1
|
Strauss S, Korympidou MM, Ran Y, Franke K, Schubert T, Baden T, Berens P, Euler T, Vlasits AL. Center-surround interactions underlie bipolar cell motion sensitivity in the mouse retina. Nat Commun 2022; 13:5574. [PMID: 36163124 PMCID: PMC9513071 DOI: 10.1038/s41467-022-32762-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/16/2022] [Indexed: 11/09/2022] Open
Abstract
Motion sensing is a critical aspect of vision. We studied the representation of motion in mouse retinal bipolar cells and found that some bipolar cells are radially direction selective, preferring the origin of small object motion trajectories. Using a glutamate sensor, we directly observed bipolar cells synaptic output and found that there are radial direction selective and non-selective bipolar cell types, the majority being selective, and that radial direction selectivity relies on properties of the center-surround receptive field. We used these bipolar cell receptive fields along with connectomics to design biophysical models of downstream cells. The models and additional experiments demonstrated that bipolar cells pass radial direction selective excitation to starburst amacrine cells, which contributes to their directional tuning. As bipolar cells provide excitation to most amacrine and ganglion cells, their radial direction selectivity may contribute to motion processing throughout the visual system.
Collapse
Affiliation(s)
- Sarah Strauss
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Tübingen AI Center, University of Tübingen, Tübingen, Germany
| | - Maria M Korympidou
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Yanli Ran
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Katrin Franke
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Tom Baden
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Philipp Berens
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Tübingen AI Center, University of Tübingen, Tübingen, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
| | - Anna L Vlasits
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
2
|
Abstract
Abstract
How direction of image motion is detected as early as at the level of the vertebrate eye has been intensively studied in retina research. Although the first direction-selective (DS) retinal ganglion cells were already described in the 1960s and have since then been in the focus of many studies, scientists are still puzzled by the intricacy of the neuronal circuits and computational mechanisms underlying retinal direction selectivity. The fact that the retina can be easily isolated and studied in a Petri dish-by presenting light stimuli while recording from the various cell types in the retinal circuits-in combination with the extensive anatomical, molecular and physiological knowledge about this part of the brain presents a unique opportunity for studying this intriguing visual circuit in detail. This article provides a brief overview of the history of research on retinal direction selectivity, but then focuses on the past decade and the progress achieved, in particular driven by methodological advances in optical recording techniques, molecular genetics approaches and large-scale ultrastructural reconstructions. As it turns out, retinal direction selectivity is a complex, multi-tiered computation, involving dendrite-intrinsic mechanisms as well as several types of network interactions on the basis of highly selective, likely genetically predetermined synaptic connectivity. Moreover, DS ganglion cell types appear to be more diverse than previously thought, differing not only in their preferred direction and response polarity, but also in physiology, DS mechanism, dendritic morphology and, importantly, the target area of their projections in the brain.
Collapse
|
3
|
Zurek DB, Nelson XJ. Hyperacute motion detection by the lateral eyes of jumping spiders. Vision Res 2012; 66:26-30. [PMID: 22750020 DOI: 10.1016/j.visres.2012.06.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 06/07/2012] [Accepted: 06/18/2012] [Indexed: 11/27/2022]
Abstract
Jumping spiders (Salticidae) are renowned for their high performing visual system. In addition to their prominent forward-facing telescope-like principal eyes, salticids possess two or three pairs of secondary eyes used for wide-angle motion detection. Salticids orient towards relevant sources of motion detected by the secondary eyes, enabling them to inspect the stimulus with their spatially acute principal eyes. The anteriormost pair of secondary eyes, the anterior lateral (AL) eyes, also faces forward and has higher spatial acuity than the other, laterally-facing, secondary eyes. We used small computer-generated targets to elicit orienting saccades from tethered jumping spiders in order to examine the perceptual limits of the AL eyes. We describe the contrast thresholds of male and female spiders, investigate the reaction time between stimulus appearance and initiation of orientation, as well as the minimum distance a stimulus must travel before eliciting a saccade. Our results show that female spiders react to lower contrast stimuli than males and demonstrate that the secondary eyes can detect stimulus displacements considerably smaller than the inter-receptor angle.
Collapse
Affiliation(s)
- Daniel B Zurek
- Department of Biology, Macquarie University, 207 Culloden Rd., 2122 Marsfield NSW, Australia.
| | | |
Collapse
|
4
|
Borst A, Euler T. Seeing Things in Motion: Models, Circuits, and Mechanisms. Neuron 2011; 71:974-94. [PMID: 21943597 DOI: 10.1016/j.neuron.2011.08.031] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2011] [Indexed: 12/31/2022]
|
5
|
Illuminating synapses and circuitry in the retina. Curr Opin Neurobiol 2011; 21:238-44. [PMID: 21349699 DOI: 10.1016/j.conb.2011.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 01/29/2011] [Indexed: 12/23/2022]
Abstract
In the central nervous system, space is at a premium. This is especially true in the retina, where synapses, cells, and circuitry have evolved to maximize signal-processing capacity within a thin, optically transparent tissue. For example, at some retinal synapses, single presynaptic active zones contact multiple postsynaptic targets; some individual neurons perform completely different tasks depending on visual conditions, while others execute hundreds of circuit computations in parallel; and the retinal network adapts, at various levels, to the ever-changing visual world. Each of these features reflects efficient use of limited cellular resources to optimally encode visual information.
Collapse
|
6
|
Schachter MJ, Oesch N, Smith RG, Taylor WR. Dendritic spikes amplify the synaptic signal to enhance detection of motion in a simulation of the direction-selective ganglion cell. PLoS Comput Biol 2010; 6. [PMID: 20808894 PMCID: PMC2924322 DOI: 10.1371/journal.pcbi.1000899] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 07/21/2010] [Indexed: 11/18/2022] Open
Abstract
The On-Off direction-selective ganglion cell (DSGC) in mammalian retinas responds most strongly to a stimulus moving in a specific direction. The DSGC initiates spikes in its dendritic tree, which are thought to propagate to the soma with high probability. Both dendritic and somatic spikes in the DSGC display strong directional tuning, whereas somatic PSPs (postsynaptic potentials) are only weakly directional, indicating that spike generation includes marked enhancement of the directional signal. We used a realistic computational model based on anatomical and physiological measurements to determine the source of the enhancement. Our results indicate that the DSGC dendritic tree is partitioned into separate electrotonic regions, each summing its local excitatory and inhibitory synaptic inputs to initiate spikes. Within each local region the local spike threshold nonlinearly amplifies the preferred response over the null response on the basis of PSP amplitude. Using inhibitory conductances previously measured in DSGCs, the simulation results showed that inhibition is only sufficient to prevent spike initiation and cannot affect spike propagation. Therefore, inhibition will only act locally within the dendritic arbor. We identified the role of three mechanisms that generate directional selectivity (DS) in the local dendritic regions. First, a mechanism for DS intrinsic to the dendritic structure of the DSGC enhances DS on the null side of the cell's dendritic tree and weakens it on the preferred side. Second, spatially offset postsynaptic inhibition generates robust DS in the isolated dendritic tips but weak DS near the soma. Third, presynaptic DS is apparently necessary because it is more robust across the dendritic tree. The pre- and postsynaptic mechanisms together can overcome the local intrinsic DS. These local dendritic mechanisms can perform independent nonlinear computations to make a decision, and there could be analogous mechanisms within cortical circuitry. The On-Off direction-selective ganglion cell (DSGC) found in mammalian retinas generates a directional signal, responding most strongly to a stimulus moving in a specific direction. The DSGC initiates spikes in its dendritic tree which are thought to propagate to the soma and brain with high probability. Both dendritic and somatic spikes in the DSGC display strong directional tuning, whereas postsynaptic potentials (PSPs) recorded in the soma are only weakly directional, indicating that postsynaptic spike generation markedly enhances the directional signal. We constructed a realistic computational model to determine the source of the enhancement. Our results indicate that the DSGC dendritic tree is partitioned into separate computational regions. Within each region, the local spike threshold produces nonlinear amplification of the preferred response over the null response on the basis of PSP amplitude. The simulation results showed that inhibition acts locally within the dendritic arbor and will not stop dendritic spikes from propagating. We identified the role of three mechanisms that generate direction selectivity in the local dendritic regions, which suggests the origin of the previously described “non-direction-selective region,” and also suggests that the known DS in the synaptic inputs is apparently necessary for robust DS across the dendritic tree.
Collapse
Affiliation(s)
- Michael J. Schachter
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nicholas Oesch
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Robert G. Smith
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - W. Rowland Taylor
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon, United States of America
| |
Collapse
|
7
|
Grzywacz NM, Amthor FR. Robust directional computation in on-off directionally selective ganglion cells of rabbit retina. Vis Neurosci 2007; 24:647-61. [PMID: 17900380 DOI: 10.1017/s0952523807070666] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 08/17/2007] [Indexed: 11/06/2022]
Abstract
The spatial and temporal interactions in the receptive fields of On-Off directionally selective (DS) ganglion cells endow them with directional selectivity. Using a variety of stimuli, such as sinusoidal gratings, we show that these interactions make directional selectivity of the DS ganglion cell robust with respect to stimulus parameters such as contrast, speed, spatial frequency, and extent of motion. Moreover, unlike the directional selectivity of striate-cortex cells, On-Off DS ganglion cells display directional selectivity to motions not oriented perpendicularly to the contour of the objects. We argue that these cells may achieve such high robustness by combining multiple mechanisms of directional selectivity.
Collapse
Affiliation(s)
- Norberto M Grzywacz
- Department of Biomedical Engineering and Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA
| | | |
Collapse
|
8
|
Oesch N, Euler T, Taylor WR. Direction-selective dendritic action potentials in rabbit retina. Neuron 2005; 47:739-50. [PMID: 16129402 DOI: 10.1016/j.neuron.2005.06.036] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 05/31/2005] [Accepted: 06/28/2005] [Indexed: 11/16/2022]
Abstract
Dendritic spikes that propagate toward the soma are well documented, but their physiological role remains uncertain. Our in vitro patch-clamp recordings and two-photon calcium imaging show that direction-selective retinal ganglion cells (DSGCs) utilize orthograde dendritic spikes during physiological activity. DSGCs signal the direction of image motion. Excitatory subthreshold postsynaptic potentials are observed in DSGCs for motion in all directions and provide a weakly tuned directional signal. However, spikes are generated over only a narrow range of motion angles, indicating that spike generation greatly enhances directional tuning. Our results indicate that spikes are initiated at multiple sites within the dendritic arbors of DSGCs and that each dendritic spike initiates a somatic spike. We propose that dendritic spike failure, produced by local inhibitory inputs, might be a critical factor that enhances directional tuning of somatic spikes.
Collapse
Affiliation(s)
- Nicholas Oesch
- Neurological Sciences Institute, Oregon Health and Sciences University, Beaverton, Oregon 97006, USA
| | | | | |
Collapse
|
9
|
Abstract
Direction-selective retinal ganglion cells (DSGCs) respond to image motion in a "preferred" direction but not the opposite "null" direction. Extracellular spike recordings from rabbit DSGCs suggested that the key mechanism underlying the directional responses is spatially offset inhibition projecting in the null direction. Recent patch-clamp recordings have shown that this inhibition, which acts directly on the DSGC, is already direction selective. Dual recordings established that the inhibition arises from starburst amacrine cells (SBACs) located on the null side of the DSGC but not from those on the preferred side. Thus, for each radially symmetric SBAC, processes pointing in different directions would provide the null-direction inhibition to subtypes of DSGCs with different preferred directions. Ca2+ imaging revealed that the SBAC terminal processes respond more strongly to image motion away from the soma than towards the soma, therefore accounting for the direction selectivity of the inhibitory input to the DSGCs.
Collapse
Affiliation(s)
- W Rowland Taylor
- Neurological Sciences Institute, Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| | | |
Collapse
|
10
|
Clifford CWG, Ibbotson MR. Fundamental mechanisms of visual motion detection: models, cells and functions. Prog Neurobiol 2002; 68:409-37. [PMID: 12576294 DOI: 10.1016/s0301-0082(02)00154-5] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Taking a comparative approach, data from a range of visual species are discussed in the context of ideas about mechanisms of motion detection. The cellular basis of motion detection in the vertebrate retina, sub-cortical structures and visual cortex is reviewed alongside that of the insect optic lobes. Special care is taken to relate concepts from theoretical models to the neural circuitry in biological systems. Motion detection involves spatiotemporal pre-filters, temporal delay filters and non-linear interactions. A number of different types of non-linear mechanism such as facilitation, inhibition and division have been proposed to underlie direction selectivity. The resulting direction-selective mechanisms can be combined to produce speed-tuned motion detectors. Motion detection is a dynamic process with adaptation as a fundamental property. The behavior of adaptive mechanisms in motion detection is discussed, focusing on the informational basis of motion adaptation, its phenomenology in human vision, and its cellular basis. The question of whether motion adaptation serves a function or is simply the result of neural fatigue is critically addressed.
Collapse
Affiliation(s)
- C W G Clifford
- Colour, Form and Motion Laboratory, Visual Perception Unit, School of Psychology, The University of Sydney, Sydney 2006, NSW, Australia.
| | | |
Collapse
|
11
|
Jeon CJ, Kong JH, Strettoi E, Rockhill R, Stasheff SF, Masland RH. Pattern of synaptic excitation and inhibition upon direction-selective retinal ganglion cells. J Comp Neurol 2002; 449:195-205. [PMID: 12115689 DOI: 10.1002/cne.10288] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The distributions of excitatory and inhibitory synapses upon the dendritic arbor of a direction-selective retinal ganglion cell were compared by triple-labeling techniques. The dendrites were visualized by confocal microscopy after injection of Lucifer yellow. Excitatory inputs from bipolar cells were located by using antibodies against kinesin II, a component of synaptic ribbons. Inhibitory inputs were identified by antibodies against gamma-aminobutyric acid-A receptors. The combined images were examined by visual inspection and by formal, automated analyses, in a search for anisotropies that might contribute to a directional preference of the ganglion cell. Within the limits of our analysis, none was found. If an anatomic specialization underlies direction selectivity, it appears to lie in the geometry and spatial positioning of the neurons afferent to the ganglion cell and/or the microcircuitry among its afferent synapses.
Collapse
Affiliation(s)
- Chang-Jin Jeon
- Department of Biology, Kyungpook National University, 702-701 Taegu, Korea
| | | | | | | | | | | |
Collapse
|
12
|
The nondiscriminating zone of directionally selective retinal ganglion cells: comparison with dendritic structure and implications for mechanism. J Neurosci 1999. [PMID: 10479705 DOI: 10.1523/jneurosci.19-18-08049.1999] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have studied, at high resolution, the sizes and pattern of dendrites of directionally selective retinal ganglion cells in the rabbit. The dendrites had a distinctive pattern of branching. The major dendritic trunks were relatively thick, beginning at approximately 1 micrometer and tapering to approximately 0.5 micrometer in diameter. Higher order dendrites exiting from them generally stepped abruptly to a diameter of 0.4-0.6 micrometer, which they maintained throughout their length. Recording confirmed the existence of a zone within the receptive field, usually occupying 20-25% of its area, where direction of movement was only weakly discriminated. The dendritic arbors of cells, injected with Lucifer yellow after recording, revealed no difference in dendritic structure between the discriminating and nondiscriminating zones. The nondiscriminating zone was located on the preferred side of the receptive field (the side from which movement in the preferred direction originates). This is consistent with a mechanism of direction selectivity based on inhibition generated by movement in the null direction but not with feedforward excitation, as occurs in flies and is postulated in some models of mammalian direction selectivity.
Collapse
|
13
|
Sheasby BW, Fohlmeister JF. Impulse encoding across the dendritic morphologies of retinal ganglion cells. J Neurophysiol 1999; 81:1685-98. [PMID: 10200204 DOI: 10.1152/jn.1999.81.4.1685] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nerve impulse entrainment and other excitation and passive phenomena are analyzed for a morphologically diverse and exhaustive data set (n = 57) of realistic (3-dimensional computer traced) soma-dendritic tree structures of ganglion cells in the tiger salamander (Ambystoma tigrinum) retina. The neurons, including axon and an anatomically specialized thin axonal segment that is observed in every ganglion cell, were supplied with five voltage- or ligand-gated ion channels (plus leakage), which were distributed in accordance with those found in a recent study that employed an equivalent dendritic cylinder. A wide variety of impulse-entrainment responses was observed, including regular low-frequency firing, impulse doublets, and more complex patterns involving impulse propagation failures (or aborted spikes) within the encoder region, all of which have been observed experimentally. The impulse-frequency response curves of the cells fell into three groups called FAST, MEDIUM, and SLOW in approximate proportion as seen experimentally. In addition to these, a new group was found among the traced cells that exhibited an impulse-frequency response twice that of the FAST category. The total amount of soma-dendritic surface area exhibited by a given cell is decisive in determining its electrophysiological classification. On the other hand, we found only a weak correlation between the electrophysiological group and the morphological classification of a given cell, which is based on the complexity of dendritic branching and the physical reach or "receptive field" area of the cell. Dendritic morphology determines discharge patterns to dendritic (synaptic) stimulation. Orthodromic impulses can be initiated on the axon hillock, the thin axonal segment, the soma, or even the proximal axon beyond the thin segment, depending on stimulus magnitude, soma-dendritic membrane area, channel distribution, and state within the repetitive impulse cycle. Although a sufficiently high dendritic Na-channel density can lead to dendritic impulse initiation, this does not occur with our "standard" channel densities and is not seen experimentally. Even so, impulses initiated elsewhere do invade all except very thin dendritic processes. Impulse-encoding irregularities increase when channel conductances are reduced in the encoder region, and the F/I properties of the cells are a strong function of the calcium- and Ca-activated K-channel densities. Use of equivalent dendritic cylinders requires more soma-dendritic surface area than real dendritic trees, and the source of the discrepancy is discussed.
Collapse
Affiliation(s)
- B W Sheasby
- Department of Physiology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
14
|
Grzywacz NM, Tootle JS, Amthor FR. Is the input to a GABAergic or cholinergic synapse the sole asymmetry in rabbit's retinal directional selectivity? Vis Neurosci 1997; 14:39-54. [PMID: 9057267 DOI: 10.1017/s0952523800008749] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We examined contrast, direction of motion, and concentration dependencies of the effects of GABAergic and cholinergic antagonists, and anticholinesterases on responses to movement of On-Off directionally selective (DS) ganglion cells of the rabbit's retina. The drugs tested were curare and hexamethonium bromide (cholinergic antagonists), physostigmine (anticholinesterase), and picrotoxin (GABAergic antagonist). They all reduced the cells' directional selectivity, while maintaining their preferred-null axis. However, cholinergic antagonists did not block directional selectivity completely even at saturating concentrations. The failure to eliminate directional selectivity was probably not due to an incomplete blockade of cholinergic receptors. In a extension of a Masland and Ames (1976) experiment, saturating concentrations of antagonists blocked the effects of exogenous acetylcholine or nicotine applied during synaptic blockade. Consequently, a noncholinergic pathway may be sufficient to account for at least some directional selectivity. This putative pathway interacts with the cholinergic pathway before spike generation, since physostigmine eliminated directional selectivity at contrasts lower than those saturating responses. This elimination apparently resulted from cholinergic-induced saturation, since reduction of contrast restored directional selectivity. Under picrotoxin, directional selectivity was lost in 33% of the cells regardless of contrast. However, 47% maintained their preferred direction despite saturating concentrations of picrotoxin, and 20% reversed the preferred and null directions. Therefore, models based solely on a GABAergic implementation of Barlow and Levick's asymmetric-inhibition model or solely on a cholinergic implementation of asymmetric-excitation models are not complete models of directional selectivity in the rabbit. We propose an alternate model for this retinal property.
Collapse
Affiliation(s)
- N M Grzywacz
- Smith-Kettlewell Eye Research Institute, San Francisco, CA 94115, USA
| | | | | |
Collapse
|
15
|
Amthor FR, Grzywacz NM, Merwine DK. Extra-receptive-field motion facilitation in on-off directionally selective ganglion cells of the rabbit retina. Vis Neurosci 1996; 13:303-9. [PMID: 8737281 DOI: 10.1017/s0952523800007549] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The excitatory receptive-field centers of On-Off directionally selective (DS) ganglion cells of the rabbit retina correspond closely to the lateral extent of their dendritic arborizations. Some investigators have hypothesized from this that theories for directional selectivity that entail a lateral spread of excitation from outside the ganglion cell dendritic tree, such as from starburst amacrine cells, are therefore untenable. We show here that significant motion facilitation is conducted from well outside the classical excitatory receptive-field center (and, therefore, dendritic arborization) of On-Off DS ganglion cells for preferred-direction, but not null-direction moving stimuli. These results are consistent with a role in directional selectivity for cells with processes lying beyond the On-Off ganglion cell's excitatory receptive-field center. These results also highlight the fundamental distinction in retinal ganglion cell receptive-field organization between classical excitatory mechanisms and those that facilitate other excitation without producing directly observable excitation by themselves.
Collapse
Affiliation(s)
- F R Amthor
- Department of Psychology and Neurobiology Research Center, University of Alabama at Birmingham 35294, USA
| | | | | |
Collapse
|
16
|
Taylor WR, Wässle H. Receptive field properties of starburst cholinergic amacrine cells in the rabbit retina. Eur J Neurosci 1995; 7:2308-21. [PMID: 8563980 DOI: 10.1111/j.1460-9568.1995.tb00652.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Patch-clamp recordings were made from ON starburst cholinergic amacrine cells with somas located in the ganglion cell layer of an isolated, dark-adapted rabbit retina preparation. Light responses were analysed and cell identify was confirmed anatomically. The centre light response had a linear current-voltage relation with a reversal potential close to 0 mV. The receptive field size was similar to the dendritic field size. Cholinergic amacrine cells displayed significant surround inhibition. The receptive field profile consisted of a central excitatory region flanked by an inhibitory surround. The surround attenuated the central response to 36% of the maximum. The surround was probably mediated by a combination of presynaptic and postsynaptic inhibition. Starburst amacrine cells did not display action potentials and the presence of a large, voltage-dependent outward current limited depolarizing responses to a maximum potential of about -40 mV. Light responses were completely suppressed during application of 100 microM D,L-2-amino-4-phosphonobutyric acid (APB), consistent with activation exclusively through rod bipolar cells (on) and ON-cone bipolar cells. In darkness the cells displayed a tonic inward current that could be blocked by 100 microM APB and 2 microM CNQX.
Collapse
Affiliation(s)
- W R Taylor
- Neuroanatomische Abteilung, Max-Planck-Institut für Hirnforschung, Frankfurt, Germany
| | | |
Collapse
|