccades.
Collapse
Affiliation(s)
- David A Robinson
- Late Professor of Ophthalmology, Biomedical Engineering and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
Saionz EL, Busza A, Huxlin KR. Rehabilitation of visual perception in cortical blindness. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:357-373. [PMID: 35034749 PMCID: PMC9682408 DOI: 10.1016/b978-0-12-819410-2.00030-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Blindness is a common sequela after stroke affecting the primary visual cortex, presenting as a contralesional, homonymous, visual field cut. This can occur unilaterally or, less commonly, bilaterally. While it has been widely assumed that after a brief period of spontaneous improvement, vision loss becomes stable and permanent, accumulating data show that visual training can recover some of the vision loss, even long after the stroke. Here, we review the different approaches to rehabilitation employed in adult-onset cortical blindness (CB), focusing on visual restoration methods. Most of this work was conducted in chronic stroke patients, partially restoring visual discrimination and luminance detection. However, to achieve this, patients had to train for extended periods (usually many months), and the vision restored was not entirely normal. Several adjuvants to training such as noninvasive, transcranial brain stimulation, and pharmacology are starting to be investigated for their potential to increase the efficacy of training in CB patients. However, these approaches are still exploratory and require considerably more research before being adopted. Nonetheless, having established that the adult visual system retains the capacity for restorative plasticity, attention recently turned toward the subacute poststroke period. Drawing inspiration from sensorimotor stroke rehabilitation, visual training was recently attempted for the first time in subacute poststroke patients. It improved vision faster, over larger portions of the blind field, and for a larger number of visual discrimination abilities than identical training initiated more than 6 months poststroke (i.e., in the chronic period). In conclusion, evidence now suggests that visual neuroplasticity after occipital stroke can be reliably recruited by a range of visual training approaches. In addition, it appears that poststroke visual plasticity is dynamic, with a critical window of opportunity in the early postdamage period to attain more rapid, more extensive recovery of a larger set of visual perceptual abilities.
Collapse
Affiliation(s)
- Elizabeth L Saionz
- Medical Scientist Training Program, University of Rochester, Rochester, NY, United States
| | - Ania Busza
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Krystel R Huxlin
- Flaum Eye Institute, University of Rochester, Rochester, NY, United States.
| |
Collapse
|
10
|
Hurme M, Railo H. Promise and challenges for discovering transcranial magnetic stimulation induced "numbsense"-Commentary on Ro & Koenig (2021). Conscious Cogn 2021; 98:103265. [PMID: 34971969 DOI: 10.1016/j.concog.2021.103265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/18/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022]
Abstract
The notion that behavioral responses to stimuli can be mediated by separate unconscious and conscious sensory pathways remains popular, but also hotly debated. Recently, Ro and Koenig (2021) reported that when activity in somatosensory cortex was interfered with transcranial magnetic stimulation (TMS), participants could discriminate tactile stimuli they reported not consciously feeling. The study launches an interesting new area of research, helping to uncover mechanisms of unconscious perception that possibly generalize across different sensory modalities. However, we argue here that the study by Ro and Koenig also has several significant shortcomings, and it fails to provide evidence that pathways bypassing primary somatosensory cortex enable unconscious tactile discrimination. By referring to numerous studies investigating TMS-induced blindsight, we outline challenges in demonstrating unconscious sensory pathways using TMS. By facing to these challenges, research investigating TMS-induced numbsense has potential to stimulate progress in stubborn debates and reveal modality-general mechanisms of unconscious perception.
Collapse
Affiliation(s)
- Mikko Hurme
- Turku Brain and Mind Center, University of Turku, Turku, Finland.
| | - Henry Railo
- Turku Brain and Mind Center, University of Turku, Turku, Finland; Department of Psychology and Speech-Language Pathology, University of Turku, Turku 20014, Finland
| |
Collapse
|
11
|
Koivisto M, Leino K, Pekkarinen A, Karttunen J, Railo H, Hurme M. Transcranial magnetic stimulation (TMS)-induced Blindsight of Orientation is Degraded Conscious Vision. Neuroscience 2021; 475:206-219. [PMID: 34480985 DOI: 10.1016/j.neuroscience.2021.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022]
Abstract
Patients with blindsight are blind due to an early visual cortical lesion, but they can discriminate stimuli presented to the blind visual field better than chance. Studies using transcranial magnetic stimulation (TMS) of early visual cortex have tried to induce blindsight-like behaviour in neurologically healthy individuals, but the studies have yielded varied results. We hypothesized that previous demonstrations of TMS-induced blindsight may result from degraded awareness of the stimuli due to the use of dichotomous visibility scales in measuring awareness. In the present study, TMS was applied to early visual cortex during an orientation discrimination task and the subjective scale measuring awareness was manipulated: The participants reported their conscious perception either using a dichotomous scale or a 4-point Perceptual Awareness Scale. Although the results with the dichotomous scale replicated previous reports of blindsight-like behaviour, there was no evidence of TMS-induced blindsight for orientation when the participants used the lowest rating of the 4-point graded scale to indicate that they were not aware of the presence of the stimulus. Moreover, signal detection analyses indicated that across participants, the individual's sensitivity to consciously discriminate orientation predicted behaviour on reportedly unconscious trials. These results suggest that blindsight-like discrimination of orientation in neurologically healthy individuals does not occur for completely invisible stimuli, that is, when the observers do not report any kind of consciousness of the stimulus. TMS-induced blindsight for orientation is likely degraded conscious vision.
Collapse
Affiliation(s)
- Mika Koivisto
- Department of Psychology, University of Turku, 20014 Turku, Finland.
| | - Kalle Leino
- Department of Psychology, University of Turku, 20014 Turku, Finland
| | - Aino Pekkarinen
- Department of Psychology, University of Turku, 20014 Turku, Finland
| | - Jaakko Karttunen
- Department of Psychology, University of Turku, 20014 Turku, Finland
| | - Henry Railo
- Department of Psychology, University of Turku, 20014 Turku, Finland
| | - Mikko Hurme
- Department of Psychology, University of Turku, 20014 Turku, Finland
| |
Collapse
|
12
|
Railo H, Piccin R, Lukasik KM. Subliminal perception is continuous with conscious vision and can be predicted from prestimulus electroencephalographic activity. Eur J Neurosci 2021; 54:4985-4999. [PMID: 34128284 DOI: 10.1111/ejn.15354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/30/2022]
Abstract
Individuals are able to discriminate visual stimuli they report not consciously seeing. This phenomenon is known as "subliminal perception." Such capacity is often assumed to be relatively automatic in nature and rely on stimulus-driven activity in low-level cortical areas. Instead, here we asked to what extent neural activity before stimulus presentation influences subliminal perception. We asked participants to discriminate the location of a briefly presented low-contrast visual stimulus and then rate how well they saw the stimulus. Consistent with previous studies, participants correctly discriminated with slightly above chance-level accuracy the location of a stimulus they reported not seeing. Signal detection analyses indicated that while subjects categorized their percepts as "unconscious," their capacity to discriminate these stimuli lay on the same continuum as conscious vision. We show that the accuracy of discriminating the location of a subliminal stimulus could be predicted with relatively high accuracy (AUC = 0.70) based on lateralized electroencephalographic (EEG) activity before the stimulus, the hemifield where the stimulus was presented, and the accuracy of previous trial's discrimination response. Altogether, our results suggest that rather than being a separate unconscious capacity, subliminal perception is based on similar processes as conscious vision.
Collapse
Affiliation(s)
- Henry Railo
- Department of Clinical Neurophysiology, University of Turku, Turku, Finland.,Turku Brain and Mind Centre, University of Turku, Turku, Finland.,Department of Psychology, University of Turku, Turku, Finland
| | - Roberto Piccin
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | |
Collapse
|
13
|
Contribution of non-sensory neurons in visual cortical areas to visually guided decisions in the rat. Curr Biol 2021; 31:2757-2769.e6. [DOI: 10.1016/j.cub.2021.03.099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/15/2021] [Accepted: 03/31/2021] [Indexed: 01/18/2023]
|
14
|
Is the primary visual cortex necessary for blindsight-like behavior? Review of transcranial magnetic stimulation studies in neurologically healthy individuals. Neurosci Biobehav Rev 2021; 127:353-364. [PMID: 33965459 DOI: 10.1016/j.neubiorev.2021.04.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022]
Abstract
The visual pathways that bypass the primary visual cortex (V1) are often assumed to support visually guided behavior in humans in the absence of conscious vision. This conclusion is largely based on findings on patients: V1 lesions cause blindness but sometimes leave some visually guided behaviors intact-this is known as blindsight. With the aim of examining how well the findings on blindsight patients generalize to neurologically healthy individuals, we review studies which have tried to uncover transcranial magnetic stimulation (TMS) induced blindsight. In general, these studies have failed to demonstrate a completely unconscious blindsight-like capacity in neurologically healthy individuals. A possible exception to this is TMS-induced blindsight of stimulus presence or location. Because blindsight in patients is often associated with some form of introspective access to the visual stimulus, and blindsight may be associated with neural reorganization, we suggest that rather than revealing a dissociation between visually guided behavior and conscious seeing, blindsight may reflect preservation or partial recovery of conscious visual perception after the lesion.
Collapse
|
15
|
de Haan EHF, Scholte HS, Pinto Y, Foschi N, Polonara G, Fabri M. Singularity and consciousness: A neuropsychological contribution. J Neuropsychol 2021; 15:1-19. [PMID: 33522716 PMCID: PMC8048575 DOI: 10.1111/jnp.12234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/22/2020] [Indexed: 12/03/2022]
Abstract
In common sense experience based on introspection, consciousness is singular. There is only one ‘me’ and that is the one that is conscious. This means that ‘singularity’ is a defining aspect of ‘consciousness’. However, the three main theories of consciousness, Integrated Information, Global Workspace and Recurrent Processing theory, are generally not very clear on this issue. These theories have traditionally relied heavily on neuropsychological observations and have interpreted various disorders, such as anosognosia, neglect and split‐brain as impairments in conscious awareness without any reference to ‘the singularity’. In this review, we will re‐examine the theoretical implications of these impairments in conscious awareness and propose a new way how to conceptualize consciousness of singularity. We will argue that the subjective feeling of singularity can coexist with several disunified conscious experiences. Singularity awareness may only come into existence due to environmental response constraints. That is, perceptual, language, memory, attentional and motor processes may largely proceed unintegrated in parallel, whereas a sense of unity only arises when organisms need to respond coherently constrained by the affordances of the environment. Next, we examine from this perspective psychiatric disorders and psycho‐active drugs. Finally, we present a first attempt to test this hypothesis with a resting state imaging experiment in a split‐brain patient. The results suggest that there is substantial coherence of activation across the two hemispheres. These data show that a complete lesioning of the corpus callosum does not, in general, alter the resting state networks of the brain. Thus, we propose that we have separate systems in the brain that generate distributed conscious. The sense of singularity, the experience of a ‘Me‐ness’, emerges in the interaction between the world and response‐planning systems, and this leads to coherent activation in the different functional networks across the cortex.
Collapse
Affiliation(s)
- Edward H F de Haan
- Department of Psychology, University of Amsterdam, the Netherlands.,Amsterdam Brain & Cognition (ABC) Center, University of Amsterdam, the Netherlands
| | - Huibert Steven Scholte
- Department of Psychology, University of Amsterdam, the Netherlands.,Amsterdam Brain & Cognition (ABC) Center, University of Amsterdam, the Netherlands
| | - Yair Pinto
- Department of Psychology, University of Amsterdam, the Netherlands.,Amsterdam Brain & Cognition (ABC) Center, University of Amsterdam, the Netherlands
| | - Nicoletta Foschi
- Epilepsy Center-Neurological Clinic, Azienda "Ospedali Riuniti", Ancona, Italy
| | - Gabriele Polonara
- Department of Odontostomatologic and Specialized Clinical Sciences, Marche Polytechnic University, Ancona, Italy
| | - Mara Fabri
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
16
|
Danckert J, Striemer C, Rossetti Y. Blindsight. HANDBOOK OF CLINICAL NEUROLOGY 2021; 178:297-310. [PMID: 33832682 DOI: 10.1016/b978-0-12-821377-3.00016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
For over a century, research has demonstrated that damage to primary visual cortex does not eliminate all capacity for visual processing in the brain. From Riddoch's (1917) early demonstration of intact motion processing for blind field stimuli, to the iconic work of Weiskrantz et al. (1974) showing reliable spatial localization, it is clear that secondary visual pathways that bypass V1 carry information to the visual brain that in turn influences behavior. In this chapter, we briefly outline the history and phenomena associated with blindsight, before discussing the nature of the secondary visual pathways that support residual visual processing in the absence of V1. We finish with some speculation as to the functional characteristics of these secondary pathways.
Collapse
Affiliation(s)
- James Danckert
- Department of Psychology, University of Waterloo, Waterloo, ON, Canada.
| | | | - Yves Rossetti
- Trajectoires, Centre de Recherche en Neurosciences de Lyon, Inserm, CNRS, Université Lyon 1, Bron, France; Plateforme "Mouvement et Handicap", Hôpital Henry-Gabrielle, Hospices Civils de Lyon, Saint-Genis-Laval, France
| |
Collapse
|
17
|
Sanchez-Lopez J, Cardobi N, Pedersini CA, Savazzi S, Marzi CA. What cortical areas are responsible for blindsight in hemianopic patients? Cortex 2020; 132:113-134. [PMID: 32977179 DOI: 10.1016/j.cortex.2020.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/07/2020] [Accepted: 08/07/2020] [Indexed: 12/25/2022]
Abstract
The presence of above-chance unconscious behavioral responses following stimulus presentation to the blind hemifield of hemianopic patients (blindsight) is a well-known phenomenon. What is still lacking is a systematic study of the neuroanatomical bases of two distinct aspects of blindsight: the unconscious above chance performance and the phenomenological aspects that may be associated. Here, we tested 17 hemianopic patients in two tasks i.e. movement and orientation discrimination of a visual grating presented to the sighted or blind hemifield. We classified patients in four groups on the basis of the presence of above chance unconscious discrimination without or with perceptual awareness reports for stimulus presentation to the blind hemifield. A fifth group was represented by patients with interruption of the Optic Radiation. In the various groups we carried out analyses of lesion extent of various cortical areas, probabilistic tractography as well as assessment of the cortical thickness of the intact hemisphere. All patients had lesions mainly, but not only, in the occipital lobe and the statistical comparison of their extent provided clues as to the critical anatomical substrate of unconscious above-chance performance and of perceptual awareness reports, respectively. In fact, the two areas that turned out to be critical for above-chance performance in the discrimination of moving versus non-moving visual stimuli were the Precuneus and the Posterior Cingulate Gyrus while for perceptual awareness reports the crucial areas were Intracalcarine, Supracalcarine, Cuneus, and the Posterior Cingulate Gyrus. Interestingly, the proportion of perceptual awareness reports was higher in patients with a spared right hemisphere. As to probabilistic tractography, all pathways examined yielded higher positive values for patients with perceptual awareness reports. Finally, the cortical thickness of the intact hemisphere was greater in patients showing above-chance performance than in those at chance. This effect is likely to be a result of neuroplastic compensatory mechanisms.
Collapse
Affiliation(s)
- Javier Sanchez-Lopez
- Physiology and Psychology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Nicolò Cardobi
- Physiology and Psychology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Caterina A Pedersini
- Physiology and Psychology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Silvia Savazzi
- Physiology and Psychology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; Perception and Awareness (PandA) Laboratory, University of Verona, Verona, Italy; National Institute of Neuroscience, Verona, Italy.
| | - Carlo A Marzi
- Physiology and Psychology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; National Institute of Neuroscience, Verona, Italy.
| |
Collapse
|
18
|
|
19
|
Phillips I. Making sense of blindsense: A commentary on Garric et al., 2019. Cortex 2020; 127:388-392. [PMID: 31898946 DOI: 10.1016/j.cortex.2019.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/28/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Ian Phillips
- Department of Philosophy, and Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
20
|
Chokron S, Dubourg L, Garric C, Martinelli F, Perez C. Dissociations between perception and awareness in hemianopia. Restor Neurol Neurosci 2020; 38:189-201. [PMID: 31929128 DOI: 10.3233/rnn-190951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The most common visual defect to follow a lesion of the retrochiasmal pathways is homonymous hemianopia (HH), whereby patients are blind to the contralesional visual field of each eye. Homonymous hemianopia has been studied in terms of its deleterious consequences on perceptual, cognitive and motor tasks as well as because it represents an interesting model of vision loss after a unilateral lesion of the occipital lobe. From a behavioral perspective, in addition to exhibiting a severe deficit in their contralesional visual field, HH patients can also exhibit dissociations between perception and awareness. Firstly, HH patients suffering from anosognosia may be unaware of their visual field defect. Secondly, HH patients can present with unconscious visual abilities in the blind hemifield, a phenomenon referred to as blindsight. Thirdly, recent reports demonstrate that HH patients can suffer from a subtle deficit in their ipsilesional visual field that they are unaware of, a condition called sightblindness (i.e. the reverse case of 'blindsight'). Finally, HH patients may also exhibit visual hallucinations in their blind field; however, such patients are not systematically aware that their perceptions are unreal. In this review, we provide an overview of the visual-field losses in HH patients after a left or right unilateral occipital lesion. Furthermore, we explore the implications of these four phenomena for models of visual processing and rehabilitation of visual field defects in HH patients. Finally, in contrast to the traditional view that HH is solely a visual-field defect, we discuss why this deficit is an interesting model for studying the dissociation between perception and awareness.
Collapse
Affiliation(s)
- Sylvie Chokron
- Integrative Neuroscience and Cognition Center, CNRS, UMR 8242 et Université Paris-Descartes, Paris, France
| | - Lucas Dubourg
- Institut de Neuropsychologie, Neurovision, NeuroCognition, Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.,Integrative Neuroscience and Cognition Center, CNRS, UMR 8242 et Université Paris-Descartes, Paris, France
| | - Clémentine Garric
- Laboratoire de Sciences Cognitives et Affectives, SCALab, CNRS UMR, Faculté de Médecine, Pôle Recherche et Université de Lille, Lille, France
| | - Fiora Martinelli
- Integrative Neuroscience and Cognition Center, CNRS, UMR 8242 et Université Paris-Descartes, Paris, France
| | - Céline Perez
- Institut de Neuropsychologie, Neurovision, NeuroCognition, Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.,Integrative Neuroscience and Cognition Center, CNRS, UMR 8242 et Université Paris-Descartes, Paris, France
| |
Collapse
|
21
|
Garric C, Sebaa A, Caetta F, Perez C, Savatovsky J, Sergent C, Chokron S. Dissociation between objective and subjective perceptual experiences in a population of hemianopic patients: A new form of blindsight? Cortex 2019; 117:299-310. [PMID: 31181393 DOI: 10.1016/j.cortex.2019.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/06/2019] [Accepted: 05/05/2019] [Indexed: 01/05/2023]
Abstract
After a post-chiasmatic lesion, some patients may retain unconscious visual function, known as blindsight, in their contralesional visual field. Despite the importance of blindsight in the study of consciousness, little is known about the nature of patients' experience in their hemianopic field. To address this knowledge gap, we measured blindsight, and assessed the perceptual experience in the contralesional visual field, of seventeen homonymous hemianopic (HH) patients. To ensure that the stimuli were shown in a "blind" sector of the visual field, we selected a subgroup of eight complete-HH patients, as determined by automatic perimetry. Firstly, we measured blindsight through a forced-choice task in which the patients had to identify letters displayed on a screen. Secondly, we compared the patients' binary responses ("Something was presented" vs "Nothing was presented") to responses on a new, five-level scale, the Sensation Awareness Scale (SAS), which we designed to include visual as well as non-visual answers (e.g., "I felt something"). Interestingly, only one of the eight complete-HH patients met the criteria for blindsight. More importantly, our SAS enabled us to identify a previously unreported dissociation, which we have named blindsense, in four of the eight complete-HH patients. Specifically, these four patients exhibited better-than-chance sensitivity to the presence of a stimulus on the subjective scale, despite being unable to identify the stimulus during the forced-choice task. Our findings highlight the importance of awareness-assessment methods to investigate perceptual experiences in the contralesional visual field and suggest a low incidence of blindsight in post-stroke HH patients.
Collapse
Affiliation(s)
- Clémentine Garric
- Unité Vision et Cognition, Fondation Ophtalmologique de Rothschild, Paris, France; Laboratoire de Psychologie de la Perception, UMR 8242, CNRS & Université Paris-Descartes, Paris, France
| | - Aïda Sebaa
- Unité Vision et Cognition, Fondation Ophtalmologique de Rothschild, Paris, France
| | - Florent Caetta
- Unité Vision et Cognition, Fondation Ophtalmologique de Rothschild, Paris, France
| | - Céline Perez
- Unité Vision et Cognition, Fondation Ophtalmologique de Rothschild, Paris, France; Service de Neurologie, Fondation Ophtalmologique Rothschild, Paris, France
| | - Julien Savatovsky
- Service d'Imagerie, Fondation Ophtalmologique Rothschild, Paris, France
| | - Claire Sergent
- Laboratoire de Psychologie de la Perception, UMR 8242, CNRS & Université Paris-Descartes, Paris, France
| | - Sylvie Chokron
- Unité Vision et Cognition, Fondation Ophtalmologique de Rothschild, Paris, France; Laboratoire de Psychologie de la Perception, UMR 8242, CNRS & Université Paris-Descartes, Paris, France; Service de Neurologie, Fondation Ophtalmologique Rothschild, Paris, France.
| |
Collapse
|
22
|
Celeghin A, Bagnis A, Diano M, Méndez CA, Costa T, Tamietto M. Functional neuroanatomy of blindsight revealed by activation likelihood estimation meta-analysis. Neuropsychologia 2019; 128:109-118. [PMID: 29894718 DOI: 10.1016/j.neuropsychologia.2018.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 03/03/2018] [Accepted: 06/08/2018] [Indexed: 11/21/2022]
Abstract
Blindsight, the residual abilities of patients with cortical blindness to respond proficiently to stimuli they do not consciously acknowledge, offers a unique opportunity to study the functional and anatomical mechanisms sustaining visual awareness. Over decades, the phenomenon has been documented in a wide number of different patients, across independent laboratories, and for a variety of tasks and stimulus properties. Nevertheless, the functional neuroanatomy of blindsight remains elusive and alternative proposals have been put forth. To tackle this issue from a novel perspective, we performed a quantitative Activation Likelihood Estimation (ALE) meta-analysis on the neuroimaging literature available on blindsight. Significant activity was reported in subcortical structures, such as the superior colliculus, pulvinar and amygdala, as well as in cortical extrastriate areas along the dorsal and ventral visual stream. This data-driven functional network collectively defines the extant neural fingerprint of blindsight. To further characterize the unique combination of segregation and integration in brain networks engaged in blindsight, we measured the relationship between active areas and experimental features in the original studies, their clustering and hierarchical organization. Results support a network-based organization in the functional neuroanatomy of blindsight, which likely reflects the intersection of different stimulus properties and behavioural tasks examined. We suggest that the conceptualization of blindsight as a constellation of multiple nonconscious visual abilities is better apt as a summary of present-day wisdom, thereby mirroring the variety of existing V1-independent pathway and their different functional roles.
Collapse
Affiliation(s)
- Alessia Celeghin
- Department of Psychology, University of Torino, 10123 Torino, Italy; Department of Medical and Clinical Psychology, Tilburg University, 5000LE Tilburg, The Netherlands
| | - Arianna Bagnis
- Department of Psychology, University of Torino, 10123 Torino, Italy
| | - Matteo Diano
- Department of Psychology, University of Torino, 10123 Torino, Italy; Department of Medical and Clinical Psychology, Tilburg University, 5000LE Tilburg, The Netherlands
| | | | - Tommaso Costa
- Department of Psychology, University of Torino, 10123 Torino, Italy
| | - Marco Tamietto
- Department of Psychology, University of Torino, 10123 Torino, Italy; Department of Medical and Clinical Psychology, Tilburg University, 5000LE Tilburg, The Netherlands; Netherlands Institute for Advances Study in the Humanities and Social Sciences (NIAS), Royal Netherlands Academy of Arts and Sciences (KNAW), 1001 EW Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Osako Y, Sakurai Y, Hirokawa J. Subjective decision threshold for accurate visual detection performance in rats. Sci Rep 2018; 8:9357. [PMID: 29921866 PMCID: PMC6008337 DOI: 10.1038/s41598-018-27696-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/07/2018] [Indexed: 11/24/2022] Open
Abstract
The dissociation between a subjective-criterion performance and forced performance in a sensory detection can provide critical insights into the neural correlates of sensory awareness. Here, we established a behavioral task for rats to test their spatial-visual cue detection ability, using a two alternative choice task with and without a third choice option where animals get rewards only in the objective absence of a visual cue. In the trials without the third option, spatial choice accuracy decreased from near perfect to near chance levels as the visual cue brightness decreased. In contrast, with the third option, the rats exhibited >90% spatial choice accuracy regardless of the cue brightness. The rats chose the third choice option less frequently when the cue was brighter, suggesting that rats have a generalized strategy to make spatial choices only when their internal detection criterion is met. Interestingly, even when the animals chose the third option, they could still significantly and correctly choose the direction of the visual stimuli if they were forced. Our data suggest that the rats' variable detection performance with identical set of stimuli is derived from stochastic processing of visual signals with a certain internal detection threshold rather than general motivational threshold.
Collapse
Affiliation(s)
- Yuma Osako
- Laboratory of Neural Information, Graduate School of Brain Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, 610-0394, Japan
| | - Yoshio Sakurai
- Laboratory of Neural Information, Graduate School of Brain Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, 610-0394, Japan
| | - Junya Hirokawa
- Laboratory of Neural Information, Graduate School of Brain Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, 610-0394, Japan.
| |
Collapse
|
24
|
Action blindsight and antipointing in a hemianopic patient. Neuropsychologia 2018; 128:270-275. [PMID: 29604321 DOI: 10.1016/j.neuropsychologia.2018.03.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/14/2018] [Accepted: 03/22/2018] [Indexed: 11/21/2022]
Abstract
Blindsight refers to the observation of residual visual abilities in the hemianopic field of patients without a functional V1. Given the within- and between-subject variability in the preserved abilities and the phenomenal experience of blindsight patients, the fine-grained description of the phenomenon is still debated. Here we tested a patient with established "perceptual" and "attentional" blindsight (c.f. Danckert and Rossetti, 2005). Using a pointing paradigm patient MS, who suffers from a complete left homonymous hemianopia, showed clear above chance manual localisation of 'unseen' targets. In addition, target presentations in his blind field led MS, on occasion, to spontaneous responses towards his sighted field. Structural and functional magnetic resonance imaging was conducted to evaluate the magnitude of V1 damage. Results revealed the presence of a calcarine sulcus in both hemispheres, yet his right V1 is reduced, structurally disconnected and shows no fMRI response to visual stimuli. Thus, visual stimulation of his blind field can lead to "action blindsight" and spontaneous antipointing, in absence of a functional right V1. With respect to the antipointing, we suggest that MS may have registered the stimulation and subsequently presumes it must have been in his intact half field.
Collapse
|
25
|
Marvan T, Polák M. Unitary and dual models of phenomenal consciousness. Conscious Cogn 2017; 56:1-12. [PMID: 29024889 DOI: 10.1016/j.concog.2017.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 10/18/2022]
Abstract
There is almost unanimous consensus among the theorists of consciousness that the phenomenal character of a mental state cannot exist without consciousness. We argue for a reappraisal of this consensus. We distinguish two models of phenomenal consciousness: unitary and dual. Unitary model takes the production of a phenomenal quality and it's becoming conscious to be one and the same thing. The dual model, which we advocate in this paper, distinguishes the process in which the phenomenal quality is formed from the process that makes this quality conscious. We put forward a conceptual, methodological, neuropsychological and neural argument for the dual model. These arguments are independent but provide mutual support to each other. Together, they strongly support the dual model of phenomenal consciousness and the concomitant idea of unconscious mental qualities. The dual view is thus, we submit, a hypothesis worthy of further probing and development.
Collapse
Affiliation(s)
- Tomáš Marvan
- Institute of Philosophy of the Czech Academy of Sciences, Jilská 1, Prague 110 00, Czech Republic.
| | - Michal Polák
- Department of Philosophy, University of West Bohemia, Pilsen, Czech Republic
| |
Collapse
|
26
|
McCloskey M, Chaisilprungraung T. The value of cognitive neuropsychology: The case of vision research. Cogn Neuropsychol 2017. [PMID: 28649924 DOI: 10.1080/02643294.2017.1342618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cognitive neuropsychological evidence is widely viewed as inherently flawed or weak, despite well-reasoned arguments to the contrary by many theorists. Rather than attempting yet another defence of cognitive neuropsychology on logical grounds, we point out through examples that in practice, cognitive neuropsychological evidence is widely accepted as valid and important, and has had a major impact on cognitive theory and research. Objections offered in the abstract rarely arise in the context of actual studies. We develop these points through examples from the domain of vision, discussing cerebral achromatopsia and akinetopsia, selective impairment and sparing of face recognition, perception-action dissociations, and blindsight.
Collapse
Affiliation(s)
- Michael McCloskey
- a Department of Cognitive Science , Johns Hopkins University , Baltimore , MD , USA
| | | |
Collapse
|
27
|
|
28
|
Yoshida M, Hafed ZM, Isa T. Informative Cues Facilitate Saccadic Localization in Blindsight Monkeys. Front Syst Neurosci 2017; 11:5. [PMID: 28239342 PMCID: PMC5300996 DOI: 10.3389/fnsys.2017.00005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/30/2017] [Indexed: 11/13/2022] Open
Abstract
Patients with damage to the primary visual cortex (V1) demonstrate residual visual performance during laboratory tasks despite denying having a conscious percept. The mechanisms behind such performance, often called blindsight, are not fully understood, but the use of surgically-induced unilateral V1 lesions in macaque monkeys provides a useful animal model for exploring such mechanisms. For example, V1-lesioned monkeys localize stimuli in a forced-choice condition while at the same time failing to report awareness of identical stimuli in a yes-no detection condition, similar to human patients. Moreover, residual cognitive processes, including saliency-guided eye movements, bottom-up attention with peripheral non-informative cues, and spatial short-term memory, have all been demonstrated in these animals. Here we examined whether post-lesion residual visuomotor processing can be modulated by top-down task knowledge. We tested two V1-lesioned monkeys with a visually guided saccade task in which we provided an informative foveal pre-cue about upcoming target location. Our monkeys fixated while we presented a leftward or rightward arrow (serving as a pre-cue) superimposed on the fixation point (FP). After various cue-target onset asynchronies (CTOAs), a saccadic target (of variable contrast across trials) was presented either in the affected (contra-lesional) or seeing (ipsi-lesional) hemifield. Critically, target location was in the same hemifield that the arrow pre-cue pointed towards in 80% of the trials (valid-cue trials), making the cue highly useful for task performance. In both monkeys, correct saccade reaction times were shorter during valid than invalid trials. Moreover, in one monkey, the ratio of correct saccades towards the affected hemifield was higher during valid than invalid trials. We replicated both reaction time and correct ratio effects in the same monkey using a symbolic color cue. These results suggest that V1-lesion monkeys can use informative cues to localize stimuli in the contra-lesional hemifield, consistent with reports of a human blindsight subject being able to direct attention in cueing paradigms. Because the superior colliculus (SC) may contribute to residual visual capabilities after V1 lesions, and because this structure is important for controlling attentional resources, we hypothesize that our results reflect, among others, SC involvement in integrating top-down task knowledge for guiding orienting behavior.
Collapse
Affiliation(s)
- Masatoshi Yoshida
- Department of System Neuroscience, National Institute for Physiological SciencesOkazaki, Japan; School of Life Science, The Graduate University for Advanced StudiesHayama, Japan
| | - Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen Tübingen, Germany
| | - Tadashi Isa
- Department of Neuroscience, Kyoto University Graduate School of Medicine and Faculty of Medicine Kyoto, Japan
| |
Collapse
|
29
|
Analysing real-world visual search tasks helps explain what the functional visual field is, and what its neural mechanisms are. Behav Brain Sci 2017; 40:e133. [DOI: 10.1017/s0140525x16000030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractRejecting information-processing-based theory permits the merging of a top-down analysis of visual search tasks with a bottom-up analysis of brain structure and function. This reveals the true nature of the functional visual field and its precise role in the conduct of visual search tasks. The merits of such analyses over the traditional methods of the authors are described.
Collapse
|
30
|
Ajina S, Bridge H. Blindsight and Unconscious Vision: What They Teach Us about the Human Visual System. Neuroscientist 2016; 23:529-541. [PMID: 27777337 DOI: 10.1177/1073858416673817] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Damage to the primary visual cortex removes the major input from the eyes to the brain, causing significant visual loss as patients are unable to perceive the side of the world contralateral to the damage. Some patients, however, retain the ability to detect visual information within this blind region; this is known as blindsight. By studying the visual pathways that underlie this residual vision in patients, we can uncover additional aspects of the human visual system that likely contribute to normal visual function but cannot be revealed under physiological conditions. In this review, we discuss the residual abilities and neural activity that have been described in blindsight and the implications of these findings for understanding the intact system.
Collapse
Affiliation(s)
- Sara Ajina
- 1 Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Holly Bridge
- 1 Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
31
|
Zhou B, Pöppel E, Wang L, Yang T, Zaytseva Y, Bao Y. Seeing without knowing: Operational principles along the early visual pathway. Psych J 2016; 5:145-60. [PMID: 27678480 DOI: 10.1002/pchj.141] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 02/04/2023]
Affiliation(s)
- Bin Zhou
- Key Laboratory of Behavioral Science, Institute of Psychology; Chinese Academy of Sciences; Beijing China
| | - Ernst Pöppel
- School of Psychological and Cognitive Sciences, Key Laboratory of Machine Perception (Ministry of Education), and Beijing Key Laboratory of Behavior and Mental Health; Peking University; Beijing China
- Institute of Medical Psychology and Human Science Center; Ludwig-Maximilians-University; Munich Germany
| | - Lingyan Wang
- School of Psychological and Cognitive Sciences, Key Laboratory of Machine Perception (Ministry of Education), and Beijing Key Laboratory of Behavior and Mental Health; Peking University; Beijing China
| | - Taoxi Yang
- Institute of Medical Psychology and Human Science Center; Ludwig-Maximilians-University; Munich Germany
| | - Yuliya Zaytseva
- Institute of Medical Psychology and Human Science Center; Ludwig-Maximilians-University; Munich Germany
- Department of National IT System of Mental Health and Brain Monitoring; National Institute of Mental Health; Klecany Czech Republic
- Department of Psychiatry and Medical Psychology, 3rd Faculty of Medicine; Charles University; Prague Czech Republic
| | - Yan Bao
- School of Psychological and Cognitive Sciences, Key Laboratory of Machine Perception (Ministry of Education), and Beijing Key Laboratory of Behavior and Mental Health; Peking University; Beijing China
- Institute of Medical Psychology and Human Science Center; Ludwig-Maximilians-University; Munich Germany
| |
Collapse
|
32
|
Abstract
Blindsight is a visual phenomenon whereby hemianopic patients are able to process visual information in their blind visual field without awareness. Previous research demonstrating the existence of blindsight in hemianopic patients has been criticized for the nature of the paradigms used, for the presence of methodological artifacts, and for the possibility that spared islands of visual cortex may have sustained the phenomenon because the patients generally had small circumscribed lesions. To respond to these criticisms, the authors have been investigating for several years now residual visual abilities in the blind field of hemispherectomized patients in whom a whole cerebral hemisphere has been removed or disconnected from the rest of the brain. These patients have offered a unique opportunity to establish the existence of blindsight and to investigate its underlying neuronal mechanisms because in these cases, spared islands of visual cortex cannot be evoked to explain the presence of visual abilities in the blind field. In addition, the authors have been using precise behavioral paradigms, strict control for potential methodological artifacts such as light scatter, fixation, criterion effects, and macular sparing, and they have utilized new neuroimaging techniques such as diffusion tensor imaging tractography to enhance their understanding of the phenomenon. The following article is a review of their research on the involvement of the superior colliculi in blindsight in hemispherectomized patients. NEUROSCIENTIST 13(5):506—518, 2007.
Collapse
Affiliation(s)
- Alain Ptito
- Cognitive Neuroscience Unit, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| | | |
Collapse
|
33
|
Gazzaniga MS, Fendrich R, Wessinger CM. Blindsight Reconsidered. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2016. [DOI: 10.1111/1467-8721.ep10770443] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Tamè L, Braun C, Holmes NP, Farnè A, Pavani F. Bilateral representations of touch in the primary somatosensory cortex. Cogn Neuropsychol 2016; 33:48-66. [PMID: 27314449 DOI: 10.1080/02643294.2016.1159547] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
According to current textbook knowledge, the primary somatosensory cortex (SI) supports unilateral tactile representations, whereas structures beyond SI, in particular the secondary somatosensory cortex (SII), support bilateral tactile representations. However, dexterous and well-coordinated bimanual motor tasks require early integration of bilateral tactile information. Sequential processing, first of unilateral and subsequently of bilateral sensory information, might not be sufficient to accomplish these tasks. This view of sequential processing in the somatosensory system might therefore be questioned, at least for demanding bimanual tasks. Evidence from the last 15 years is forcing a revision of this textbook notion. Studies in animals and humans indicate that SI is more than a simple relay for unilateral sensory information and, together with SII, contributes to the integration of somatosensory inputs from both sides of the body. Here, we review a series of recent works from our own and other laboratories in favour of interactions between tactile stimuli on the two sides of the body at early stages of processing. We focus on tactile processing, although a similar logic may also apply to other aspects of somatosensation. We begin by describing the basic anatomy and physiology of interhemispheric transfer, drawing on neurophysiological studies in animals and behavioural studies in humans that showed tactile interactions between body sides, both in healthy and in brain-damaged individuals. Then we describe the neural substrates of bilateral interactions in somatosensation as revealed by neurophysiological work in animals and neuroimaging studies in humans (i.e., functional magnetic resonance imaging, magnetoencephalography, and transcranial magnetic stimulation). Finally, we conclude with considerations on the dilemma of how efficiently integrating bilateral sensory information at early processing stages can coexist with more lateralized representations of somatosensory input, in the context of motor control.
Collapse
Affiliation(s)
- Luigi Tamè
- a Department of Psychological Sciences , Birkbeck, University of London , London , UK
| | - Christoph Braun
- b MEG-Center, University of Tübingen , Tübingen , Germany.,c Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen , Tübingen , Germany.,d Center for Mind/Brain Sciences, University of Trento , Rovereto , Italy.,e Department of Psychological Sciences , University of Trento , Rovereto , Italy
| | | | - Alessandro Farnè
- g INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Centre , Lyon , France.,h University Claude Bernard Lyon I , Lyon , France
| | - Francesco Pavani
- d Center for Mind/Brain Sciences, University of Trento , Rovereto , Italy.,e Department of Psychological Sciences , University of Trento , Rovereto , Italy.,g INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Centre , Lyon , France
| |
Collapse
|
35
|
Mazzi C, Bagattini C, Savazzi S. Blind-Sight vs. Degraded-Sight: Different Measures Tell a Different Story. Front Psychol 2016; 7:901. [PMID: 27378993 PMCID: PMC4909743 DOI: 10.3389/fpsyg.2016.00901] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/31/2016] [Indexed: 12/03/2022] Open
Abstract
Blindsight patients can detect, localize, and discriminate visual stimuli in their blind field, despite denying being able to see the stimuli. However, the literature documents the cases of blindsight patients who demonstrated a preserved degree of awareness in their impaired visual field. The aim of this study is to investigate the nature of visual processing within the impaired visual field and to ask whether it reflects pure unconscious behavior or conscious, yet degraded, vision. A hemianopic patient (SL) with a complete lesion to the left primary visual cortex was tested. SL was asked to discriminate several stimulus features (orientation, color, contrast, and motion) presented in her impaired visual field in a two-alternative forced-choice task. SL had to report her subjective experience: in the first experiment as “seen” or “guessed,” whereas in the second experiment as the degree of clarity of her experience according to the perceptual awareness scale. In the first experiment, SL demonstrated a performance above-chance in the discrimination task for “guessed” trials, thus showing type 1 blindsight. In the second experiment, however, SL showed above-chance performance only when she reported a certain degree of awareness, thus showing that SL’s preserved discrimination ability relies on conscious vision. These data show that graded measures to assess awareness, which can better tap on the complexity of conscious experience, need to be used in order to differentiate genuine forms of blindsight from degraded conscious vision.
Collapse
Affiliation(s)
- Chiara Mazzi
- University of Verona and National Institute of NeuroscienceVerona, Italy; Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of VeronaVerona, Italy
| | - Chiara Bagattini
- Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli Brescia, Italy
| | - Silvia Savazzi
- University of Verona and National Institute of NeuroscienceVerona, Italy; Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of VeronaVerona, Italy
| |
Collapse
|
36
|
Augusto LM. Lost in dissociation: The main paradigms in unconscious cognition. Conscious Cogn 2016; 42:293-310. [PMID: 27107894 DOI: 10.1016/j.concog.2016.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 03/05/2016] [Accepted: 04/10/2016] [Indexed: 10/21/2022]
Abstract
Contemporary studies in unconscious cognition are essentially founded on dissociation, i.e., on how it dissociates with respect to conscious mental processes and representations. This is claimed to be in so many and diverse ways that one is often lost in dissociation. In order to reduce this state of confusion we here carry out two major tasks: based on the central distinction between cognitive processes and representations, we identify and isolate the main dissociation paradigms; we then critically analyze their key tenets and reported findings.
Collapse
Affiliation(s)
- Luis M Augusto
- University of Barcelona (Visiting researcher), Barcelona, Spain.
| |
Collapse
|
37
|
Miller PA, Wallis G, Bex PJ, Arnold DH. Reducing the size of the human physiological blind spot through training. Curr Biol 2015; 25:R747-8. [PMID: 26325131 DOI: 10.1016/j.cub.2015.07.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The physiological blind spot refers to a zone of functional blindness all normally sighted people have in each eye, due to an absence of photoreceptors where the optic nerve passes through the surface of the retina. Here we report that the functional size of the physiological blind spot can be shrunk through training to distinguish direction signals at the blind spot periphery. Training on twenty successive weekdays improved sensitivity to both direction and colour, suggesting a generalizable benefit. Training on one blind spot, however, did not transfer to the blind spot in the untrained eye, ruling out mediation via a generic practice effect; nor could training benefits be attributed to eye movements, which were monitored to ensure stable fixation. These data suggest that training enhances the response gains of neurons with receptive fields that partially overlap, or abut, the physiological blind spot, thereby enhancing sensitivity to weak signals originating primarily from within the functionally-defined region of blindness [1-3]. Our results have important implications for situations where localised blindness has been acquired through damage to components of the visual system [4,5], and support proposals that these situations might be improved through perceptual training [5-7].
Collapse
Affiliation(s)
- Paul A Miller
- School of Psychology, The University of Queensland, Brisbane, Australia 4072.
| | - Guy Wallis
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia 4072
| | - Peter J Bex
- Department of Psychology, Northeastern University, Boston MA 02115, USA
| | - Derek H Arnold
- School of Psychology, The University of Queensland, Brisbane, Australia 4072
| |
Collapse
|
38
|
Signal detection analysis of blindsight in monkeys. Sci Rep 2015; 5:10755. [PMID: 26021856 PMCID: PMC4448228 DOI: 10.1038/srep10755] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/01/2015] [Indexed: 11/18/2022] Open
Abstract
Macaque monkeys with a unilateral lesion in V1 have been used as an animal model of blindsight. While objective proof of blindsight requires that the two aspects of blindsight (residual forced-choice localization and attenuated yes-no detection) should be tested under identical stimulus conditions using bias-free measures of sensitivity, these have not been attained in studies of nonhuman primates. Here we tested two macaque monkeys with a unilateral V1 lesion with two saccade tasks using identical stimuli: a forced-choice (FC) task and a yes-no (YN) task. An analysis based on signal detection theory revealed that sensitivity in the FC task was significantly higher than that in the YN task. Such dissociation of sensitivity between the two tasks was not observed when near-threshold visual stimuli were presented in the normal, unaffected hemifield. These results suggest that the V1-lesioned monkeys resemble the well-studied blindsight patient G.Y., whose visual experience per se was completely abolished.
Collapse
|
39
|
Affiliation(s)
- Robert Foley
- Rotman Institute of Philosophy, Western University, Canada; The Brain and Mind Institute, Western University, Canada
| | | |
Collapse
|
40
|
|
41
|
Foley R. The case for characterising type-2 blindsight as a genuinely visual phenomenon. Conscious Cogn 2014; 32:56-67. [PMID: 25444645 DOI: 10.1016/j.concog.2014.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 09/08/2014] [Accepted: 09/12/2014] [Indexed: 11/25/2022]
Abstract
Type-2 blindsight is often characterised as involving a non-visual form of awareness that blindsight subjects experience under certain presentation conditions. This paper evaluates the claim that type-2 awareness is non-visual and the proposal that it is a cognitive form of awareness. It is argued that, contrary to the standard account, type-2 awareness is best characterised as visual both because it satisfies certain criteria for being visual and because it can accommodate facts about the phenomenon that the cognitive account cannot. The conclusion is made that type-2 blindsight is best characterised as involving a form of abnormal, degraded visual awareness.
Collapse
Affiliation(s)
- Robert Foley
- The Rotman Institute, Western University, Stevenson Hall 2150G, London, Ontario N6A 5B8, Canada.
| |
Collapse
|
42
|
Overgaard M, Mogensen J. Reconciling current approaches to blindsight. Conscious Cogn 2014; 32:33-40. [PMID: 25172329 DOI: 10.1016/j.concog.2014.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 07/30/2014] [Accepted: 08/04/2014] [Indexed: 12/01/2022]
Abstract
After decades of research, blindsight is still a mysterious and controversial topic in consciousness research. Currently, many researchers tend to think of it as an ideal phenomenon to investigate neural correlates of consciousness, whereas others believe that blindsight is in fact a kind of degraded vision rather than "truly blind". This article considers both perspectives and finds that both have difficulties understanding all existing evidence about blindsight. In order to reconcile the perspectives, we suggest two specific criteria for a good model of blindsight, able to encompass all evidence. We propose that the REF-CON model (Overgaard & Mogensen, 2014) may work as such a model.
Collapse
Affiliation(s)
- Morten Overgaard
- CNRU, CFIN, MindLab, Aarhus University, Denmark; CCN, Dept. of Psychology and Communication, Aalborg University, Denmark.
| | - Jesper Mogensen
- The Unit for Cognitive Neuroscience (UCN), Department of Psychology, University of Copenhagen, Denmark
| |
Collapse
|
43
|
Allen CPG, Sumner P, Chambers CD. The Timing and Neuroanatomy of Conscious Vision as Revealed by TMS-induced Blindsight. J Cogn Neurosci 2014; 26:1507-18. [DOI: 10.1162/jocn_a_00557] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Following damage to the primary visual cortex, some patients exhibit “blindsight,” where they report a loss of awareness while retaining the ability to discriminate visual stimuli above chance. Transient disruption of occipital regions with TMS can produce a similar dissociation, known as TMS-induced blindsight. The neural basis of this residual vision is controversial, with some studies attributing it to the retinotectal pathway via the superior colliculus whereas others implicate spared projections that originate predominantly from the LGN. Here we contrasted these accounts by combining TMS with visual stimuli that either activate or bypass the retinotectal and magnocellular (R/M) pathways. We found that the residual capacity of TMS-induced blindsight occurs for stimuli that bypass the R/M pathways, indicating that such pathways, which include those to the superior colliculus, are not critical. We also found that the modulation of conscious vision was time and pathway dependent. TMS applied either early (0–40 msec) or late (280–320 msec) after stimulus onset modulated detection of stimuli that did not bypass R/M pathways, whereas during an intermediate period (90–130 msec) the effect was pathway independent. Our findings thus suggest a prominent role for the R/M pathways in supporting both the preparatory and later stages of conscious vision. This may help resolve apparent conflict in previous literature by demonstrating that the roles of the retinotectal and geniculate pathways are likely to be more nuanced than simply corresponding to the unconscious/conscious dichotomy.
Collapse
|
44
|
Enhanced awareness followed reversible inhibition of human visual cortex: a combined TMS, MRS and MEG study. PLoS One 2014; 9:e100350. [PMID: 24956195 PMCID: PMC4067303 DOI: 10.1371/journal.pone.0100350] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 05/23/2014] [Indexed: 11/19/2022] Open
Abstract
This series of experiments investigated the neural basis of conscious vision in humans using a form of transcranial magnetic stimulation (TMS) known as continuous theta burst stimulation (cTBS). Previous studies have shown that occipital TMS, when time-locked to the onset of visual stimuli, can induce a phenomenon analogous to blindsight in which conscious detection is impaired while the ability to discriminate ‘unseen’ stimuli is preserved above chance. Here we sought to reproduce this phenomenon using offline occipital cTBS, which has been shown to induce an inhibitory cortical aftereffect lasting 45–60 minutes. Contrary to expectations, our first experiment revealed the opposite effect: cTBS enhanced conscious vision relative to a sham control. We then sought to replicate this cTBS-induced potentiation of consciousness in conjunction with magnetoencephalography (MEG) and undertook additional experiments to assess its relationship to visual cortical excitability and levels of the inhibitory neurotransmitter γ-aminobutyric acid (GABA; via magnetic resonance spectroscopy, MRS). Occipital cTBS decreased cortical excitability and increased regional GABA concentration. No significant effects of cTBS on MEG measures were observed, although the results provided weak evidence for potentiation of event related desynchronisation in the β band. Collectively these experiments suggest that, through the suppression of noise, cTBS can increase the signal-to-noise ratio of neural activity underlying conscious vision. We speculate that gating-by-inhibition in the visual cortex may provide a key foundation of consciousness.
Collapse
|
45
|
Abstract
Newell & Shanks (N&S) argue that an explanation for blindsight need not appeal to unconscious brain processes, citing research indicating that the condition merely reflects degraded visual experience. We reply that other evidence suggests blindsighters' predictive behavior under forced choice reflects cognitive access to low-level visual information that does not correlate with visual consciousness. Therefore, while we grant that visual consciousness may be required for full visual experience, we argue that it may not be needed for decision making and judgment.
Collapse
|
46
|
Abstract
To what extent do we know our own minds when making decisions? Variants of this question have preoccupied researchers in a wide range of domains, from mainstream experimental psychology (cognition, perception, social behavior) to cognitive neuroscience and behavioral economics. A pervasive view places a heavy explanatory burden on an intelligent cognitive unconscious, with many theories assigning causally effective roles to unconscious influences. This article presents a novel framework for evaluating these claims and reviews evidence from three major bodies of research in which unconscious factors have been studied: multiple-cue judgment, deliberation without attention, and decisions under uncertainty. Studies of priming (subliminal and primes-to-behavior) and the role of awareness in movement and perception (e.g., timing of willed actions, blindsight) are also given brief consideration. The review highlights that inadequate procedures for assessing awareness, failures to consider artifactual explanations of "landmark" results, and a tendency to uncritically accept conclusions that fit with our intuitions have all contributed to unconscious influences being ascribed inflated and erroneous explanatory power in theories of decision making. The review concludes by recommending that future research should focus on tasks in which participants' attention is diverted away from the experimenter's hypothesis, rather than the highly reflective tasks that are currently often employed.
Collapse
|
47
|
Fayel A, Chokron S, Cavézian C, Vergilino-Perez D, Lemoine C, Doré-Mazars K. Characteristics of contralesional and ipsilesional saccades in hemianopic patients. Exp Brain Res 2013; 232:903-17. [PMID: 24366440 DOI: 10.1007/s00221-013-3803-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 11/29/2013] [Indexed: 11/25/2022]
Abstract
In order to further our understanding of action-blindsight, four hemianopic patients suffering from visual field loss contralateral to a unilateral occipital lesion were compared to six healthy controls during a double task of verbally reported target detection and saccadic responses toward the target. Three oculomotor tasks were used: a fixation task (i.e., without saccade) and two saccade tasks (eliciting reflexive and voluntary saccades, using step and overlap 600 ms paradigms, respectively), in separate sessions. The visual target was briefly presented at two different eccentricities (5° and 8°), in the right or left visual hemifield. Blank trials were interleaved with target trials, and signal detection theory was applied. Despite their hemifield defect, hemianopic patients retained the ability to direct a saccade toward their contralesional hemifield, whereas verbal detection reports were at chance level. However, saccade parameters (latency and amplitude) were altered by the defect. Saccades to the contralesional hemifield exhibited longer latencies and shorter amplitudes compared to those of the healthy group, whereas only the latencies of reflexive saccades to the ipsilesional hemifield were altered. Furthermore, healthy participants showed the expected latency difference between reflexive and voluntary saccades, with the latter longer than the former. This difference was not found in three out of four patients in either hemifield. Our results show action-blindsight for saccades, but also show that unilateral occipital lesions have effects on saccade generation in both visual hemifields.
Collapse
Affiliation(s)
- Alexandra Fayel
- Laboratoire Vision Action Cognition, EAU 01, INC, IUPDP, Institut de Psychologie, Université Paris Descartes, Sorbonne Paris Cité, 71 Avenue Edouard Vaillant, 92774, Boulogne-Billancourt Cedex, France
| | | | | | | | | | | |
Collapse
|
48
|
Brain-stimulation induced blindsight: unconscious vision or response bias? PLoS One 2013; 8:e82828. [PMID: 24324837 PMCID: PMC3855787 DOI: 10.1371/journal.pone.0082828] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/29/2013] [Indexed: 11/30/2022] Open
Abstract
A dissociation between visual awareness and visual discrimination is referred to as “blindsight”. Blindsight results from loss of function of the primary visual cortex (V1) which can occur due to cerebrovascular accidents (i.e. stroke-related lesions). There are also numerous reports of similar, though reversible, effects on vision induced by transcranial Magnetic Stimulation (TMS) to early visual cortex. These effects point to V1 as the “gate” of visual awareness and have strong implications for understanding the neurological underpinnings of consciousness. It has been argued that evidence for the dissociation between awareness of, and responses to, visual stimuli can be a measurement artifact of the use of a high response criterion under yes-no measures of visual awareness when compared with the criterion free forced-choice responses. This difference between yes-no and forced-choice measures suggests that evidence for a dissociation may actually be normal near-threshold conscious vision. Here we describe three experiments that tested visual performance in normal subjects when their visual awareness was suppressed by applying TMS to the occipital pole. The nature of subjects’ performance whilst undergoing occipital TMS was then verified by use of a psychophysical measure (d') that is independent of response criteria. This showed that there was no genuine dissociation in visual sensitivity measured by yes-no and forced-choice responses. These results highlight that evidence for visual sensitivity in the absence of awareness must be analysed using a bias-free psychophysical measure, such as d', In order to confirm whether or not visual performance is truly unconscious.
Collapse
|
49
|
Kentridge RW, Heywood CA, Weiskrantz L. Residual Vision in Multiple Retinal Locations within a Scotoma: Implications for Blindsight. J Cogn Neurosci 2013; 9:191-202. [PMID: 23962011 DOI: 10.1162/jocn.1997.9.2.191] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
There is an important new proposal that "blindsight"-the ability to detect and identify visual stimuli by forcedchoice guessing and in the absence of conscious awareness when they fall in blind regions of the visual field-is a function of residual "islands" of undamaged visual cortex. This stands in contrast to the widely accepted view that blindsight is exclusively a function of secondary visual pathways. According to the new view, residual vision in blindsight should be patchy. Thus, when apparently wide areas of residual vision in blindsight are found, these may be due to eye-movements that allow stimuli to pass over retinal locations corresponding to islands of sparing. We tested this hypothesis by examining the distribution of residual vision in blindsight when the effects of eye movements on the retinal location of stimuli were minimized. We report a series of experiments that examined twealternate forcedchoice discrimination in the blind field of the subject GY. Using a dual-Purkinje image eye-tracker we applied three methods of minimizing the effects of retinal slippage due to eye-movements on discrimination performance: fixation stability-dependent trials, software image stabilization, and post hoc rejection of trials in which saccadic eye-movements were detected. In the first experiment, GY's discrimination performance was significantly above chance in 8 of 15 locations tested. In the subsequent experiments the subject knew the location of the target in each block of trials, and this resulted in improvements to performance in a further three locations. Increasing the luminance of the stimulus display (while maintaining 95% target contrast), and increasing the temporal discriminability of the forced choice produced performance above chance in all but two of the locations tested. The consistent chance performance observed in two locations in the lower visual field nevertheless implies that GY's blindsight does not extend over the whole of his scotoma. Nevertheless, abolishing, or minimizing, the effects of eye-movements did not result in a loss of detection in all the widely separated regions tested, and we thus conclude that GY's blindsight cannot adequately be explained in terms of islands of spared vision. Islands may account for residual vision in scotomata in some patients, but cannot be a universal account of the phenomenon of blindsight.
Collapse
|
50
|
Evidence that primary visual cortex is required for image, orientation, and motion discrimination by rats. PLoS One 2013; 8:e56543. [PMID: 23441202 PMCID: PMC3575509 DOI: 10.1371/journal.pone.0056543] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/14/2013] [Indexed: 11/28/2022] Open
Abstract
The pigmented Long-Evans rat has proven to be an excellent subject for studying visually guided behavior including quantitative visual psychophysics. This observation, together with its experimental accessibility and its close homology to the mouse, has made it an attractive model system in which to dissect the thalamic and cortical circuits underlying visual perception. Given that visually guided behavior in the absence of primary visual cortex has been described in the literature, however, it is an empirical question whether specific visual behaviors will depend on primary visual cortex in the rat. Here we tested the effects of cortical lesions on performance of two-alternative forced-choice visual discriminations by Long-Evans rats. We present data from one highly informative subject that learned several visual tasks and then received a bilateral lesion ablating >90% of primary visual cortex. After the lesion, this subject had a profound and persistent deficit in complex image discrimination, orientation discrimination, and full-field optic flow motion discrimination, compared with both pre-lesion performance and sham-lesion controls. Performance was intact, however, on another visual two-alternative forced-choice task that required approaching a salient visual target. A second highly informative subject learned several visual tasks prior to receiving a lesion ablating >90% of medial extrastriate cortex. This subject showed no impairment on any of the four task categories. Taken together, our data provide evidence that these image, orientation, and motion discrimination tasks require primary visual cortex in the Long-Evans rat, whereas approaching a salient visual target does not.
Collapse
|