1
|
Maister L, De Beukelaer S, Longo MR, Tsakiris M. The Self in the Mind's Eye: Revealing How We Truly See Ourselves Through Reverse Correlation. Psychol Sci 2021; 32:1965-1978. [PMID: 34761992 DOI: 10.1177/09567976211018618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Is there a way to visually depict the image people "see" of themselves in their minds' eyes? And if so, what can these mental images tell us about ourselves? We used a computational reverse-correlation technique to explore individuals' mental "self-portraits" of their faces and body shapes in an unbiased, data-driven way (total N = 116 adults). Self-portraits were similar to individuals' real faces but, importantly, also contained clues to each person's self-reported personality traits, which were reliably detected by external observers. Furthermore, people with higher social self-esteem produced more true-to-life self-portraits. Unlike face portraits, body portraits had negligible relationships with individuals' actual body shape, but as with faces, they were influenced by people's beliefs and emotions. We show how psychological beliefs and attitudes about oneself bias the perceptual representation of one's appearance and provide a unique window into the internal mental self-representation-findings that have important implications for mental health and visual culture.
Collapse
Affiliation(s)
| | | | - Matthew R Longo
- Department of Psychological Sciences, Birkbeck, University of London
| | - Manos Tsakiris
- The Warburg Institute, School of Advanced Study, University of London.,Department of Psychology, Royal Holloway, University of London.,Department of Behavioural and Cognitive Sciences, Faculty of Humanities, Education and Social Sciences, University of Luxembourg
| |
Collapse
|
2
|
Evidence that within-dimension features are generally processed coactively. Atten Percept Psychophys 2019; 82:193-227. [PMID: 31254263 DOI: 10.3758/s13414-019-01775-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this paper, we examine whether information about an item's category, provided by the same dimension type presented across multiple spatial locations (which we term within-dimension features), is processed independently or pooled into a common representation. We use Systems Factorial Technology (SFT; Townsend & Nozawa, Journal of Mathematical Psychology, 39, 321-340, 1995) and fit parametric logical rule-based models to diagnose whether information processing is serial, parallel, or coactive. The present work focuses on expanding the scope of categorization response time (RT) models by synthesizing recent work in perceptual categorization with theories of visual attention. Our results show that for the majority of participants, processing occurs coactively (i.e., is pooled into a single decision process). For the remainder, other processing strategies were found (e.g., parallel processing). This finding provides new insight into decision-making using within-dimension features presented in multiple locations. It also highlights the importance of both featural information and spatial attention in categorization decision-making.
Collapse
|
3
|
Yang L, Dong Y, Wu C, Li Y, Guo Y, Yang B, Zong X, Hamblin MR, Cheng-Yi Liu T, Zhang Q. Photobiomodulation preconditioning prevents cognitive impairment in a neonatal rat model of hypoxia-ischemia. JOURNAL OF BIOPHOTONICS 2019; 12:e201800359. [PMID: 30652418 PMCID: PMC6546525 DOI: 10.1002/jbio.201800359] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/02/2018] [Accepted: 01/12/2019] [Indexed: 05/13/2023]
Abstract
Neonatal hypoxia-ischemia (HI) injury caused by oxygen deprivation is the most common cause of mortality and severe neurologic deficits in neonates. The present work evaluated the preventative effect of photobiomodulation (PBM) preconditioning, and its underlying mechanism of action on brain damage in an HI model in neonatal rats. According to the optimal time response of ATP levels in brain samples removed from normal rats, a PBM preconditioning (PBM-P) regimen (808 nm CW laser, 1 cm2 spot, 100 mW/cm2 , 12 J/cm2 ) was delivered to the scalp 6 hours before HI. PBM-P significantly attenuated cognitive impairment, volume shrinkage in the brain, neuron loss, dendritic and synaptic injury after HI. Further mechanistic investigation found that PBM-P could restore HI-induced mitochondrial dynamics and inhibit mitochondrial fragmentation, followed by a robust suppression of cytochrome c release, and prevention of neuronal apoptosis by inhibition of caspase activation. Our work suggests that PBM-P can attenuate HI-induced brain injury by maintaining mitochondrial dynamics and inhibiting the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Luodan Yang
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, University Town, Guangzhou, GD 510006, China
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Yan Dong
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Chongyun Wu
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, University Town, Guangzhou, GD 510006, China
| | - Yong Li
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Yichen Guo
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Baocheng Yang
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Xuemei Zong
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, University Town, Guangzhou, GD 510006, China
| | - Quanguang Zhang
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, University Town, Guangzhou, GD 510006, China
| |
Collapse
|