1
|
Wang F, Zhong W, Yang Q, Zhao W, Liu X, Rao B, Lin X, Zhang J. Distribution and synaptic organization of substance P-like immunoreactive neurons in the mouse retina. Brain Struct Funct 2023; 228:1703-1724. [PMID: 37481742 DOI: 10.1007/s00429-023-02688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Substance P (SP), a neuroprotective peptidergic neurotransmitter, is known to have immunoreactivity (IR) localized to amacrine and/or ganglion cells in a variety of species' retinas, but it has not yet been studied in the mouse retina. Thus, we investigated the distribution and synaptic organization of SP-IR by confocal and electron microscopy immunocytochemistry in the mouse retina. SP-IR was distributed in the inner nuclear layer (INL), inner plexiform layer (IPL), and ganglion cell layer (GCL). Most of the SP-IR somas belonged to amacrine cells (2.5% of all) in the INL and their processes stratified into the S1, S3, and S5 layers of the IPL, with the most intense band in the S5 layer. Some SP-IR somas can also be observed in the GCL, which were identified as displaced amacrine cells (82%, 1269/1550) and ganglion cells (18%, 281/1550) by antibodies against AP2α and RBPMS, respectively. Such SP-IR ganglion cells (1.2% of all RGCs) can be further divided into 3 subgroups expressing SP/α-Synuclein (α-Syn), SP/GAD67, and/or SP/GAD67/α-Syn. Possible physiological and pathological roles of these ganglion cells are discussed. Further, electron microscopy evidence demonstrates that SP-IR amacrine cells receive major inputs from other SP-IR amacrine cell processes (146/242 inputs) and output mostly to SP-negative amacrine cell processes (291/673 outputs), suggesting series inhibition among amacrine cells. These results reveal for the first time an explicit distribution, novel ganglion cell features, and synaptic organization of SP-IR in the mouse retina, which is important for the future use of mouse models to study the roles of SP in healthy and diseased (including Parkinson's disease) retinal states.
Collapse
Affiliation(s)
- Fenglan Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wenhui Zhong
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qingwen Yang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wenna Zhao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoqing Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Bilin Rao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Xin Lin
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Jun Zhang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Laboratory of Retinal Physiology and Disease, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
2
|
Jiang Z, Li B, Jursky F, Shen W. Differential distribution of glycine transporters in Müller cells and neurons in amphibian retinas. Vis Neurosci 2007; 24:157-68. [PMID: 17640406 DOI: 10.1017/s0952523807070186] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 02/24/2007] [Indexed: 11/06/2022]
Abstract
Amphibian retinas are commonly used for electrophysiological studies on neural function and transduction because they share the same general properties as higher vertebrate retinas. Glycinergic synapses have been well described in amphibian retinas. However, the role of glycine transporters in the synapses is largely unknown. We studied the distribution and function of glycine transporters in the retinas from tiger salamanders, mudpuppies, and leopard frogs by immunofluorescence labeling and whole-cell recording methods. Our results indicated that GlyT1- and GlyT2-like transporters were present in Müller cells and neurons, respectively. GlyT1 labeling was present in Müller glial cells and co-localized with Glial fibrillary acidic protein (GFAP), a Müller cell marker, whereas the GlyT2 immunoreactivity was present in the somas of amacrine cells (ACs) and processes in the inner plexiform layer (IPL) and the outer plexiform layer (OPL). Because the axon processes of glycinergic interplexiform cells (IPCs) are the only source of glycine input in the OPL, GlyT2 staining revealed a spatial pattern of the axon processes of IPCs in the OPL. The function of GlyT2 in the IPCs was studied in tiger salamander retinal horizontal cells (HCs) by whole-cell gramicidin perforated recording. The results demonstrated that inhibition of GlyT2 by a specific inhibitor, amoxapine, increased a tonic glycine input to HCs. Thus, the GlyT2 transporter is responsible for uptake of synaptic glycine in the outer retina. We also compared the distribution of glycine transporters in other amphibian species: salamander, mudpuppy, and frog. The results are consistent with the general pattern that GlyT1-like transporters are present in Müller cells and GlyT2-like transporters in neurons in amphibian retinas.
Collapse
Affiliation(s)
- Zheng Jiang
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida 33431, USA
| | | | | | | |
Collapse
|
3
|
Vitanova L. Immunocytochemical study of glycine receptors in the retina of the frog Xenopus laevis. ACTA ACUST UNITED AC 2006; 211:237-45. [PMID: 16416306 DOI: 10.1007/s00429-005-0076-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2005] [Indexed: 10/25/2022]
Abstract
The expression of glycine receptors in the retina of clawed frog, Xenopus laevis was studied immunocytochemically. Glycine receptors (GlyRs), as revealed by means of several different antibodies, were mainly distributed in the inner (IPL) and the outer plexiform layers. Their composition was determined to include alpha2 and alpha3 subunits. Typical punctate appearance and specific lamination in the IPL were seen with each of the antibodies directed against the different GlyRs' subunits. A notion for diversity of the glycine receptors was put forward, according to which the alpha2 and alpha3 subunits are located in different subtypes of glycine synapses.
Collapse
Affiliation(s)
- Lily Vitanova
- Department of Physiology, Medical University, 1, G.Sofiisky str., 1431 Sofia, Bulgaria.
| |
Collapse
|
4
|
Debski EA. Distribution and regulation of substance P-related peptide in the frog visual system. Microsc Res Tech 2001; 54:220-8. [PMID: 11514978 DOI: 10.1002/jemt.1134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Modulation of visual signal activity has consequences for both signal processing and for activity-dependent structuring mechanisms. Among the neuromodulatory agents found in visual areas are substance P (SP)-related peptides. This article reviews what is known about these substances in the amphibian retina and optic tectum with special emphasis on the leopard frog, Rana pipiens. It is found that the distribution of these SP-related peptides is remarkably similar to that seen in mammals. This suggests that study of model amphibian systems may significantly enhance our understanding of how neuropeptides contribute to visual system function and organization.
Collapse
Affiliation(s)
- E A Debski
- School of Biological Sciences, University of Kentucky, Lexington, Kentucky 40506, USA.
| |
Collapse
|
5
|
Muñoz M, Martínez A, Cuttitta F, González A. Distribution of adrenomedullin-like immunoreactivity in the central nervous system of the frog. J Chem Neuroanat 2001; 21:105-23. [PMID: 11312053 DOI: 10.1016/s0891-0618(00)00114-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adrenomedullin (AM) is a recently discovered peptide widely distributed in the mammalian brain. By using an antiserum specific for human AM, we have analyzed the localization of AM-like immunoreactivity in the brain and spinal cord of the anuran amphibian Rana perezi. Cell bodies immunoreactive (AMi) for AM were located in the dorsal, lateral and medial pallial regions, diagonal band of Broca, medial septum, and above and rostral to the anterior commissure. A large population of AMi neurons was located in the anterior preoptic area, suprachiasmatic nucleus and in the infundibular hypothalamus. The processes of these latter cells are part of the hypothalamo-hypophysial pathway to the neural and intermediate lobes. Labeled cells were observed in the pretectal region, posterior tubercle and the mesencephalic anteroventral tegmental nucleus. Strikingly, Purkinje cells in the cerebellum also showed AM immunoreactivity, albeit not all of these cells were equally stained. Additional cells were located in the parabrachial region, principal trigeminal sensory nucleus, reticular nuclei medius and inferior, and the intermediolateral gray of the spinal cord. Immunolabeled fibers were widespread throughout the brain and spinal cord of the frog. They were particularly abundant in the medial amygdala, hypothalamus, mesencephalic tectum, periventricular gray and spinal cord. The distribution pattern of AM-like immunoreactivity in the brain of the frog is very selective and does not correspond with the pattern observed for any other transmitter or neuroactive molecule. The wide distribution of this peptide strongly suggests that it may play a significant role in the multiple neuronal functions in the amphibian brain.
Collapse
Affiliation(s)
- M Muñoz
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | | | | | | |
Collapse
|
6
|
Huang S, Moody SA. Asymmetrical blastomere origin and spatial domains of dopamine and neuropeptide Y amacrine subtypes in Xenopus tadpole retina. J Comp Neurol 1995; 360:442-53. [PMID: 8543650 DOI: 10.1002/cne.903600306] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Amacrine cells are located almost exclusively in the inner nuclear layer (INL) of the retina, but they express a variety of neurotransmitters. To begin to elucidate the relative roles of the local environment and cell lineage in determining the different neurotransmitter subtypes of amacrine cells, we combined lineage tracing and immunocytochemical techniques to map the spatial distribution and clonal origin of dopamine (DA) and neuropeptide Y (NPY) amacrine cells in Xenopus tadpole retina. At the earliest period of neurotransmitter expression, both DA and NPY amacrine cells were distributed preferentially in center and intermediate annular regions, and in anterior and dorsal quadrants. Most of the DA and NPY cells first emerged as scattered cells and later as clusters (of 2 or more cells) that increased in number and size up to premetamorphic stages. These results suggest that DA and NPY amacrine subtypes may be influenced by environmental cues localized to specific regions of the retina. Lineage analysis showed that the percentage of DA or NPY amacrine cells produced by most blastomere progenitors is significantly different from that predicted by the number of cells in the retina produced by those blastomeres. Only two blastomeres produced over 90% of the DA amacrine cells and only four produced 97% of the NPY amacrine cells. Some retinal progenitors did not contribute at all to these two amacrine subtypes. There also is a marked asymmetry in the blastomere origin of DA and NPY amacrine cells. Two retinal progenitors produced significant numbers of NPY but very few DA amacrine cells. This analysis provides evidence that blastomere origin restricts the developmental choices of retinal progenitors.
Collapse
Affiliation(s)
- S Huang
- Department of Anatomy, George Washington University Medical Center, Washington, D.C. 20037, USA
| | | |
Collapse
|
7
|
Watt CB, Glazebrook PA, Florack VJ. Localization of substance P and GABA in retinotectal ganglion cells of the larval tiger salamander. Vis Neurosci 1994; 11:355-62. [PMID: 7516178 DOI: 10.1017/s0952523800001693] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The present study was performed as part of a systematic examination of the transmitter specificity of neuronal populations in the larval tiger salamander retina. Backfill-labeling of ganglion cells from the optic tectum was combined with double-label immunofluorescence histochemistry to determine if substance P and GABA are localized to ganglion cell populations in the tiger salamander retina. The triple-label analysis revealed the presence of substance P- and GABA-ganglion cells in both central and peripheral regions of the retina. Substance P-immunoreactive ganglion cells comprised 2% of the total population of backfill-labeled ganglion cells, while less than 1% of backfill-labeled ganglion cells expressed GABA immunoreactivity. Ganglion cells were not found to co-label for both substance P and GABA. Backfill-labeled displaced ganglion cells, which comprised 1.4% of the ganglion cell population, were not observed to be immunoreactive for either substance P or GABA. Forty-six point nine percent of substance P-cells in the ganglion cell layer were backfill-labeled and were identified as ganglion cells. GABA ganglion cells comprised less than 1% of GABA-immunoreactive cells in the ganglion cell layer. Therefore, the present study provides evidence for the presence of small populations of substance P- and GABA-ganglion cells in the larval tiger salamander retina. These observations suggest a functional diversity in the population of tiger salamander ganglion cells relative to their unique transmitter specificities.
Collapse
Affiliation(s)
- C B Watt
- Alice R. McPherson Laboratory of Retina Research, Center for Biotechnology, Baylor College of Medicine, The Woodlands, TX 77381
| | | | | |
Collapse
|
8
|
Abstract
The present double-label study combines enkephalin immunocytochemistry with either autoradiography of glycine high-affinity uptake or glycine immunocytochemistry to investigate the coexistence of glycine in enkephalin-amacrine cells of the chicken retina. A regional analysis revealed that the percentage coexistence of glycine high-affinity uptake in enkephalin-amacrine cells did not vary appreciably throughout the retina. Overall, 54.9% of enkephalin-amacrine cells exhibited high-affinity glycine uptake. Double-label immunofluorescence cytochemistry revealed that 52.5% of enkephalin-amacrine cells expressed glycine immunoreactivity. These double-immunolabeled cells were observed throughout the center and periphery of the retina. The present study reveals a similar percentage of chicken enkephalin-amacrine cells expressing either glycine high-affinity uptake (54.9%) or glycine immunoreactivity (52.5%) and therefore, provides supportive evidence for identifying these cells as glycinergic. The present study also suggests a functional diversity in the population of enkephalin-amacrine cells in the chicken retina relative to their coexisting/non-coexisting relationship with glycine.
Collapse
Affiliation(s)
- C B Watt
- Alice R. McPherson Laboratory of Retina Research, Center for Biotechnology, Baylor College of Medicine, The Woodlands, TX 77381
| | | |
Collapse
|