1
|
Koutsoumanis K, Ordóñez AA, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Banach J, Ottoson J, Zhou B, da Silva Felício MT, Jacxsens L, Martins JL, Messens W, Allende A. Microbiological hazards associated with the use of water in the post-harvest handling and processing operations of fresh and frozen fruits, vegetables and herbs (ffFVHs). Part 1 (outbreak data analysis, literature review and stakeholder questionnaire). EFSA J 2023; 21:e08332. [PMID: 37928944 PMCID: PMC10623241 DOI: 10.2903/j.efsa.2023.8332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
The contamination of water used in post-harvest handling and processing operations of fresh and frozen fruit, vegetables and herbs (ffFVHs) is a global concern. The most relevant microbial hazards associated with this water are: Listeria monocytogenes, Salmonella spp., human pathogenic Escherichia coli and enteric viruses, which have been linked to multiple outbreaks associated with ffFVHs in the European Union (EU). Contamination (i.e. the accumulation of microbiological hazards) of the process water during post-harvest handling and processing operations is affected by several factors including: the type and contamination of the FVHs being processed, duration of the operation and transfer of microorganisms from the product to the water and vice versa, etc. For food business operators (FBOp), it is important to maintain the microbiological quality of the process water to assure the safety of ffFVHs. Good manufacturing practices (GMP) and good hygienic practices (GHP) related to a water management plan and the implementation of a water management system are critical to maintain the microbiological quality of the process water. Identified hygienic practices include technical maintenance of infrastructure, training of staff and cooling of post-harvest process water. Intervention strategies (e.g. use of water disinfection treatments and water replenishment) have been suggested to maintain the microbiological quality of process water. Chlorine-based disinfectants and peroxyacetic acid have been reported as common water disinfection treatments. However, given current practices in the EU, evidence of their efficacy under industrial conditions is only available for chlorine-based disinfectants. The use of water disinfection treatments must be undertaken following an appropriate water management strategy including validation, operational monitoring and verification. During operational monitoring, real-time information on process parameters related to the process and product, as well as the water and water disinfection treatment(s) are necessary. More specific guidance for FBOp on the validation, operational monitoring and verification is needed.
Collapse
|
2
|
Davies N, Jørgensen F, Willis C, McLauchlin J, Chattaway MA. Whole genome sequencing reveals antimicrobial resistance determinants (AMR genes) of Salmonella enterica recovered from raw chicken and ready-to-eat leaves imported into England between 2014 and 2019. J Appl Microbiol 2022; 133:2569-2582. [PMID: 35880358 PMCID: PMC9804530 DOI: 10.1111/jam.15728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 01/05/2023]
Abstract
AIMS To compare the antimicrobial resistance (AMR) genes in a genetically diverse group of Salmonella enterica recovered from foods imported into England between 2014 and 2018. METHODS AND RESULTS Whole genome sequence was used to detect AMR genes or chromosomal mutations associated with AMR in Salmonella recovered from edible leaves imported from Asia (n = 115) as compared to Salmonella (n = 231) isolated from raw chicken, 74% originated from South America. Among isolates from edible leaves, three (3%) showed resistance to at least one antimicrobial agent, two (2%) of which were multidrug resistant (MDR, resistance to three or more antimicrobial classes). Resistance to at least one antimicrobial agent was detected in 214 (93%) in the chicken isolates, with 164 (71%) showing MDR. Genetic diversity and AMR profiles were highly heterogeneous across the different serovars. CONCLUSIONS Resistance was rare among the Salmonella isolates from edible leaves but common (including MDR) among those from raw chicken. SIGNIFICANCE AND IMPACT OF THE STUDY Surveillance of AMR in imported foods is essential for monitoring the risk of transmission of resistance from the food chain to humans and provides added public health value to pre-existing controls of the food chain.
Collapse
Affiliation(s)
- Nicola Davies
- Gastrointestinal Bacteria Reference Unit (GBRU)UK Health Security AgencyLondonUK,Division of Infection and ImmunityUniversity College LondonLondonUK
| | - Frieda Jørgensen
- Food Water and Environmental Microbiology Laboratory PortonUK Health Security AgencySalisburyUK
| | - Caroline Willis
- Food Water and Environmental Microbiology Laboratory PortonUK Health Security AgencySalisburyUK
| | - Jim McLauchlin
- Food Water and Environmental Microbiology ServicesUK Health Security AgencyLondonUK
| | - Marie Anne Chattaway
- Gastrointestinal Bacteria Reference Unit (GBRU)UK Health Security AgencyLondonUK
| |
Collapse
|
3
|
Jørgensen F, McLauchlin J, Verlander NQ, Aird H, Balasegaram S, Chattaway MA, Dallman T, Herdman MT, Hoban A, Lai S, Larkin L, McCormick J, Reeves LS, Willis C. Levels and genotypes of Salmonella and levels of Escherichia coli in frozen ready-to-cook chicken and turkey products in England tested in 2020 in relation to an outbreak of S. Enteritidis. Int J Food Microbiol 2022; 369:109609. [DOI: 10.1016/j.ijfoodmicro.2022.109609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/26/2022]
|
4
|
Petersen JM, Ranker LR, Barnard-Mayers R, MacLehose RF, Fox MP. A systematic review of quantitative bias analysis applied to epidemiological research. Int J Epidemiol 2021; 50:1708-1730. [PMID: 33880532 DOI: 10.1093/ije/dyab061] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Quantitative bias analysis (QBA) measures study errors in terms of direction, magnitude and uncertainty. This systematic review aimed to describe how QBA has been applied in epidemiological research in 2006-19. METHODS We searched PubMed for English peer-reviewed studies applying QBA to real-data applications. We also included studies citing selected sources or which were identified in a previous QBA review in pharmacoepidemiology. For each study, we extracted the rationale, methodology, bias-adjusted results and interpretation and assessed factors associated with reproducibility. RESULTS Of the 238 studies, the majority were embedded within papers whose main inferences were drawn from conventional approaches as secondary (sensitivity) analyses to quantity-specific biases (52%) or to assess the extent of bias required to shift the point estimate to the null (25%); 10% were standalone papers. The most common approach was probabilistic (57%). Misclassification was modelled in 57%, uncontrolled confounder(s) in 40% and selection bias in 17%. Most did not consider multiple biases or correlations between errors. When specified, bias parameters came from the literature (48%) more often than internal validation studies (29%). The majority (60%) of analyses resulted in >10% change from the conventional point estimate; however, most investigators (63%) did not alter their original interpretation. Degree of reproducibility related to inclusion of code, formulas, sensitivity analyses and supplementary materials, as well as the QBA rationale. CONCLUSIONS QBA applications were rare though increased over time. Future investigators should reference good practices and include details to promote transparency and to serve as a reference for other researchers.
Collapse
Affiliation(s)
- Julie M Petersen
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Lynsie R Ranker
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Ruby Barnard-Mayers
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Richard F MacLehose
- Division of Epidemiology and Community Health, University of Minnesota, School of Public Health, Minneapolis, MN, USA
| | - Matthew P Fox
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.,Department of Global Health, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
5
|
Cordeiro MC, Santos L, Angelo ACM, Marujo LG. Research directions for supply chain management in facing pandemics: an assessment based on bibliometric analysis and systematic literature review. INTERNATIONAL JOURNAL OF LOGISTICS-RESEARCH AND APPLICATIONS 2021. [DOI: 10.1080/13675567.2021.1902487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Luan Santos
- Production Engineering Program, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Production Engineering Program, Federal University of Rio de Janeiro (UFRJ), Macaé, Brazil
| | | | - Lino G. Marujo
- Production Engineering Program, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Utility of whole-genome sequencing during an investigation of multiple foodborne outbreaks of Shigella sonnei. Epidemiol Infect 2021; 149:e71. [PMID: 33641696 PMCID: PMC8060841 DOI: 10.1017/s0950268821000509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In April 2018, Public Health England was notified of cases of Shigella sonnei who had eaten food from three different catering outlets in England. The outbreaks were initially investigated as separate events, but whole-genome sequencing (WGS) showed they were caused by the same strain. The investigation included analyses of epidemiological data, the food chain and microbiological examination of food samples. WGS was used to determine the phylogenetic relatedness and antimicrobial resistance profile of the outbreak strain. Ultimately, 33 cases were linked to this outbreak; the majority had eaten food from seven outlets specialising in Indian or Middle Eastern cuisine. Five outlets were linked to two or more cases, all of which used fresh coriander although a shared supplier was not identified. An investigation at one of the venues recorded that 86% of cases reported eating dishes with coriander as an ingredient or garnish. Four cases were admitted to hospital and one had evidence of treatment failure with ciprofloxacin. Phylogenetic analysis showed that the outbreak strain was part of a wider multidrug-resistant clade associated with travel to Pakistan. Poor hygiene practices during cultivation, distribution or preparation of fresh produce are likely contributing factors.
Collapse
|
7
|
Morgan M, Watts V, Allen D, Curtis D, Kirolos A, Macdonald N, Maslen E, Morgan D, Saei A, Sedgwick J, Stevenson J, Turbitt D, Vivancos R, Waugh C, Williams C, Decraene V. Challenges of investigating a large food-borne norovirus outbreak across all branches of a restaurant group in the United Kingdom, October 2016. ACTA ACUST UNITED AC 2020; 24. [PMID: 31064638 PMCID: PMC6505182 DOI: 10.2807/1560-7917.es.2019.24.18.1800511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
During October and November 2016, over 1,000 customers and staff reported gastroenteritis after eating at all 23 branches of a restaurant group in the United Kingdom. The outbreak coincided with a new menu launch and norovirus was identified as the causative agent. We conducted four retrospective cohort studies; one among all restaurant staff and three in customers at four branches. We investigated the dishes consumed, reviewed recipes, interviewed chefs and inspected restaurants to identify common ingredients and preparation methods for implicated dishes. Investigations were complicated by three public health agencies concurrently conducting multiple analytical studies, the complex menu with many shared constituent ingredients and the high media attention. The likely source was a contaminated batch of a nationally distributed ingredient, but analytical studies were unable to implicate a single ingredient. The most likely vehicle was a new chipotle chilli product imported from outside the European Union, that was used uncooked in the implicated dishes. This outbreak exemplifies the possibility of rapid spread of infectious agents within a restaurant supply chain, following introduction of a contaminated ingredient. It underlines the importance of appropriate risk assessments and control measures being in place, particularly for new ingredients and ready-to-eat foods.
Collapse
Affiliation(s)
- Mari Morgan
- These authors share first authorship.,European Programme for Intervention Epidemiology Training, Stockholm, Sweden.,Health Protection, Public Health Wales NHS Trust, Cardiff, United Kingdom
| | - Vicky Watts
- Field Service - Epidemiology, National Infection Service, Public Health England, Liverpool, United Kingdom.,United Kingdom Field Epidemiology Training Programme, Public Health England, London, United Kingdom.,These authors share first authorship
| | - David Allen
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom.,National Institute for Health Research Health Protection Research Unit in Gastrointestinal Infections, United Kingdom.,Virus Reference Department, National Infection Service, Colindale, Public Health England, London, United Kingdom
| | - Daniele Curtis
- Field Service - Epidemiology, National Infection Service, Public Health England, London, United Kingdom
| | - Amir Kirolos
- Department of Public Health and Health Policy, NHS Lothian, Edinburgh, Scotland
| | - Neil Macdonald
- Field Service - Epidemiology, National Infection Service, Public Health England, London, United Kingdom
| | - Ellie Maslen
- North East North Central London Health Protection Team, Public Health England, London, United Kingdom
| | - Deb Morgan
- Incidents & Resilience Team, Food Standards Agency, London, United Kingdom
| | - Ayoub Saei
- Statistics, Modelling & Economics Department, National Infection Service - Data & Analytical Sciences, Public Health England, London, United Kingdom
| | - James Sedgwick
- Field Service - Epidemiology, National Infection Service, Public Health England, London, United Kingdom
| | - Janet Stevenson
- Department of Public Health and Health Policy, NHS Lothian, Edinburgh, Scotland
| | - Deborah Turbitt
- Public Health England London, Public Health England, London, United Kingdom
| | - Roberto Vivancos
- Field Service - Epidemiology, National Infection Service, Public Health England, Liverpool, United Kingdom
| | - Catriona Waugh
- Department of Public Health and Health Policy, NHS Lothian, Edinburgh, Scotland
| | - Chris Williams
- Health Protection, Public Health Wales NHS Trust, Cardiff, United Kingdom
| | - Valerie Decraene
- Field Service - Epidemiology, National Infection Service, Public Health England, Liverpool, United Kingdom
| |
Collapse
|
8
|
Novickij V, Stanevičienė R, Staigvila G, Gruškienė R, Sereikaitė J, Girkontaitė I, Novickij J, Servienė E. Effects of pulsed electric fields and mild thermal treatment on antimicrobial efficacy of nisin-loaded pectin nanoparticles for food preservation. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108915] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
McLauchlin J, Aird H, Andrews N, Chattaway M, de Pinna E, Elviss N, Jørgensen F, Larkin L, Willis C. Public health risks associated with Salmonella contamination of imported edible betel leaves: Analysis of results from England, 2011-2017. Int J Food Microbiol 2019; 298:1-10. [PMID: 30889473 DOI: 10.1016/j.ijfoodmicro.2019.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/10/2019] [Accepted: 03/09/2019] [Indexed: 01/06/2023]
Abstract
Fresh betel leaves (Piper betle L.), imported into the UK are a traditional ready-to-eat food consumed by Asian populations. We report here the consolidation of routinely collected data to model the public health risks from consumption of this food. Amongst 2110 samples collected at Border Inspection, wholesale, catering or retail, Salmonella was detected in 488 (23%) of samples tested between 2011 and 2017 and was the most commonly Salmonella-contaminated ready-to-eat food examined by Public Health England during this period. Using data from multiple samples (usually 5) tested per consignment sampled at Border Inspection, contamination levels were calculated by most probable number: seasonal, temporal and country specific differences were detected. Quantitative contamination data was used to estimate the levels present at retail, and a β-Poisson dose response model the probability of illness was calculated. Using data for products imported from India, the probability of acquiring infection following a single exposure (comprising of a single leaf) was estimated to be between 0.00003 (January-March) and 0.0001 (July-September). Using British Asian population data for individuals over 30 years of age in England in 2011, two estimates of consumption were modelled as 2.1 and 12.8 million servings per annum. Results from the model estimated 160 cases (range 102 to 242) and 960 cases (range 612 to 1456) per year in England for the two consumption estimates and equated to 34 (range 22 to 51) and 204 (range 130 to 310) salmonellosis cases per year reported to national surveillance. Salmonella from 475 of the contaminated samples were further characterised which showed a heterogeneous population structure with 46 S. enterica subsp. Enterica serovars, together with S. enterica subs diarizonae and salamae identified. Isolates from individual consignments were diverse and close genetic relationships between independent isolates were very rare except from within an individual consignment. There were no outbreaks detected as associated with betel leaf consumption. However analysis by whole genome sequencing of the 2014-17 data identified two cases where the clinical isolate had <5 single nucleotide polymorphism differences to isolates from betel leaves which is indicative of a likely epidemiological link and common source of contamination. Due to the diversity of the Salmonella contaminating this product, associations between salmonellosis cases and betel leaf consumption will appear sporadic and unlikely to be detected by current surveillance strategies based on outbreak detection.
Collapse
Affiliation(s)
- J McLauchlin
- Public Health England Food Water and Environmental Microbiology Services, National Infection Service, Colindale, London NW9 5EQ, UK; University of Liverpool, Institute of Infection and Global Health, Waterhouse Building, 1-5 Brownlow Street, Liverpool L69 3GL, UK.
| | - H Aird
- Public Health England Food Water and Environmental Microbiology Laboratory York, National Infection Service, National Agri-Food Innovation Campus, York YO41 1LZ, UK
| | - N Andrews
- Public Health England Statistics, Modelling and Economics Department, National Infection Service, 61 Colindale Avenue, London NW9 5EQ, UK
| | - M Chattaway
- Public Health England Gastrointestinal Bacteria Reference Unit, National Infection Service, 61 Colindale Avenue, London NW9 5EQ, UK
| | - E de Pinna
- Public Health England Gastrointestinal Bacteria Reference Unit, National Infection Service, 61 Colindale Avenue, London NW9 5EQ, UK
| | - N Elviss
- Public Health England Food Water and Environmental Microbiology Laboratory London, National Infection Service, Colindale, London NW9 5EQ, UK
| | - F Jørgensen
- Public Health England Food Water and Environmental Microbiology Laboratory Porton, National Infection Service, Porton Down, Salisbury SP4 0JG, UK
| | - L Larkin
- Public Health England, Gastrointestinal Infections Department, National Infection Service, London, NW9 5EQ, UK
| | - C Willis
- Public Health England Food Water and Environmental Microbiology Laboratory Porton, National Infection Service, Porton Down, Salisbury SP4 0JG, UK
| |
Collapse
|