1
|
Schinasi LH, Auchincloss AH, Forrest CB, Diez Roux AV. Using electronic health record data for environmental and place based population health research: a systematic review. Ann Epidemiol 2018; 28:493-502. [PMID: 29628285 DOI: 10.1016/j.annepidem.2018.03.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/13/2018] [Accepted: 03/16/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE We conducted a systematic review of literature published on January 2000-May 2017 that spatially linked electronic health record (EHR) data with environmental information for population health research. METHODS We abstracted information on the environmental and health outcome variables and the methods and data sources used. RESULTS The automated search yielded 669 articles; 128 articles are included in the full review. The number of articles increased by publication year; the majority (80%) were from the United States, and the mean sample size was approximately 160,000. Most articles used cross-sectional (44%) or longitudinal (40%) designs. Common outcomes were health care utilization (32%), cardiometabolic conditions/obesity (23%), and asthma/respiratory conditions (10%). Common environmental variables were sociodemographic measures (42%), proximity to medical facilities (15%), and built environment and land use (13%). The most common spatial identifiers were administrative units (59%), such as census tracts. Residential addresses were also commonly used to assign point locations, or to calculate distances or buffer areas. CONCLUSIONS Future research should include more detailed descriptions of methods used to geocode addresses, focus on a broader array of health outcomes, and describe linkage methods. Studies should also explore using longitudinal residential address histories to evaluate associations between time-varying environmental variables and health outcomes.
Collapse
Affiliation(s)
- Leah H Schinasi
- Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, PA; Urban Health Collaborative, Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA.
| | - Amy H Auchincloss
- Urban Health Collaborative, Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA; Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA
| | | | - Ana V Diez Roux
- Urban Health Collaborative, Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA; Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA
| |
Collapse
|
2
|
Casey JA, Kim BF, Larsen J, Price LB, Nachman KE. Industrial Food Animal Production and Community Health. Curr Environ Health Rep 2016; 2:259-71. [PMID: 26231503 DOI: 10.1007/s40572-015-0061-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Industrial food animal production (IFAP) is a source of environmental microbial and chemical hazards. A growing body of literature suggests that populations living near these operations and manure-applied crop fields are at elevated risk for several health outcomes. We reviewed the literature published since 2000 and identified four health outcomes consistently and positively associated with living near IFAP: respiratory outcomes, methicillin-resistant Staphylococcus aureus (MRSA), Q fever, and stress/mood. We found moderate evidence of an association of IFAP with quality of life and limited evidence of an association with cognitive impairment, Clostridium difficile, Enterococcus, birth outcomes, and hypertension. Distance-based exposure metrics were used by 17/33 studies reviewed. Future work should investigate exposure through drinking water and must improve exposure assessment with direct environmental sampling, modeling, and high-resolution DNA typing methods. Investigators should not limit study to high-profile pathogens like MRSA but include a broader range of pathogens, as well as other disease outcomes.
Collapse
Affiliation(s)
- Joan A Casey
- Robert Wood Johnson Foundation Health and Society Scholars Program, UC San Francisco and UC Berkeley, 50 University Hall, Room 583, Berkeley, CA, 94720-7360, USA,
| | | | | | | | | |
Collapse
|
3
|
Lellek H, Franke GC, Ruckert C, Wolters M, Wolschke C, Christner M, Büttner H, Alawi M, Kröger N, Rohde H. Emergence of daptomycin non-susceptibility in colonizing vancomycin-resistant Enterococcus faecium isolates during daptomycin therapy. Int J Med Microbiol 2015; 305:902-9. [PMID: 26454536 DOI: 10.1016/j.ijmm.2015.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/31/2015] [Accepted: 09/10/2015] [Indexed: 11/27/2022] Open
Abstract
Infections due to vancomycin-resistant enterococci (VRE) are of significant importance in high-risk populations, and daptomycin is a bactericidal antibiotic to treat multidrug-resistant VRE in these patients. The emergence of daptomycin non-susceptibility invasive VRE during daptomycin therapy is a major clinical issue. Here the hypothesis was tested that systemic daptomycin therapy also induces the emergence of daptomycin non-susceptible (DNS-) isolates in colonizing VRE populations. 11 vancomycin-resistant Enterococcus faecium strain pairs recovered from rectal swabs were available for analysis. All initial isolates exhibited daptomycin MICs within the wild type MIC distribution of E. faecium (MIC≤4 mg/L). In follow-up isolates from five patients a 4-16-fold daptomycin MIC increase was detected. All patients carrying DNS-VRE received daptomycin (14-28 days) at 4 mg/kg body weight, while two patients in whom no DNS-VRE emerged were only treated with daptomycin for 1 and 4 days, respectively. Comparative whole genome sequencing identified DNS-VRE-specific single nucleotide polymorphisms (SNP), including mutations in cardiolipin synthase (Cls), and additional SNPs in independent genes potentially relevant for the DNS phenotype. Mutations within cls were also identified in three additional, colonizing DNS-VRE. Of these, at least one strain was transmitted within the hospital. In none of the VRE isolates tested, pre-existing or de novo mutations in the liaFSR operon were detected. This is the first report documenting the emergence of DNS-VRE in colonizing strains during daptomycin treatment, putting the patient at risk for subsequent DNS-VRE infections and priming the spread of DNS-VRE within the hospital environment.
Collapse
Affiliation(s)
- Heinrich Lellek
- Klinik für Stammzelltransplantation, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Gefion C Franke
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Carolin Ruckert
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Manuel Wolters
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Christiane Wolschke
- Klinik für Stammzelltransplantation, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Martin Christner
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Henning Büttner
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Malik Alawi
- Bioinformatics Service Facility, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Nicolaus Kröger
- Klinik für Stammzelltransplantation, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Holger Rohde
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany.
| |
Collapse
|
4
|
Kelesidis T. Origin of de novo daptomycin non susceptible enterococci. World J Clin Infect Dis 2015; 5:30-36. [DOI: 10.5495/wjcid.v5.i2.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/01/2015] [Accepted: 04/20/2015] [Indexed: 02/06/2023] Open
Abstract
The emergence of daptomycin non-susceptible enterococci (DNSE) poses both treatment and infection control challenges. Clinicians should be vigilant that DNSE may be isolated from patients with or without (de novo DNSE) prior use of daptomycin. Recent epidemiological data suggest the presence of a community reservoir for DNSE which may be associated with environmental, foodborne and agricultural exposures. The mechanisms of nonsusceptibility to daptomycin have not been well characterized and may not parallel those for Staphylococcus aureus. The identification of daptomycin resistance genes in anaerobes, in farm animals and in an ecosystem that has been isolated for million years, suggest that the environmental reservoir for de novo DNSE may be larger than previously thought. Herein, the limited available scientific evidence regarding the possible origin of de novo DNSE is discussed. The current existing evidence is not sufficient to draw firm conclusions on the origin of DNSE. Further studies to determine the mechanisms of de novo daptomycin nonsusceptibility among enterococci are needed.
Collapse
|
6
|
Identification of a novel clone, ST736, among Enterococcus faecium clinical isolates and its association with daptomycin nonsusceptibility. Antimicrob Agents Chemother 2014; 58:4848-54. [PMID: 24913170 DOI: 10.1128/aac.02683-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Resistance to daptomycin in enterococcal clinical isolates remains rare but is being increasingly reported in the United States and worldwide. There are limited data on the genetic relatedness and microbiological and clinical characteristics of daptomycin-nonsusceptible enterococcal clinical isolates. In this study, we assessed the population genetics of daptomycin-nonsusceptible Enterococcus faecium (DNSE) clinical isolates by multilocus sequence typing (MLST) and whole-genome sequencing analysis. Forty-two nonduplicate DNSE isolates and 43 randomly selected daptomycin-susceptible E. faecium isolates were included in the analysis. All E. faecium isolates were recovered from patients at a tertiary care medical center in suburban New York City from May 2009 through December 2013. The daptomycin MICs of the DNSE isolates ranged from 6 to >256 μg/ml. Three major clones of E. faecium (ST18, ST412, and ST736) were identified among these clinical isolates by MLST and whole-genome sequence-based analysis. A newly recognized clone, ST736, was seen in 32 of 42 (76.2%) DNSE isolates and in only 14 of 43 (32.6%) daptomycin-susceptible E. faecium isolates (P < 0.0001). This report provides evidence of the association between E. faecium clone ST736 and daptomycin nonsusceptibility. The identification and potential spread of this novel E. faecium clone and its association with daptomycin nonsusceptibility constitute a challenge for patient management and infection control at our medical center.
Collapse
|
7
|
Kelesidis T. The zoonotic potential of daptomycin non-susceptible enterococci. Zoonoses Public Health 2013; 62:1-6. [PMID: 24274811 DOI: 10.1111/zph.12091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Indexed: 11/30/2022]
Abstract
Daptomycin non-susceptible Enterococcus (DNSE) is an emerging clinical problem. Little is known about how de novo DNSE infections develop or the risk factors associated with them. Determining risk factors associated with de novo DNSE infections will aid in understanding the mechanisms of daptomycin non-susceptibility. Humans in contact with animals worldwide are at risk of carriage of multidrug-resistant bacteria. Herein, I review the scientific evidence that supports the hypothesis that transport of daptomycin non-susceptibility genes between animals and humans may be a possible mechanism for development of de novo daptomycin non-susceptibility in enterococci.
Collapse
Affiliation(s)
- T Kelesidis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|