1
|
Liang T, Peng RC, Rong KL, Li JX, Ke Y, Yung WH. Disparate processing of numerosity and associated continuous magnitudes in rats. SCIENCE ADVANCES 2024; 10:eadj2566. [PMID: 38381814 PMCID: PMC10881051 DOI: 10.1126/sciadv.adj2566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
The studies of number sense in different species are severely hampered by the inevitable entanglement of non-numerical attributes inherent in nonsymbolic stimuli representing numerosity, resulting in contrasting theories of numerosity processing. Here, we developed an algorithm and associated analytical methods to generate stimuli that not only minimized the impact of non-numerical magnitudes in numerosity perception but also allowed their quantification. We trained number-naïve rats with these stimuli as sound pulses representing two or three numbers and demonstrated that their numerical discrimination ability mainly relied on numerosity. Also, studying the learning process revealed that rats used numerosity before using magnitudes for choices. This numerical processing could be impaired specifically by silencing the posterior parietal cortex. Furthermore, modeling this capacity by neural networks shed light on the separation of numerosity and magnitudes extraction. Our study helps dissect the relationship between magnitude and numerosity processing, and the above different findings together affirm the independent existence of innate number and magnitudes sense in rats.
Collapse
Affiliation(s)
- Tuo Liang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Rong-Chao Peng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- School of Biomedical Engineering, Guangdong Medical University, Dongguan, Guangdong, China
| | - Kang-Lin Rong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jia-Xin Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
The role of spatial information in an approximate cross-modal number matching task. Atten Percept Psychophys 2023; 85:1253-1266. [PMID: 36720781 PMCID: PMC9888741 DOI: 10.3758/s13414-023-02658-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 02/02/2023]
Abstract
The approximate number system (ANS) is thought to be an innate cognitive system that allows humans to perceive numbers (>4) in a fuzzy manner. One assumption of the ANS is that numerosity is represented amodally due to a mechanism, which filters out nonnumerical information from stimulus material. However, some studies show that nonnumerical information (e.g., spatial parameters) influence the numerosity percept as well. Here, we investigated whether there is a cross-modal transfer of spatial information between the haptic and visual modality in an approximate cross-modal number matching task. We presented different arrays of dowels (haptic stimuli) to 50 undergraduates and asked them to compare haptically perceived numerosity to two visually presented dot arrays. Participants chose which visually presented array matched the numerosity of the haptic stimulus. The distractor varied in number and displayed a random pattern, whereas the matching (target) dot array was either spatially identical or spatially randomized (to the haptic stimulus). We hypothesized that if a "numerosity" percept is based solely on number, neither spatially identical nor spatial congruence between the haptic and the visual target arrays would affect the accuracy in the task. However, results show significant processing advantages for targets with spatially identical patterns and, furthermore, that spatial congruency between haptic source and visual target facilitates performance. Our results show that spatial information was extracted from the haptic stimuli and influenced participants' responses, which challenges the assumption that numerosity is represented in a truly abstract manner by filtering out any other stimulus features.
Collapse
|
3
|
Eckert J, Bohn M, Spaethe J. Does quantity matter to a stingless bee? Anim Cogn 2022; 25:617-629. [PMID: 34812987 PMCID: PMC9107420 DOI: 10.1007/s10071-021-01581-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 11/19/2022]
Abstract
Quantitative information is omnipresent in the world and a wide range of species has been shown to use quantities to optimize their decisions. While most studies have focused on vertebrates, a growing body of research demonstrates that also insects such as honeybees possess basic quantitative abilities that might aid them in finding profitable flower patches. However, it remains unclear if for insects, quantity is a salient feature relative to other stimulus dimensions, or if it is only used as a "last resort" strategy in case other stimulus dimensions are inconclusive. Here, we tested the stingless bee Trigona fuscipennis, a species representative of a vastly understudied group of tropical pollinators, in a quantity discrimination task. In four experiments, we trained wild, free-flying bees on stimuli that depicted either one or four elements. Subsequently, bees were confronted with a choice between stimuli that matched the training stimulus either in terms of quantity or another stimulus dimension. We found that bees were able to discriminate between the two quantities, but performance differed depending on which quantity was rewarded. Furthermore, quantity was more salient than was shape. However, quantity did not measurably influence the bees' decisions when contrasted with color or surface area. Our results demonstrate that just as honeybees, small-brained stingless bees also possess basic quantitative abilities. Moreover, invertebrate pollinators seem to utilize quantity not only as "last resort" but as a salient stimulus dimension. Our study contributes to the growing body of knowledge on quantitative cognition in invertebrate species and adds to our understanding of the evolution of numerical cognition.
Collapse
Affiliation(s)
- Johanna Eckert
- Department of Comparative Cultural Psychology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany.
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Manuel Bohn
- Department of Comparative Cultural Psychology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Johannes Spaethe
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
4
|
Leibovich-Raveh T, Raveh A, Vilker D, Gabay S. Magnitude integration in the Archerfish. Sci Rep 2021; 11:15664. [PMID: 34341367 PMCID: PMC8329031 DOI: 10.1038/s41598-021-94956-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
We make magnitude-related decisions every day, for example, to choose the shortest queue at the grocery store. When making such decisions, which magnitudes do we consider? The dominant theory suggests that our focus is on numerical quantity, i.e., the number of items in a set. This theory leads to quantity-focused research suggesting that discriminating quantities is automatic, innate, and is the basis for mathematical abilities in humans. Another theory suggests, instead, that non-numerical magnitudes, such as the total area of the compared items, are usually what humans rely on, and numerical quantity is used only when required. Since wild animals must make quick magnitude-related decisions to eat, seek shelter, survive, and procreate, studying which magnitudes animals spontaneously use in magnitude-related decisions is a good way to study the relative primacy of numerical quantity versus non-numerical magnitudes. We asked whether, in an animal model, the influence of non-numerical magnitudes on performance in a spontaneous magnitude comparison task is modulated by the number of non-numerical magnitudes that positively correlate with numerical quantity. Our animal model was the Archerfish, a fish that, in the wild, hunts insects by shooting a jet of water at them. These fish were trained to shoot water at artificial targets presented on a computer screen above the water tank. We tested the Archerfish's performance in spontaneous, untrained two-choice magnitude decisions. We found that the fish tended to select the group containing larger non-numerical magnitudes and smaller quantities of dots. The fish selected the group containing more dots mostly when the quantity of the dots was positively correlated with all five different non-numerical magnitudes. The current study adds to the body of studies providing direct evidence that in some cases animals' magnitude-related decisions are more affected by non-numerical magnitudes than by numerical quantity, putting doubt on the claims that numerical quantity perception is the most basic building block of mathematical abilities.
Collapse
Affiliation(s)
- Tali Leibovich-Raveh
- grid.18098.380000 0004 1937 0562Department of Mathematics Education, Faculty of Education, University of Haifa, Haifa, Israel
| | - Ashael Raveh
- grid.18098.380000 0004 1937 0562The Institute of Information Processing and Decision Making and the School of Psychological Sciences, University of Haifa, Haifa, Israel ,grid.18098.380000 0004 1937 0562Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Dana Vilker
- grid.18098.380000 0004 1937 0562The Institute of Information Processing and Decision Making and the School of Psychological Sciences, University of Haifa, Haifa, Israel
| | - Shai Gabay
- grid.18098.380000 0004 1937 0562The Institute of Information Processing and Decision Making and the School of Psychological Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
5
|
Caicoya AL, Colell M, Holland R, Ensenyat C, Amici F. Giraffes go for more: a quantity discrimination study in giraffes (Giraffa camelopardalis). Anim Cogn 2020; 24:483-495. [PMID: 33128196 DOI: 10.1007/s10071-020-01442-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
Many species, including humans, rely on an ability to differentiate between quantities to make decisions about social relationships, territories, and food. This study is the first to investigate whether giraffes (Giraffa camelopardalis) are able to select the larger of two sets of quantities in different conditions, and how size and density affect these decisions. In Task 1, we presented five captive giraffes with two sets containing a different quantity of identical foods items. In Tasks 2 and 3, we also modified the size and density of the food reward distribution. The results showed that giraffes (i) can successfully make quantity judgments following Weber's law, (ii) can reliably rely on size to maximize their food income, and (iii) are more successful when comparing sparser than denser distributions. More studies on different taxa are needed to understand whether specific selective pressures have favored the evolution of these skills in certain taxa.
Collapse
Affiliation(s)
- Alvaro L Caicoya
- Department of Clinical Psychology and Psychobiology, Faculty of Psychology, University of Barcelona, Barcelona, Spain. .,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.
| | - Montserrat Colell
- Department of Clinical Psychology and Psychobiology, Faculty of Psychology, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | | | | | - Federica Amici
- Behavioral Ecology Research Group, Institute of Biology, University of Leipzig, Leipzig, Germany.,Research Group "Primate Behavioural Ecology", Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
6
|
Carey S, Barner D. Ontogenetic Origins of Human Integer Representations. Trends Cogn Sci 2019; 23:823-835. [PMID: 31439418 DOI: 10.1016/j.tics.2019.07.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 11/30/2022]
Abstract
Do children learn number words by associating them with perceptual magnitudes? Recent studies argue that approximate numerical magnitudes play a foundational role in the development of integer concepts. Against this, we argue that approximate number representations fail both empirically and in principle to provide the content required of integer concepts. Instead, we suggest that children's understanding of integer concepts proceeds in two phases. In the first phase, children learn small exact number word meanings by associating words with small sets. In the second phase, children learn the meanings of larger number words by mastering the logic of exact counting algorithms, which implement the successor function and Hume's principle (that one-to-one correspondence guarantees exact equality). In neither phase do approximate number representations play a foundational role.
Collapse
Affiliation(s)
- Susan Carey
- Department of Psychology, Harvard University, Cambridge, MA 02138, USA.
| | - David Barner
- Department of Psychology, University of California, San Diego, La Jolla, CA 92093, USA; University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|