1
|
Ravignani A, Honing H, Kotz SA. Editorial: The Evolution of Rhythm Cognition: Timing in Music and Speech. Front Hum Neurosci 2017; 11:303. [PMID: 28659775 PMCID: PMC5468413 DOI: 10.3389/fnhum.2017.00303] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 05/26/2017] [Indexed: 01/12/2023] Open
Affiliation(s)
- Andrea Ravignani
- Veterinary and Research Department, Sealcentre PieterburenPieterburen, Netherlands.,Language and Cognition Department, Max Planck Institute for PsycholinguisticsNijmegen, Netherlands.,Artificial Intelligence Lab, Vrije Universiteit BrusselBrussels, Belgium
| | - Henkjan Honing
- Music Cognition Group, Amsterdam Brain and Cognition, Institute for Logic, Language, and Computation, University of AmsterdamAmsterdam, Netherlands
| | - Sonja A Kotz
- Basic and Applied NeuroDynamics Lab, Faculty of Psychology and Neuroscience, Department of Neuropsychology and Psychopharmacology, Maastricht UniversityMaastricht, Netherlands.,Department of Neuropsychology, Max-Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany
| |
Collapse
|
2
|
Filippi P. Emotional and Interactional Prosody across Animal Communication Systems: A Comparative Approach to the Emergence of Language. Front Psychol 2016; 7:1393. [PMID: 27733835 PMCID: PMC5039945 DOI: 10.3389/fpsyg.2016.01393] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/31/2016] [Indexed: 01/29/2023] Open
Abstract
Across a wide range of animal taxa, prosodic modulation of the voice can express emotional information and is used to coordinate vocal interactions between multiple individuals. Within a comparative approach to animal communication systems, I hypothesize that the ability for emotional and interactional prosody (EIP) paved the way for the evolution of linguistic prosody - and perhaps also of music, continuing to play a vital role in the acquisition of language. In support of this hypothesis, I review three research fields: (i) empirical studies on the adaptive value of EIP in non-human primates, mammals, songbirds, anurans, and insects; (ii) the beneficial effects of EIP in scaffolding language learning and social development in human infants; (iii) the cognitive relationship between linguistic prosody and the ability for music, which has often been identified as the evolutionary precursor of language.
Collapse
Affiliation(s)
- Piera Filippi
- Department of Artificial Intelligence, Vrije Universiteit BrusselBrussels, Belgium
| |
Collapse
|
3
|
Ravignani A, Fitch WT, Hanke FD, Heinrich T, Hurgitsch B, Kotz SA, Scharff C, Stoeger AS, de Boer B. What Pinnipeds Have to Say about Human Speech, Music, and the Evolution of Rhythm. Front Neurosci 2016; 10:274. [PMID: 27378843 PMCID: PMC4913109 DOI: 10.3389/fnins.2016.00274] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/31/2016] [Indexed: 12/19/2022] Open
Abstract
Research on the evolution of human speech and music benefits from hypotheses and data generated in a number of disciplines. The purpose of this article is to illustrate the high relevance of pinniped research for the study of speech, musical rhythm, and their origins, bridging and complementing current research on primates and birds. We briefly discuss speech, vocal learning, and rhythm from an evolutionary and comparative perspective. We review the current state of the art on pinniped communication and behavior relevant to the evolution of human speech and music, showing interesting parallels to hypotheses on rhythmic behavior in early hominids. We suggest future research directions in terms of species to test and empirical data needed.
Collapse
Affiliation(s)
- Andrea Ravignani
- Artificial Intelligence Lab, Vrije Universiteit BrusselBrussels, Belgium; Sensory and Cognitive Ecology, Institute for Biosciences, University of RostockRostock, Germany
| | - W Tecumseh Fitch
- Department of Cognitive Biology, University of Vienna Vienna, Austria
| | - Frederike D Hanke
- Sensory and Cognitive Ecology, Institute for Biosciences, University of Rostock Rostock, Germany
| | - Tamara Heinrich
- Sensory and Cognitive Ecology, Institute for Biosciences, University of Rostock Rostock, Germany
| | | | - Sonja A Kotz
- Basic and Applied NeuroDynamics Lab, Department of Neuropsychology and Psychopharmacology, Maastricht UniversityMaastricht, Netherlands; Department of Neuropsychology, Max-Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany
| | - Constance Scharff
- Department of Animal Behavior, Institute of Biology, Freie Universität Berlin Berlin, Germany
| | - Angela S Stoeger
- Department of Cognitive Biology, University of Vienna Vienna, Austria
| | - Bart de Boer
- Artificial Intelligence Lab, Vrije Universiteit Brussel Brussels, Belgium
| |
Collapse
|
4
|
Ten Cate C, Spierings M, Hubert J, Honing H. Can Birds Perceive Rhythmic Patterns? A Review and Experiments on a Songbird and a Parrot Species. Front Psychol 2016; 7:730. [PMID: 27242635 PMCID: PMC4872036 DOI: 10.3389/fpsyg.2016.00730] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/29/2016] [Indexed: 12/03/2022] Open
Abstract
While humans can easily entrain their behavior with the beat in music, this ability is rare among animals. Yet, comparative studies in non-human species are needed if we want to understand how and why this ability evolved. Entrainment requires two abilities: (1) recognizing the regularity in the auditory stimulus and (2) the ability to adjust the own motor output to the perceived pattern. It has been suggested that beat perception and entrainment are linked to the ability for vocal learning. The presence of some bird species showing beat induction, and also the existence of vocal learning as well as vocal non-learning bird taxa, make them relevant models for comparative research on rhythm perception and its link to vocal learning. Also, some bird vocalizations show strong regularity in rhythmic structure, suggesting that birds might perceive rhythmic structures. In this paper we review the available experimental evidence for the perception of regularity and rhythms by birds, like the ability to distinguish regular from irregular stimuli over tempo transformations and report data from new experiments. While some species show a limited ability to detect regularity, most evidence suggests that birds attend primarily to absolute and not relative timing of patterns and to local features of stimuli. We conclude that, apart from some large parrot species, there is limited evidence for beat and regularity perception among birds and that the link to vocal learning is unclear. We next report the new experiments in which zebra finches and budgerigars (both vocal learners) were first trained to distinguish a regular from an irregular pattern of beats and then tested on various tempo transformations of these stimuli. The results showed that both species reduced the discrimination after tempo transformations. This suggests that, as was found in earlier studies, they attended mainly to local temporal features of the stimuli, and not to their overall regularity. However, some individuals of both species showed an additional sensitivity to the more global pattern if some local features were left unchanged. Altogether our study indicates both between and within species variation, in which birds attend to a mixture of local and to global rhythmic features.
Collapse
Affiliation(s)
- Carel Ten Cate
- Behavioural Biology, Institute of Biology Leiden and Leiden Institute for Brain and Cognition, Leiden University Leiden, Netherlands
| | - Michelle Spierings
- Behavioural Biology, Institute of Biology Leiden and Leiden Institute for Brain and Cognition, Leiden University Leiden, Netherlands
| | - Jeroen Hubert
- Behavioural Biology, Institute of Biology Leiden and Leiden Institute for Brain and Cognition, Leiden University Leiden, Netherlands
| | - Henkjan Honing
- Amsterdam Brain and Cognition, Institute for Logic Language and Computation, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
5
|
Ravignani A, Westphal-Fitch G, Aust U, Schlumpp MM, Fitch WT. More than one way to see it: Individual heuristics in avian visual computation. Cognition 2015; 143:13-24. [PMID: 26113444 PMCID: PMC4710635 DOI: 10.1016/j.cognition.2015.05.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 04/15/2015] [Accepted: 05/26/2015] [Indexed: 11/05/2022]
Abstract
Comparative pattern learning experiments investigate how different species find regularities in sensory input, providing insights into cognitive processing in humans and other animals. Past research has focused either on one species' ability to process pattern classes or different species' performance in recognizing the same pattern, with little attention to individual and species-specific heuristics and decision strategies. We trained and tested two bird species, pigeons (Columba livia) and kea (Nestor notabilis, a parrot species), on visual patterns using touch-screen technology. Patterns were composed of several abstract elements and had varying degrees of structural complexity. We developed a model selection paradigm, based on regular expressions, that allowed us to reconstruct the specific decision strategies and cognitive heuristics adopted by a given individual in our task. Individual birds showed considerable differences in the number, type and heterogeneity of heuristic strategies adopted. Birds' choices also exhibited consistent species-level differences. Kea adopted effective heuristic strategies, based on matching learned bigrams to stimulus edges. Individual pigeons, in contrast, adopted an idiosyncratic mix of strategies that included local transition probabilities and global string similarity. Although performance was above chance and quite high for kea, no individual of either species provided clear evidence of learning exactly the rule used to generate the training stimuli. Our results show that similar behavioral outcomes can be achieved using dramatically different strategies and highlight the dangers of combining multiple individuals in a group analysis. These findings, and our general approach, have implications for the design of future pattern learning experiments, and the interpretation of comparative cognition research more generally.
Collapse
Affiliation(s)
- Andrea Ravignani
- Department of Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; Language Evolution and Computation Research Unit, University of Edinburgh, EH8 9AD Edinburgh, UK.
| | - Gesche Westphal-Fitch
- Department of Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Ulrike Aust
- Department of Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Martin M Schlumpp
- Department of Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; Haidlhof Research Station, University of Vienna/University of Veterinary Medicine Vienna/Messerli Research Institute, 2540 Bad Vöslau, Austria
| | - W Tecumseh Fitch
- Department of Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; Haidlhof Research Station, University of Vienna/University of Veterinary Medicine Vienna/Messerli Research Institute, 2540 Bad Vöslau, Austria.
| |
Collapse
|
6
|
Ravignani A. Evolving perceptual biases for antisynchrony: a form of temporal coordination beyond synchrony. Front Neurosci 2015; 9:339. [PMID: 26483622 PMCID: PMC4588693 DOI: 10.3389/fnins.2015.00339] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 09/08/2015] [Indexed: 11/22/2022] Open
Affiliation(s)
- Andrea Ravignani
- Artificial Intelligence Lab, Vrije Universiteit BrusselBrussels, Belgium
- Sensory and Cognitive Ecology Group, Universität RostockRostock, Germany
| |
Collapse
|
7
|
Ravignani A, Bowling DL, Fitch WT. Chorusing, synchrony, and the evolutionary functions of rhythm. Front Psychol 2014; 5:1118. [PMID: 25346705 PMCID: PMC4193405 DOI: 10.3389/fpsyg.2014.01118] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/15/2014] [Indexed: 11/13/2022] Open
Abstract
A central goal of biomusicology is to understand the biological basis of human musicality. One approach to this problem has been to compare core components of human musicality (relative pitch perception, entrainment, etc.) with similar capacities in other animal species. Here we extend and clarify this comparative approach with respect to rhythm. First, whereas most comparisons between human music and animal acoustic behavior have focused on spectral properties (melody and harmony), we argue for the central importance of temporal properties, and propose that this domain is ripe for further comparative research. Second, whereas most rhythm research in non-human animals has examined animal timing in isolation, we consider how chorusing dynamics can shape individual timing, as in human music and dance, arguing that group behavior is key to understanding the adaptive functions of rhythm. To illustrate the interdependence between individual and chorusing dynamics, we present a computational model of chorusing agents relating individual call timing with synchronous group behavior. Third, we distinguish and clarify mechanistic and functional explanations of rhythmic phenomena, often conflated in the literature, arguing that this distinction is key for understanding the evolution of musicality. Fourth, we expand biomusicological discussions beyond the species typically considered, providing an overview of chorusing and rhythmic behavior across a broad range of taxa (orthopterans, fireflies, frogs, birds, and primates). Finally, we propose an "Evolving Signal Timing" hypothesis, suggesting that similarities between timing abilities in biological species will be based on comparable chorusing behaviors. We conclude that the comparative study of chorusing species can provide important insights into the adaptive function(s) of rhythmic behavior in our "proto-musical" primate ancestors, and thus inform our understanding of the biology and evolution of rhythm in human music and language.
Collapse
Affiliation(s)
- Andrea Ravignani
- Department of Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna Austria
| | - Daniel L Bowling
- Department of Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna Austria
| | - W Tecumseh Fitch
- Department of Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna Austria
| |
Collapse
|