1
|
Thomas A, Banna S, Shahu A, Ali T, Schenck C, Patel B, Notarianni A, Phommalinh M, Kochar A, Heck C, van Diepen S, Miller PE. Propofol vs etomidate for induction prior to invasive mechanical ventilation in patients with acute myocardial infarction. Am Heart J 2024; 272:116-125. [PMID: 38554762 DOI: 10.1016/j.ahj.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Patients with acute myocardial infarction (AMI) requiring invasive mechanical ventilation (IMV) have a high mortality. However, little is known regarding the impact of induction agents, used prior to IMV, on clinical outcomes in this population. We assessed for the association between induction agent and mortality in patients with AMI requiring IMV. METHODS We compared clinical outcomes between those receiving propofol compared to etomidate for induction among adults with AMI between October 2015 and December 2019 using the Vizient® Clinical Data Base, a multicenter, US national database. We used inverse probability treatment weighting (IPTW) to assess for the association between induction agent and in-hospital mortality. RESULTS We identified 5,147 patients, 1,386 (26.9%) of received propofol and 3,761 (73.1%) received etomidate for IMV induction. The mean (SD) age was 66.1 (12.4) years, 33.0% were women, and 51.6% and 39.8% presented with STEMI and cardiogenic shock, respectively. Patients in the propofol group were more likely to require preintubation vasoactive medication and mechanical circulatory support (both, P < .05). Utilization of propofol was associated with lower mortality compared to etomidate (32.3% vs 36.1%, P = .01). After propensity weighting, propofol use remained associated with lower mortality (weighted mean difference -4.7%; 95% confidence interval: -7.6% to -1.8%, P = .002). Total cost, ventilator days, and length of stay were higher in the propofol group (all, P < .001). CONCLUSIONS Induction with propofol, compared with etomidate, was associated with lower mortality for patients with AMI requiring IMV. Randomized trials are needed to determine the optimal induction agent for this critically ill patient population.
Collapse
Affiliation(s)
- Alexander Thomas
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT
| | - Soumya Banna
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Andi Shahu
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT
| | - Tariq Ali
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT
| | | | - Bhoumesh Patel
- Department of Anesthesiology, Cardiothoracic Division, Yale University School of Medicine, New Haven, CT
| | - Andrew Notarianni
- Department of Anesthesiology, Cardiothoracic Division, Yale University School of Medicine, New Haven, CT
| | | | - Ajar Kochar
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA
| | - Cory Heck
- Heart and Vascular Center, Yale New Haven Hospital, New Haven, CT
| | - Sean van Diepen
- Department of Critical Care and Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada
| | - P Elliott Miller
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT.
| |
Collapse
|
2
|
Li S, Lei Z, Yang X, Zhao M, Hou Y, Wang D, Tang S, Li J, Yu J. Propofol Protects Myocardium From Ischemia/Reperfusion Injury by Inhibiting Ferroptosis Through the AKT/p53 Signaling Pathway. Front Pharmacol 2022; 13:841410. [PMID: 35370724 PMCID: PMC8966655 DOI: 10.3389/fphar.2022.841410] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/21/2022] [Indexed: 12/19/2022] Open
Abstract
The molecular mechanism underlying the protective role of propofol against myocardial ischemia/reperfusion (I/R) injury remains poorly understood. Previous studies have shown that ferroptosis is an imperative pathological process in myocardial I/R injury. We hypothesized that propofol prevents myocardial I/R injury by inhibiting ferroptosis via the AKT/p53 signaling pathway. The ferroptosis-inducing agent erastin (E) and AKT inhibitor MK2206 (MK) were used to investigate the role of propofol in myocardial I/R injury. H9C2 cells treated without any reagents, erastin for 24 h, propofol for 1 h before adding erastin were assigned as the control (C), E, and E + P group, respectively. Cell viability, reactive oxygen species (ROS), and the expression of antioxidant enzymes, including ferritin heavy chain 1 (FTH1), cysteine/glutamate transporter (XCT), and glutathione peroxidase 4 (GPX4) in H9C2 cells. Rat hearts from the I/R + P or I/R groups were treated with or without propofol for 20 min before stopping perfusion for 30 min and reperfusion for 60 min. Rat hearts from the I/R + P + MK or I/R + MK groups were treated with or without propofol for 20 min, with a 10-min treatment of MK2206 before stopping perfusion. Myocardial histopathology, mitochondrial structure, iron levels, and antioxidant enzymes expression were assessed. Our results demonstrated that erastin increased H9C2 cell mortality and reduced the expression of antioxidant enzymes. I/R, which reduced the expression of antioxidant enzymes and increased iron or p53 (p < 0.05), boosted myocardium pathological and mitochondrion damage. Propofol inhibited these changes; however, the effects of propofol on I/R injury were antagonized by MK (p < 0.05). In addition, AKT siRNA inhibited the propofol-induced expression of antioxidant enzymes (p < 0.05). Our findings confirm that propofol protects myocardium from I/R injury by inhibiting ferroptosis via the AKT/p53 signal pathway.
Collapse
Affiliation(s)
- Shengqiang Li
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhen Lei
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaomei Yang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Meng Zhao
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yonghao Hou
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Di Wang
- Department of Anesthesiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuhai Tang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- *Correspondence: Jingxin Li, ; Jingui Yu,
| | - Jingui Yu
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Jingxin Li, ; Jingui Yu,
| |
Collapse
|
3
|
Li S, Lei Z, Zhao M, Hou Y, Wang D, Xu X, Lin X, Li J, Tang S, Yu J, Meng T. Propofol Inhibits Ischemia/Reperfusion-Induced Cardiotoxicity Through the Protein Kinase C/Nuclear Factor Erythroid 2-Related Factor Pathway. Front Pharmacol 2021; 12:655726. [PMID: 34054535 PMCID: PMC8155638 DOI: 10.3389/fphar.2021.655726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/30/2021] [Indexed: 12/29/2022] Open
Abstract
Both hydrogen peroxide (H2O2, H) and ischemia/reperfusion (I/R) can damage cardiomyocytes, which was inhibited by propofol (P). The present research was designed to examine whether propofol can reduce myocardial I/R injury by activating protein kinase C (PKC)/nuclear factor erythroid-2-related factor 2 (NRF2) pathway in H9C2 cells and rat Langendorff models. H9C2 cells were disposed of no reagents (C), H2O2 for 24 h (H), propofol for 1 h before H2O2 (H+P), and chelerythrine (CHE, PKC inhibitor) for 1 h before propofol and H2O2 (H+P+CHE). N = 3. The PKC gene of H9C2 was knocked down by siRNA and overexpressed by phorbol 12-myristate 13-acetate (PMA, PKC agonist). The cell viability and the expressions of PKC, NRF2, or heme oxygenase-1(HO-1) were evaluated. Propofol significantly reduced H9C2 cell mortality induced by H2O2, and significantly increased NRF2 nuclear location and HO-1 expression, which were restrained by siRNA knockout of PKC and promoted by PMA. Rat hearts were treated with KrebsHenseleit solution for 120 min (C), with (I/R+P) or without (I/R) propofol for 20 min before stopping perfusion for 30 min and reperfusion for 60 min, and CHE for 10 min before treated with propofol. N = 6. The levels of lactate dehydrogenase (LDH), superoxide dismutase (SOD), and creatine kinase-MB (CK-MB) in perfusion fluid and antioxidant enzymes in the myocardium were assessed. I/R, which increased LDH and CK-MB expression and reduced SOD expression, boosted the pathological damage and infarcts of the myocardium after reperfusion. However, propofol restrained all these effects, an activity that was antagonized by CHE. The results suggest that propofol pretreatment protects against I/R injury by activating of PKC/NRF2 pathway.
Collapse
Affiliation(s)
- Shengqiang Li
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhen Lei
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Meng Zhao
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yonghao Hou
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Di Wang
- Department of Anesthesiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xingli Xu
- Department of Cardiovascular Ultrasound and Non-invasive Cardiology, Sichuan People's Hospital, Chengdu, China
| | - Xiaowen Lin
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jingxin Li
- Department of Physiology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuhai Tang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingui Yu
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Meng
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
4
|
Lotz C, Stumpner J, Smul TM. Sevoflurane as opposed to propofol anesthesia preserves mitochondrial function and alleviates myocardial ischemia/reperfusion injury. Biomed Pharmacother 2020; 129:110417. [PMID: 32574972 DOI: 10.1016/j.biopha.2020.110417] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Pharmacological interventions reducing myocardial ischemia and reperfusion (I/R) injury include the administration of anesthetics. Both sevoflurane as well as propofol have been shown to elicit cardiac protection via distinct molecular mechanisms. We investigated the hypothesis that sevoflurane in contrary to propofol anesthesia elicits cardiac protection against I/R-injury via mitochondrial mechanisms of disease. METHODS Male New Zealand white rabbits (n = 42) were subjected 30 min of coronary artery occlusion followed by 3 h of reperfusion. After induction with pentobarbital, the animals either received sevoflurane or propofol to maintain general anesthesia. Infarct size was determined gravimetrically after triphenyltetrazolium chlorid-staining. Cardiac mitochondria were isolated and mitochondrial oxygen consumption was measured using a Clark electrode. Mitochondrial respiratory chain complex activities (I-IV) were analyzed utilizing specific assays. Data are mean ± SD. RESULTS Sevoflurane anesthesia significantly decreased the resulting myocardial infarct size compared to propofol anesthesia (p = 0.0275 vs. propofol). Mitochondria from animals receiving propofol anesthesia showed a significantly reduced mitochondrial respiratory control ratio (p = 0.01909 vs. sham) and impaired activities of respiratory complex I (p = 0.0147 vs. sham; p < 0.01 vs. sevoflurane) as well as respiratory complex IV (p = 0.0181 vs. sham). Mitochondrial dysfunction was absent in sevoflurane anesthesized animals. Furthermore, a significantly higher portion of complex I was found to be in its deactive form during I/R-injury in animals receiving sevoflurane anesthesia (p = 0.0123 vs. propofol). CONCLUSIONS Sevoflurane as opposed to propofol anesthesia preserved mitochondrial respiration and elicited cardiac protection against I/R-injury.
Collapse
Affiliation(s)
- Christopher Lotz
- Department of Anesthesia and Critical Care, University of Würzburg, Germany.
| | - Jan Stumpner
- Department of Anesthesia and Critical Care, University of Würzburg, Germany
| | - Thorsten M Smul
- Department of Anesthesia and Critical Care, University of Würzburg, Germany
| |
Collapse
|
5
|
Soh S, Song JW, Choi N, Shim JK. Anesthetic-induced myocardial protection in cardiac surgery: relevant mechanisms and clinical translation. Anesth Pain Med (Seoul) 2018. [DOI: 10.17085/apm.2018.13.1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Sarah Soh
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Wook Song
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Nakcheol Choi
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jae-Kwang Shim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Propofol, but not ketamine or midazolam, exerts neuroprotection after ischaemic injury by inhibition of Toll-like receptor 4 and nuclear factor kappa-light-chain-enhancer of activated B-cell signalling: A combined in vitro and animal study. Eur J Anaesthesiol 2018; 33:670-80. [PMID: 26981881 DOI: 10.1097/eja.0000000000000449] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Propofol, midazolam and ketamine are widely used in today's anaesthesia practice. Both neuroprotective and neurotoxic effects have been attributed to all three agents. OBJECTIVE To establish whether propofol, midazolam and ketamine in the same neuronal injury model exert neuroprotective effects on injured neurones in vitro and in vivo by modulation of the Toll-like receptor 4-nuclear factor kappa-light-chain-enhancer of activated B cells (TLR-4-NF-κB) pathway. DESIGN AND SETTING Cell-based laboratory (n = 6 repetitions per experiment) and animal (n = 6 per group) studies using a neuronal cell line (SH-SY5Y cells) and adult Sprague-Dawley rats. INTERVENTIONS Cells were exposed to oxygen-glucose deprivation before or after treatment using escalating, clinically relevant doses of propofol, midazolam and ketamine. In animals, retinal ischaemia (60 min) was induced followed by reperfusion and randomised treatment with saline or propofol. MAIN OUTCOME MEASURES Neuronal cell death was determined using flow-cytometry (mitochondrial membrane potential) and lactate dehydrogenase (LDH) release. Nuclear factor NF-κB and hypoxia-inducible factor 1 α-activity were analysed by DNA-binding ELISA, expression of NF-κB-dependent genes and TLR-4 by luciferase-assay and flow-cytometry, respectively. In animals, retinal ganglion cell density, caspase-3 activation and gene expression (TLR-4, NF-κB) were used to determine in vivo effects of propofol. Results were compared using ANOVA (Analysis of Variance) and t test. A P value less than 0.05 was considered statistically significant. RESULTS Post-treatment with clinically relevant concentrations of propofol (1 to 10 μg ml) preserved the mitochondrial membrane potential in oxygen-glucose deprivation-injured cells by 54% and reduced LDH release by 21%. Propofol diminished TLR-4 surface expression and preserved the DNA-binding activity of the protective hypoxia-inducible factor 1 α transcription factor. DNA-binding and transcriptional NF-κB-activity were inhibited by propofol. Neuronal protection and inhibition of TLR-4-NF-κB signalling were not consistently seen with midazolam or ketamine. In vivo, propofol treatment preserved rat retinal ganglion cell densities (cells mm, saline 1504 ± 251 vs propofol 2088 ± 144, P = 0.0001), which was accompanied by reduced neuronal caspase-3, TLR-4 and NF-κB expression. CONCLUSION Propofol, but neither midazolam nor ketamine, provides neuroprotection to injured neuronal cells via inhibition of TLR-4-NF-κB-dependent signalling.
Collapse
|
7
|
Linner R, Cunha-Goncalves D, Perez-de-Sa V. One oxygen breath shortened the time to return of spontaneous circulation in severely asphyxiated piglets. Acta Paediatr 2017; 106:1556-1563. [PMID: 28513002 DOI: 10.1111/apa.13920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/22/2017] [Accepted: 05/11/2017] [Indexed: 01/20/2023]
Abstract
AIM Asphyxiated neonates should be resuscitated with air, but it remains unclear if oxygen supplementation is needed in ineffectively ventilated newborn infants. We studied the return of spontaneous circulation (ROSC) with oxygen or air in an experimental model of inadequate ventilation. METHODS Asphyxia was induced in 16 newborn piglets until their heart rate was <60 bpm or mean arterial pressure (MAP) <30 mmHg. During the first 10 minutes of resuscitation, they received one breath per minute of oxygen (n = 8) or air (n = 8). Tidal volume was 7.5 mL/kg. If MAP was <30 mmHg for 15 seconds, closed-chest cardiac massage (CCCM) was performed for 45 seconds. From 10 minutes onward, all piglets received normal ventilation with air. ROSC was defined as a heart rate >150 bpm, MAP >40 mmHg and no subsequent CCCM. RESULTS Before resuscitation, the median arterial pH was 6.73. At 10 minutes, no piglets in the oxygen group needed CCCM, while all did in the air group (p < 0.001). The median time to ROSC was 60 seconds with oxygen and 845 seconds with air (p < 0.001). No brain tissue hyperoxia occurred. CONCLUSION When ventilation was inadequate, one oxygen breath reduced time to ROSC in piglets with severe metabolic and respiratory acidosis.
Collapse
Affiliation(s)
- Rikard Linner
- Department of Cardiothoracic Anaesthesia and Intensive Care; Lund University, Skåne University Hospital; Lund Sweden
| | - Doris Cunha-Goncalves
- Department of Cardiothoracic Anaesthesia and Intensive Care; Lund University, Skåne University Hospital; Lund Sweden
| | - Valeria Perez-de-Sa
- Department of Paediatric Anaesthesia and Intensive Care; Lund University, Skåne University Hospital; Lund Sweden
| |
Collapse
|
8
|
Zhang Y, Chen Z, Feng N, Tang J, Zhao X, Liu C, Xu H, Zhang M. Protective effect of propofol preconditioning on ischemia-reperfusion injury in human hepatocyte. J Thorac Dis 2017; 9:702-710. [PMID: 28449478 DOI: 10.21037/jtd.2017.02.80] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Blood reperfusion after ischemia is the main measure to restore cell function. This study was aimed to explore the effect of propofol on rat and cell models of liver ischemia-reperfusion (I/R) injury, and to investigate its possible mechanism. METHODS Wistar rats were divided into four groups: control group, sham group, I/R group, and propofol group. Human hepatocyte HL7702 was divided into six groups: control group, I/R group and propofol (5, 10, 20 and 40 µmol/L) groups. After the animal and cell models were established, the alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA) and adenosine triphosphate (ATP) levels in liver tissues and hepatocytes were measured. Cell viability and apoptosis of hepatocytes were respectively determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and flow cytometry. Furthermore, the expressions of apoptosis-related proteins in hepatocytes were determined by Western blot analysis. RESULTS ALT, AST and MDA levels were all decreased significantly, and the ATP level was increased significantly in propofol group compared with that in I/R group in both liver tissues and hepatocytes. Additionally, cell viability of hepatocytes in propofol group was higher than that in I/R group, while the percentage of apoptotic cells in propofol group was less than that in I/R group. Moreover, the expression of caspase-3 decreased and the expression of Bcl-2 increased significantly after propofol preconditioning. CONCLUSIONS Our findings suggested that propofol preconditioning might be an effective strategy for protecting the liver from I/R injury, which might provide a scientific basis for clinical application.
Collapse
Affiliation(s)
- Yuzhu Zhang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China.,Department of Anesthesiology, Zibo Central Hospital, Zibo 255000, China
| | - Zhenzhen Chen
- Department of Anesthesiology, Zibo Central Hospital, Zibo 255000, China
| | - Nianhai Feng
- Department of Anesthesiology, Zibo Central Hospital, Zibo 255000, China
| | - Junxia Tang
- Department of Anesthesiology, Zibo Central Hospital, Zibo 255000, China
| | - Xingbo Zhao
- Department of Gynaecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Chengxiao Liu
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Hongyu Xu
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China.,Department of Anesthesiology, Zibo Central Hospital, Zibo 255000, China
| | - Mengyuan Zhang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| |
Collapse
|
9
|
Bellanti F, Mirabella L, Mitarotonda D, Blonda M, Tamborra R, Cinnella G, Fersini A, Ambrosi A, Dambrosio M, Vendemiale G, Serviddio G. Propofol but not sevoflurane prevents mitochondrial dysfunction and oxidative stress by limiting HIF-1α activation in hepatic ischemia/reperfusion injury. Free Radic Biol Med 2016; 96:323-33. [PMID: 27154980 DOI: 10.1016/j.freeradbiomed.2016.05.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/16/2016] [Accepted: 05/01/2016] [Indexed: 02/05/2023]
Abstract
Mitochondrial dysfunction, reactive oxygen species (ROS) production and oxidative stress during reperfusion are determinant in hepatic ischemia/reperfusion (I/R) injury but may be impacted by different anesthetic agents. Thus, we aimed at comparing the effects of inhaled sevoflurane or intravenous propofol anesthesia on liver mitochondria in a rodent model of hepatic I/R injury. To this, male Wistar rats underwent I/R surgery using sevoflurane or propofol. In the I/R model, propofol limited the raise in serum aminotransferase levels as compared to sevoflurane. Mitochondrial oxygen uptake, respiratory activity, membrane potential and proton leak were altered in I/R; however, this impairment was significantly prevented by propofol but not sevoflurane. In addition, differently from sevoflurane, propofol limited hepatic I/R-induced mitochondria H2O2 production rate, free radical leak and hydroxynonenal-protein adducts levels. The I/R group anesthetized with propofol also showed a better recovery of hepatic ATP homeostasis and conserved integrity of mitochondrial PTP. Moreover, hypoxia-inducible factor 1 alpha (HIF-1α) expression was limited in such group. By using a cell model of desferoxamine-dependent HIF activation, we demonstrated that propofol was able to inhibit apoptosis and mitochondrial depolarization associated to HIF-1α action. In conclusion, hepatic I/R injury induces mitochondrial dysfunction that is not prevented by inhaled sevoflurane. On the contrary, propofol reduces liver damage and mitochondrial dysfunction by preserving respiratory activity, membrane potential and energy homeostasis, and limiting free radicals production as well as PTP opening. These hepatoprotective effects may involve the inhibition of HIF-1α.
Collapse
Affiliation(s)
- Francesco Bellanti
- C.U.R.E. University Centre for Liver Disease Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| | - Lucia Mirabella
- Department of Anesthesia and Intensive Care, University of Foggia, Foggia, Italy
| | - Domenica Mitarotonda
- C.U.R.E. University Centre for Liver Disease Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Maria Blonda
- C.U.R.E. University Centre for Liver Disease Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Rosanna Tamborra
- C.U.R.E. University Centre for Liver Disease Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Gilda Cinnella
- Department of Anesthesia and Intensive Care, University of Foggia, Foggia, Italy
| | - Alberto Fersini
- Department of General Surgery, University of Foggia, Foggia, Italy
| | - Antonio Ambrosi
- Department of General Surgery, University of Foggia, Foggia, Italy
| | - Michele Dambrosio
- Department of Anesthesia and Intensive Care, University of Foggia, Foggia, Italy
| | - Gianluigi Vendemiale
- C.U.R.E. University Centre for Liver Disease Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Gaetano Serviddio
- C.U.R.E. University Centre for Liver Disease Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
10
|
Lemoine S, Zhu L, Gress S, Gérard JL, Allouche S, Hanouz JL. Mitochondrial involvement in propofol-induced cardioprotection: An in vitro study in human myocardium. Exp Biol Med (Maywood) 2016; 241:527-38. [PMID: 26748397 DOI: 10.1177/1535370215622586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/17/2015] [Indexed: 01/12/2023] Open
Abstract
Propofol has been shown to exert cardioprotection, but the underlying mechanisms remain incompletely understood. We examined: (1) whether propofol-induced cardioprotection depended on the time and the dose of administration; (2) the role of mitochondrial adenosine triphosphate-sensitive potassium channels, nitric oxide synthase, and mitochondrial respiratory chain activity in propofol-induced cardioprotection. Human right atrial trabeculae were obtained during cardiopulmonary bypass for coronary artery bypass and aortic valve replacement. Isometric force of contraction of human right atrial trabeculae hanged in an oxygenated Tyrode's solution was recorded during 30-min hypoxia and 60-min reoxygenation (Control). Propofol 0.1, 1, and 10 µM was administered: (1) 5 min before hypoxia until the end of the experiment; (2) 5 min followed by 5-min washout before hypoxia; (3) during the reoxygenation period, propofol 10 µM was administered in presence of 5-hydroxydecanoate (antagonist of mitochondrial adenosine triphosphate-sensitive potassium channels), and NG-nitro-L-arginine methyl ester (inhibitor of nitric oxide synthase). In addition, mitochondria were isolated from human right atrial at 15 min of reoxygenation. The effect of propofol on activity of the mitochondrial respiratory chain complexes was evaluated by spectrophotometry. The force of contraction (% of baseline) and the complex activity between the different groups were compared with an analysis of variance and post hoc test. Propofol 10 µM administered during the reoxygenation period significantly improved the recovery of force of contraction at the end of reoxygenation (82 ± 6% of baseline value vs. 49 ± 6% in Control; P < 0.001). The beneficial effects of propofol 10 µM were abolished by co-administration with 5-hydroxydecanoate (53 ± 8%) or NG-nitro-L-arginine methyl ester (57 ± 6%). Propofol 10 µM significantly increased enzymatic activities of the mitochondrial respiratory chain complexes, in reoxygenation period, compared to their respective untreated controls. In conclusion, in human myocardium, propofol-induced cardioprotection was mediated by mitochondrial adenosine triphosphate-sensitive potassium channels opening, nitric oxide synthase activation and stimulation of mitochondrial respiratory chain complexes, in early reoxygenation period.
Collapse
Affiliation(s)
- Sandrine Lemoine
- Department of Anesthesiology and Intensive Care, Centre Hospitalier Universitaire de Caen, Faculty of Medicine, Normandie Université, EA4650, Caen 14033, France
| | - Lan Zhu
- Department of Anesthesiology and Intensive Care, Centre Hospitalier Universitaire de Caen, Faculty of Medicine, Normandie Université, EA4650, Caen 14033, France
| | - Steeve Gress
- Department of Anesthesiology and Intensive Care, Centre Hospitalier Universitaire de Caen, Faculty of Medicine, Normandie Université, EA4650, Caen 14033, France
| | - Jean-Louis Gérard
- Department of Anesthesiology and Intensive Care, Centre Hospitalier Universitaire de Caen, Faculty of Medicine, Normandie Université, EA4650, Caen 14033, France
| | - Stéphane Allouche
- Department of Biochemistry, Centre Hospitalier Universitaire de Caen, Faculty of Medicine, Normandie Université, EA4650, Caen 14033, France
| | | |
Collapse
|
11
|
Rogers CA, Bryan AJ, Nash R, Suleiman MS, Baos S, Plummer Z, Hillier J, Davies I, Downes R, Nicholson E, Reeves BC, Angelini GD. Propofol cardioplegia: A single-center, placebo-controlled, randomized controlled trial. J Thorac Cardiovasc Surg 2015; 150:1610-9.e13. [DOI: 10.1016/j.jtcvs.2015.06.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/28/2015] [Accepted: 06/20/2015] [Indexed: 12/09/2022]
|
12
|
Lotz C, Kehl F. Volatile Anesthetic-Induced Cardiac Protection: Molecular Mechanisms, Clinical Aspects, and Interactions With Nonvolatile Agents. J Cardiothorac Vasc Anesth 2015; 29:749-60. [DOI: 10.1053/j.jvca.2014.11.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Indexed: 02/07/2023]
|
13
|
Lin C, Sui H, Gu J, Yang X, Deng L, Li W, Ding W, Li D, Yang Y. Effect and mechanism of propofol on myocardial ischemia reperfusion injury in type 2 diabetic rats. Microvasc Res 2013; 90:162-8. [DOI: 10.1016/j.mvr.2013.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 08/06/2013] [Accepted: 08/12/2013] [Indexed: 11/25/2022]
|
14
|
Sugita S, Okabe T, Sakamoto A. Continuous Infusion of Dexmedetomidine Improves Renal Ischemia-reperfusion Injury in Rat Kidney. J NIPPON MED SCH 2013; 80:131-9. [DOI: 10.1272/jnms.80.131] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Shinji Sugita
- Department of Anesthesiology, Graduate School of Medicine, Nippon Medical School
| | - Tadashi Okabe
- Department of Anesthesiology, Graduate School of Medicine, Nippon Medical School
| | - Atsuhiro Sakamoto
- Department of Anesthesiology, Graduate School of Medicine, Nippon Medical School
| |
Collapse
|
15
|
Giordano C, Kuraitis D, Beanlands RSB, Suuronen EJ, Ruel M. Cell-based vasculogenic studies in preclinical models of chronic myocardial ischaemia and hibernation. Expert Opin Biol Ther 2012; 13:411-28. [PMID: 23256710 DOI: 10.1517/14712598.2013.748739] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Coronary artery disease commonly leads to myocardial ischaemia and hibernation. Relevant preclinical models of these conditions are essential to evaluate new therapeutic options such as cell-based vasculogenic therapies. AREAS COVERED In this article, the authors first review basic concepts of myocardial ischaemia/hibernation and relevant techniques to assess myocardial viability. Then, preclinical models of chronic myocardial ischaemia and hibernation, induced by devices such as ameroid constrictors, Delrin stenosis, hydraulic occluders, and coils/stents are described. Lastly, the authors discuss cell-based vasculogenic therapy, and summarise studies conducted in large animal models of chronic myocardial ischaemia and hibernation. EXPERT OPINION Approximately one-third of patients with viable myocardium do not undergo revascularisation; however, this population is at high risk for cardiac events and would surely benefit from effective cell-based therapy. Because of the modest benefits in clinical studies, preclinical models accurately representing clinical myocardial ischemia/hibernation are necessary to better understand and appropriately direct regenerative therapy research.
Collapse
Affiliation(s)
- Céline Giordano
- University of Ottawa Heart Institute, Division of Cardiac Surgery, 40 Ruskin Street, Suite 3403, Ottawa, Ontario, K1Y 4W7, Canada
| | | | | | | | | |
Collapse
|
16
|
Liu Q, Yao JY, Qian C, Chen R, Li XY, Liu SW, Sun BG, Song LS, Hong J. Effects of propofol on ischemia-induced ventricular arrhythmias and mitochondrial ATP-sensitive potassium channels. Acta Pharmacol Sin 2012; 33:1495-501. [PMID: 22983391 DOI: 10.1038/aps.2012.86] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
AIM To investigate the potential of propofol in suppressing ventricular arrhythmias and to examine whether mitochondrial ATP-sensitive potassium channels are involved. METHODS Male Sprague-Dawley rats were pretreated with intravenous infusion of propofol (Prop), a selective mitochondrial KATP channel inhibitor 5-hydroxydecanoate (5-HD), propofol plus 5-HD (Prop+5-HD), a potent mitochondrial K(ATP) channel opener diazoxide (DZ) or NS, respectively. The dosage of each drug was 10 mg/kg. The animals then underwent a 30 min-ligation of the left anterior descending artery. The severity of arrhythmias, the incidence of ventricular fibrillation (VF), and the time of the first run of ventricular arrhythmias were documented using an arrhythmia scoring system. Mitochondrial membrane potential (ΔΨm) was measured in freshly isolated rat cardiomyocytes with a fluorescence microscope. RESULTS The arrhythmia scores in the Prop and DZ group were 2.6(0-5) and 2.4(0-5), respectively, which were significantly lower than that in the control group [4.9(2-8)]. VF was not observed in both Prop and DZ groups. The first run of ventricular arrhythmias was significantly postponed in the Prop group (10.5±2.2 vs 7.3±1.9 min). Bracketing of propofol with 5-HD eliminated the anti-arrhythmic effect of propofol. In isolated rat cardiomyocytes, propofol (50 μmol/L) significantly decreased ΔΨm, but when propofol was co-administered with 5-HD, the effect on ΔΨm was reversed. CONCLUSION Propofol preconditioning suppresses ischemia-induced ventricular arrhythmias in the rat heart, which are proposed to be caused by opening of mitochondrial K(ATP) channels.
Collapse
|
17
|
Hur MJ, Kim H, Lee DK, Lim SH. The cardioprotective effect of microemulsion propofol against ischemia and reperfusion injury in isolated rat heart. Korean J Anesthesiol 2012; 62:358-64. [PMID: 22558503 PMCID: PMC3337383 DOI: 10.4097/kjae.2012.62.4.358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 11/30/2022] Open
Abstract
Background Lipid-emulsion propofol (LP) has cardioprotective effects against ischemia-reperfusion injury, but it has lipid-related side effects. Microemulsion propofol (MP) is a lipid-free propofol emulsified with 10% purified poloxamer 188 (PP188). PP188 is a nonionic surfactant and has cardioprotective effects. However, some reports have suggested that reduced cardioprotective effects were observed when the cardioprotective agents were used in combination even though each cardioprotective agent has cardioprotective effects. The aims of this study were to examine and compare the cardioprotective effects of MP and LP. Methods 50 isolated rat hearts were perfused with modified Kreb's solution. They were divided into 4 groups and underwent 30 minutes of ischemia and 60 minutes of reperfusion. Control group: ischemia-reperfusion was performed without treatment. LP, MP and PP groups: LP, MP and PP188 were infused during the pre-ischemic and reperfusion period, respectively. Hemodynamic parameters and coronary effluent flow rate (CEFR) were measured. Infarct size was determined using triphenyl-tetrazolium staining. Results In the MP group, systolic pressure was maintained near baseline, the systolic pressure was higher than that in the other groups and HR was lower than that in the other groups during reperfusion. Diastolic pressure was transiently increased in the PP group after treatment and at 5 minutes after reperfusion compared with that in the control group and in the the LP group. There were no differences in dP/dtmax and CEFR between groups. Infarct size in the LP, MP and PP groups was smaller than that in the control group, but there were no significant differences between these three groups. Conclusions MP has cardioprotective effects similar to those of LP. MP can be used for cardiac anesthesia in cases with ischemia-reperfusion injury to avoid the lipid-related side effects of LP.
Collapse
Affiliation(s)
- Min Jung Hur
- Department of Anesthesiology and Pain Medicine, Korea University Medical Center, Guro Hospital, Seoul, Korea
| | - Heezoo Kim
- Department of Anesthesiology and Pain Medicine, Korea University Medical Center, Guro Hospital, Seoul, Korea
| | - Dong Kyu Lee
- Department of Anesthesiology and Pain Medicine, Korea University Medical Center, Guro Hospital, Seoul, Korea
| | - Sang Ho Lim
- Department of Anesthesiology and Pain Medicine, Korea University Medical Center, Guro Hospital, Seoul, Korea
| |
Collapse
|
18
|
Alternative use of isoflurane and propofol confers superior cardioprotection than using one of them alone in a dog model of cardiopulmonary bypass. Eur J Pharmacol 2011; 677:138-46. [PMID: 22222823 DOI: 10.1016/j.ejphar.2011.12.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 12/15/2011] [Accepted: 12/17/2011] [Indexed: 02/05/2023]
Abstract
Our previous clinical study reported that isoflurane preconditioning and high-dose propofol posttreatment attenuated myocardial ischemia/reperfusion injury of patients in surgery with cardiopulmonary bypass (CPB). This study was designed to confirm this cardiac protection by use of a dog CPB model and to elucidate the related mechanism. Adult mongrel male dogs undergoing standard CPB were assigned into 4 groups: Sham group, Propofol group, Isoflurane (Iso) group and isoflurane in combination of propofol (pre-Iso+P) group. After induction, anesthesia was maintained with propofol (Propofol group), isoflurane (Iso group) or isoflurane preconditioning in combination with propofol posttreatment (pre-Iso+P group). After 2 h cardiac arrest and CPB, aortic cross-clamping was released to allow 2 h reperfusion. The results demonstrated that joint use of isoflurane and propofol facilitated cardiac functional recovery, improved myocardial oxygen utilization and decreased cardiac enzyme release. Also, the oxidative damage caused by ischemia/reperfusion injury was remarkably attenuated. Linear regression analysis showed that cardiac function performance and oxidative stress status were inversely correlated, indicating the improved cardiac function was in closed association with the attenuation of oxidative stress. In addition, the cardiac oxygen consumption (VO(2)) was found to be significantly associated with the above cardiac function and oxidative stress parameters, suggesting VO(2) was predictive for the levels of cardiac damage and oxidative stress. Therefore, we conclude that alternative use of isoflurane and propofol confers superior cardioprotection against postischemic myocardial injury and dysfunction, and this protection was probably mediated by attenuation of cardiac oxidative damage.
Collapse
|
19
|
The in-situ pig heart with regional ischemia/reperfusion — Ready for translation. J Mol Cell Cardiol 2011; 50:951-63. [DOI: 10.1016/j.yjmcc.2011.02.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/22/2011] [Accepted: 02/23/2011] [Indexed: 11/18/2022]
|
20
|
Sevoflurane postconditioning converts persistent ventricular fibrillation into regular rhythm. Eur J Anaesthesiol 2010; 26:766-71. [PMID: 19367168 DOI: 10.1097/eja.0b013e32832a58fa] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND OBJECTIVE Recent studies showed that ischaemic postconditioning converted persistent ventricular fibrillation to sinus rhythm. The influence of anaesthetic postconditioning on ventricular fibrillation has not yet been determined. In the present study, we studied the possible effect of sevoflurane postconditioning on persistent reperfusion-induced ventricular fibrillation in the isolated rat heart model. METHODS Isolated Langendorff-perfused rat hearts (n=80) were subjected to 40 min of global ischaemia and reperfusion. The hearts with persistent ventricular fibrillation (n=16) present after 15 min of reperfusion were then randomly assigned into one of the two groups: controls (n=8), reperfusion was continued for 25 min without any intervention, and sevoflurane postconditioning (n=8), rat hearts in the sevoflurane postconditioning group were exposed to sevoflurane at a concentration of 8.0% for 2 min followed by 23 min of reperfusion. As for the third group, the rest of the hearts were included in the nonpersistently fibrillating hearts group (n=64). Left ventricular pressures, heart rate, coronary flow, electrogram and infarct size were measured as variables of ventricular function and cellular injury, respectively. RESULTS Conversion of ventricular fibrillation into regular rhythm was observed in all hearts subjected to sevofluane postconditioning. Regular beating was maintained by all anaesthetic postconditioned hearts during the subsequent reperfusion. None of the hearts in the control group had normal rhythm at the end of the experiment. At the end of reperfusion, the coronary flow was increased in sevoflurane postconditioned hearts compared with the hearts that did not develop persistent ventricular fibrillation. CONCLUSION Sevoflurane postconditioning possesses strong antiarrhythmic effect against persistent reperfusion-induced ventricular fibrillation. Anaesthetic postconditioning may have the potential to be an antiarrhythmic therapy for reperfusion-related arrhythmias.
Collapse
|
21
|
Tramadol reduces myocardial infarct size and expression and activation of nuclear factor kappa B in acute myocardial infarction in rats. Eur J Anaesthesiol 2009; 26:1048-55. [DOI: 10.1097/eja.0b013e32832c785d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
The role of KATP channels on propofol preconditioning in a cellular model of renal ischemia-reperfusion. Anesth Analg 2009; 109:1486-92. [PMID: 19843786 DOI: 10.1213/ane.0b013e3181b76396] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Propofol (2,6-diisopropylphenol) has been shown to protect several organs, including the kidneys, from ischemia-reperfusion (I-R)-induced injury. Although propofol affects adenosine triphosphate-sensitive potassium (K(ATP)) channels in nonrenal tissues, it is still not clear by which mechanisms propofol protects renal cells from such damage. In this study, we investigated whether propofol induces renal preconditioning through renal K(ATP) channels. METHODS A reversible ATP depletion (antimycin A) followed by restoration of substrate supply in LLC-PK1 cells was used as an in vitro model of renal I-R. Cell viability was assessed by dimethylthiazol-diphenyltetrazol bromide and trypan blue dye exclusion test assays. Apoptosis was evaluated by annexin V-fluorescein isothiocyanate staining by flow cytometry and immunofluorescence. Propofol treatments were initiated at various time intervals: 1 or 24 h before ischemia, only during ischemia, or only during reperfusion. To evaluate the mechanisms of propofol protection, specific K(ATP) channel inhibitors or activators were used in some experiments during propofol pretreatment. RESULTS Propofol attenuated I-R injury on LLC-PK1 cells when present either 1 or 24 h before initiated I-R, and also during the recovery period, but not when added only during ischemia. Propofol pretreatment significantly protected LLC-PK1 from I-R-induced apoptosis. The protective effect of propofol was prevented by glibenclamide (a sarcolemmal ATP-dependent K(+) channel blocker) and decreased by 5-hydroxidecanoic acid (a mitochondrial ATP-dependent K(+) channel blocker), but it was not modified by diazoxide (a selective opener of ATP-sensitive K(+) channel). CONCLUSION Propofol protected cells against apoptosis induced by I-R. This protection was probably due to a preconditioning effect of propofol and was, at least in part, mediated by K(ATP) channels.
Collapse
|
23
|
Propofol limits rat myocardial ischemia and reperfusion injury with an associated reduction in apoptotic cell death in vivo. Vascul Pharmacol 2008; 50:71-7. [PMID: 18996224 DOI: 10.1016/j.vph.2008.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 08/20/2008] [Accepted: 10/13/2008] [Indexed: 11/21/2022]
Abstract
Propofol, a rapidly acting, short duration, intravenous hypnotic anesthetic induction agent, is often used in clinical situations where myocardial ischemia/ reperfusion (I/R) injury is a threat. The aim of the present study was to evaluate the protective effect of propofol on myocardial I/R injury in rat due to apoptosis. Myocardial I/R injury were induced by occluding the left anterior descending (LAD) coronary artery for 25 min followed by either 2 h or 6 h reperfusion. Apoptosis was evaluated by Western blot analysis (Bcl-2, Bax expression), DNA strand breaks, TUNEL analysis and measuring myocardial caspase-3 activity. Propofol significantly reduced infarct size and improved I/R-induced myocardial contractile dysfunction by improving left ventricular diastolic pressure and positive and negative maximal values of the first derivative (+dp/dt) of left ventricular pressure. Propofol increased Bcl-2/Bax expression ratio and decreased caspase-3 activity in I/R rat hearts, which resulted in reduction of myocardial apoptosis as evidenced by TUNEL analysis and DNA laddering experiments. In an in vitro study, propofol increased H9c2 cell viability against oxidative stress induced by glucose oxidase (GOX) in a dose-dependent manner. These data suggest propofol limits I/R injury with an associated reduction in apoptotic cell death in vivo.
Collapse
|