1
|
Książczyk M, Kuczkowski M, Dudek B, Korzekwa K, Tobiasz A, Korzeniowska-Kowal A, Paluch E, Wieliczko A, Bugla-Płoskońska G. Application of Routine Diagnostic Procedure, VITEK 2 Compact, MALDI-TOF MS, and PCR Assays in Identification Procedure of Bacterial Strain with Ambiguous Phenotype. Curr Microbiol 2016; 72:570-82. [PMID: 26804795 DOI: 10.1007/s00284-016-0993-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/19/2015] [Indexed: 11/28/2022]
Abstract
In diagnostic microbiology as well as in microbiological research, the identification of a microorganism is a crucial and decisive stage. A broad choice of methods is available, based on both phenotypic and molecular properties of microbes. The aim of this study was to compare the application of phenotypic and molecular tools in bacterial identification on the example of Gram-negative intestine rod with an ambiguous phenotype. Different methods of identification procedure, which based on various properties of bacteria, were applied, e.g., microscopic observation of single-bacterial cells, macroscopic observation of bacterial colonies morphology, the automated system of microorganism identification (biochemical tests), the mass spectrometry method (analysis of bacterial proteome), and genetic analysis with PCR reactions. The obtained results revealed discrepancies in the identification of the tested bacterial strain with an atypical phenotype: mucous morphology of colonies, not characteristic for either E. coli and Citrobacter spp., mass spectrometry analysis of proteome initially assigned the tested strain to Citrobacter genus (C. freundii) and biochemical profiles pointed to Escherichia coli. A decisive method in the current study was genetic analysis with PCR reactions which identified conserved genetic sequences highly specific to E. coli species in the genome of the tested strain.
Collapse
Affiliation(s)
- Marta Książczyk
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland.
| | - Maciej Kuczkowski
- Department of Epizootiology and Clinic of Bird and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Pl. Grunwaldzki 45, 50-366, Wrocław, Poland
| | - Bartłomiej Dudek
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Kamila Korzekwa
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Anna Tobiasz
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wrocław, Poland
| | - Agnieszka Korzeniowska-Kowal
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wrocław, Poland
| | - Emil Paluch
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland.,Department Physicochemistry of Microorganisms, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Alina Wieliczko
- Department of Epizootiology and Clinic of Bird and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Pl. Grunwaldzki 45, 50-366, Wrocław, Poland
| | - Gabriela Bugla-Płoskońska
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| |
Collapse
|
2
|
Rozand C, Feng PCH. Specificity analysis of a novel phage-derived ligand in an enzyme-linked fluorescent assay for the detection of Escherichia coli O157:H7. J Food Prot 2009; 72:1078-81. [PMID: 19517737 DOI: 10.4315/0362-028x-72.5.1078] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An assay using a phage-derived ligand to capture Escherichia coli O157:H7 prior to antibody detection was evaluated for assay specificity. Analysis of 200 strains showed that the assay was highly specific for the O157 serogroup. It detected all the O157:H7 strains including Shiga toxin-producing O157 nonmotile strains as well as O157 non-H7 strains. In addition, the assay detected various O157:H7 phenotypic variants that are not easily detected by routine analytical methods, as well as a rough strain that did not express O157 antigen and therefore is undetectable serologically. The phage ligand assay showed no cross-reactivity to the other E. coli serotypes. Isolates of Salmonella group N and a few Citrobacter freundii strains that cross-reacted with anti-O157 sera also showed cross-reactivity with the phage ligand. However, other strains that cross-reacted serologically with anti-O157 sera were correctly identified as negative with the phage ligand assay, including several strains of E. coli that nonspecifically autoagglutinate latex reagents.
Collapse
Affiliation(s)
- Christine Rozand
- Unité de Microbiologie Alimentaire et Prévisionnelle, Ecole Vétérinaire de Lyon, Lyon, France
| | | |
Collapse
|
3
|
Péterfi Z, Kustos I, Kilár F, Kocsis B. Microfluidic chip analysis of outer membrane proteins responsible for serological cross-reaction between three Gram-negative bacteria: Proteus morganii O34, Escherichia coli O111 and Salmonella Adelaide O35. J Chromatogr A 2007; 1155:214-7. [PMID: 17362972 DOI: 10.1016/j.chroma.2007.02.093] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 02/18/2007] [Accepted: 02/26/2007] [Indexed: 11/17/2022]
Abstract
Bacterial strains have complex and individual antigenic structure, which provides basis for their serological identification. However, serological cross-reaction may occur when antibodies against a certain strain recognize other strains too. The molecular basis of this phenomenon is the expression of similar or identical antigenic epitopes on the surface of different bacterial cells. Such cross-reactions might harden the serological diagnosis of pathogenic bacteria. But it can be also advantageous, when antigens of non-pathogenic strains can be used in the serological examinations. Serological cross-reaction between three taxonomically different strains--Proteus morganii O34 (8662/64), Escherichia coli O111 and Salmonella Adelaide O35--have been described. It has been proven that it is based partially on the similar lipopolysaccharide structures of these pathogens. In this study the involvement of the outer membrane proteins of these strains in the serological cross-reaction is presented. Microfluidic chip technology was applied for the detection of common proteins, which provided fast and quantitative data about the proteins that might be responsible for serological cross-reaction. Two outer membrane proteins with apparent molecular mass of 36 and 41 kDa, respectively, could be detected in the profile of each strain, while individual dominating protein peaks have also appeared in the protein profiles. The presence of common protein antigens was proven by Western blotting.
Collapse
Affiliation(s)
- Zoltán Péterfi
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | | | | | | |
Collapse
|