2
|
Huang CG, Lee LA, Wu YC, Hsiao MJ, Horng JT, Kuo RL, Huang CH, Lin YC, Tsao KC, Chen MC, Chen TC, Shih SR. A pilot study on primary cultures of human respiratory tract epithelial cells to predict patients' responses to H7N9 infection. Oncotarget 2018; 9:14492-14508. [PMID: 29581859 PMCID: PMC5865685 DOI: 10.18632/oncotarget.24537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 02/10/2018] [Indexed: 12/23/2022] Open
Abstract
Avian influenza A(H7N9) virus infections frequently lead to acute respiratory distress syndrome and death in humans. We aimed to investigate whether primary cultures of human respiratory tract epithelial cells are helpful to understand H7N9 virus pathogenesis and tissue tropism, and to evaluate how patient-related characteristics can affect the host's response to infection. Normal human bronchial epithelial cells (isolated from two different donors) and primary epithelial cells (harvested from 27 patients undergoing airway surgery) were experimentally infected with H7N9 and/or H1N1pdm for 72 h. After virus infection, the culture media were collected for viral RNA quantitation and cytokine detection. Both H7N9 and H1N1pdm viruses replicated and induced a cytokine response differently for each donor in the normal human bronchial epithelial model. H7N9 replicated equivalently in epithelial cells harvested from the inferior turbinate and paranasal sinus, and those from the larynx and bronchus, at 72 h post-infection. Viral RNA quantity at 72 h was significantly higher in patients aged 21-64 years than in patients aged ≥ 65 years; however, no effects of sex, medical comorbidities, and obesity were noted. H7N9-infected cultured cells released multiple cytokines within 72 h. Levels of interleukin-1β, interleukin-6, interleukin-8, interferon-γ, and tumor necrosis factor-α were associated differently with patient-related characteristics (such as age, sex, obesity, and medical comorbidities). In the era of precision medicine, these findings illustrate the potential utility of this primary culture approach to predict a host's response to H7N9 infection or to future infection by newly emerging viral infections, and to dissect viral pathogenesis.
Collapse
Affiliation(s)
- Chung-Guei Huang
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 33302, Taiwan, ROC.,Graduate Institute of Biomedical Sciences, Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, ROC.,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC
| | - Li-Ang Lee
- Department of Otorhinolaryngology - Head and Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC.,Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, ROC
| | - Yi-Cheng Wu
- Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, ROC.,Department of Surgery, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan, ROC
| | - Mei-Jen Hsiao
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 33302, Taiwan, ROC.,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC
| | - Jim-Tong Horng
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 33302, Taiwan, ROC.,Graduate Institute of Biomedical Sciences, Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, ROC
| | - Rei-Lin Kuo
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 33302, Taiwan, ROC.,Graduate Institute of Biomedical Sciences, Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, ROC
| | - Chih-Heng Huang
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 33302, Taiwan, ROC.,Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan, ROC
| | - Ya-Chu Lin
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC
| | - Kuo-Chien Tsao
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 33302, Taiwan, ROC.,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC
| | - Min-Chi Chen
- Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, ROC.,Department of Public Health and Biostatistics Consulting Center, Chang Gung University, Taoyuan 33302, Taiwan, ROC
| | - Tse-Ching Chen
- Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, ROC.,Department of Pathology, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan, ROC
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 33302, Taiwan, ROC.,Graduate Institute of Biomedical Sciences, Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, ROC.,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC
| |
Collapse
|
3
|
Shen LW, Mao HJ, Wu YL, Tanaka Y, Zhang W. TMPRSS2: A potential target for treatment of influenza virus and coronavirus infections. Biochimie 2017; 142:1-10. [PMID: 28778717 PMCID: PMC7116903 DOI: 10.1016/j.biochi.2017.07.016] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/31/2017] [Indexed: 12/24/2022]
Abstract
Influenza virus and coronavirus epidemics or pandemics have occurred in succession worldwide throughout the early 21st century. These epidemics or pandemics pose a major threat to human health. Here, we outline a critical role of the host cell protease TMPRSS2 in influenza virus and coronavirus infections and highlight an antiviral therapeutic strategy targeting TMPRSS2.
Collapse
Affiliation(s)
- Li Wen Shen
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hui Juan Mao
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yan Ling Wu
- Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China.
| | - Yoshimasa Tanaka
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Wen Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
4
|
Surveillance of Avian H7N9 Virus in Various Environments of Zhejiang Province, China before and after Live Poultry Markets Were Closed in 2013-2014. PLoS One 2015; 10:e0135718. [PMID: 26308215 PMCID: PMC4550274 DOI: 10.1371/journal.pone.0135718] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 07/24/2015] [Indexed: 11/19/2022] Open
Abstract
Background To date, there have been a total of 637 laboratory-confirmed cases of human infection with avian influenza A (H7N9) virus across mainland China, with 28% (179/637) of these reported in Zhejiang Province. Surveillance of avian H7N9 virus was conducted to investigate environmental contamination during H7N9 outbreaks. We sought to evaluate the prevalence of H7N9 in the environment, and the effects of poultry market closures on the incidence of human H7N9 cases. Methods We collected 6740 environmental samples from 751 sampling sites across 11 cities of Zhejiang Province (China) between January 2013 and March 2014. The presence of H7N9 was determined by reverse transcription polymerase chain reaction, with prevalence compared between sites and over time. The relationship between environmental contamination and human cases of H7N9 infection were analyzed using Spearman’s ranked correlation coefficient. Results Of the 6740 samples, 10.09% (680/6740) were H7N9-positive. The virus was found to circulate seasonally, and peaked during the spring and winter of 2013–2014. The prevalence of the virus decreased from the north to the southeast of the province, coinciding with the geographical distribution of human H7N9 cases. Compared with other sampling sites, live poultry markets (LPMs) had the highest prevalence of H7N9 virus at 13.94% (667/4784). Of the various sample types analyzed, virus prevalence was highest for chopping board swabs at 15.49% (110/710). The prevalence of the virus in the environment positively correlated with the incidence of human H7N9 cases (r2 = 0.498; P < 0.01). Cities with a higher incidence of human H7N9 cases also had a higher prevalence of H7N9 among samples and at sampling sites. Following the closure of LPMs at the end of January 2014, the prevalence of H7N9 decreased from 19.18% (487/2539) to 6.92% (79/1141). This corresponded with a decrease in the number of human H7N9 cases reported. Conclusions The prevalence of H7N9 virus in environmental samples oscillated seasonally, regardless of whether LPMs were open. The presence of H7N9 in environmental samples positively correlated with the number of human H7N9 cases, indicating that eradication of the virus from the environment is essential in reducing the numbers of H7N9 cases and halting the spread of the virus.
Collapse
|