1
|
Leopard frog priorities in choosing between prey at different locations. Behav Processes 2010; 86:138-42. [PMID: 21087658 DOI: 10.1016/j.beproc.2010.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 11/01/2010] [Accepted: 11/02/2010] [Indexed: 11/20/2022]
Abstract
Frogs are able to respond to a prey stimulus throughout their 360° ground-level visual field as well as in the superior visual field. We compared the likelihood of frogs choosing between a more nasally located, ground-level prey versus a more temporally located ground-level prey, when the prey at the nasal location is further away from the frog. Two crickets were presented simultaneously at 9 pairs of angles that included both crickets in the binocular visual field, both crickets in the monocular visual field, or one cricket in the binocular field and one in the monocular field. Frogs chose the more nasally located prey at least 71% of the time when the more temporal prey was in the monocular field; and 64% of the time when both prey were in the binocular field. Frogs tended to choose the more nasally located prey, even though it takes the frog longer to reach the prey. In addition, when given a choice between a prey located at ground level versus a prey located in the superior field, frogs tend to choose the prey at ground-level. These results suggest that there is a neural mechanism that biases frogs' responses to prey stimuli.
Collapse
|
2
|
Dudkin EA, Sheffield JB, Gruberg ER. Combining visual information from the two eyes: the relationship between isthmotectal cells that project to ipsilateral and to contralateral optic tectum using fluorescent retrograde labels in the frog, Rana pipiens. J Comp Neurol 2007; 502:38-54. [PMID: 17335048 DOI: 10.1002/cne.21308] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The frog nucleus isthmi (homolog of the mammalian parabigeminal nucleus) is a visually responsive tegmental structure that is reciprocally connected with the ipsilateral optic tectum; cells in nucleus isthmi also project to the contralateral optic tectum. We investigated the location of the isthmotectal cells that project ipsilaterally and contralaterally using three retrograde fluorescent label solutions: Alexa Fluor 488 10,000 mw dextran conjugate; Rhodamine B isothiocyanate; and Nuclear Yellow. Dye solutions were pressure-injected into separate sites in the superficial optic tectum. Following a 6-day survival, brains were fixed, sectioned, and then photographed. Injection of the different labels at separate, discrete locations in the optic tectum result in retrograde filling of singly labeled clusters of cells in both the ipsilateral and contralateral nucleus isthmi. Generally, ipsilaterally projecting cells are dorsal to the contralaterally projecting cells, but there is a slight overlap between the two sets of cells. Nonetheless, when different retrograde labels are injected into opposite tecta, there is no indication that individual cells project to both tecta. The set of cells that project to the ipsilateral tectum and the set of cells that project to the contralateral tectum form a visuotopic map in a roughly vertical, transverse slab. Our results suggest that nucleus isthmi can be separated into two regions with cells in the dorsolateral portion projecting primarily to the ipsilateral optic tectum and cells in the ventrolateral nucleus isthmi projecting primarily to the contralateral optic tectum.
Collapse
Affiliation(s)
- Elizabeth A Dudkin
- Division of Science, Pennsylvania State University, Media, Pennsylvania 19063, USA.
| | | | | |
Collapse
|
3
|
Endo T, Yanagawa Y, Obata K, Isa T. Nicotinic Acetylcholine Receptor Subtypes Involved in Facilitation of GABAergic Inhibition in Mouse Superficial Superior Colliculus. J Neurophysiol 2005; 94:3893-902. [PMID: 16107532 DOI: 10.1152/jn.00211.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The superficial superior colliculus (sSC) is a key station in the sensory processing related to visual salience. The sSC receives cholinergic projections from the parabigeminal nucleus, and previous studies have revealed the presence of several different nicotinic acetylcholine receptor (nAChR) subunits in the sSC. In this study, to clarify the role of the cholinergic inputs to the sSC, we examined current responses induced by ACh in GABAergic and non-GABAergic sSC neurons using in vitro slice preparations obtained from glutamate decarboxylase 67-green fluorescent protein (GFP) knock-in mice in which GFP is specifically expressed in GABAergic neurons. Brief air pressure application of acetylcholine (ACh) elicited nicotinic inward current responses in both GABAergic and non-GABAergic neurons. The inward current responses in the GABAergic neurons were highly sensitive to a selective antagonist for α3β2- and α6β2-containing receptors, α-conotoxin MII (αCtxMII). A subset of these neurons exhibited a faster α-bungarotoxin-sensitive inward current component, indicating the expression of α7-containing nAChRs. We also found that the activation of presynaptic nAChRs induced release of GABA, which elicited a burst of miniature inhibitory postsynaptic currents mediated by GABAA receptors in non-GABAergic neurons. This ACh-induced GABA release was mediated mainly by αCtxMII-sensitive nAChRs and resulted from the activation of voltage-dependent calcium channels. Morphological analysis revealed that recorded GFP-positive neurons are interneurons and GFP-negative neurons include projection neurons. These findings suggest that nAChRs are involved in the regulation of GABAergic inhibition and modulate visual processing in the sSC.
Collapse
Affiliation(s)
- Toshiaki Endo
- Department of Developmental Physiology, National Institute for Physiological Sciences, Myodaiji, Okazaki, Japan.
| | | | | | | |
Collapse
|
4
|
Schuelert N, Dicke U. Dynamic response properties of visual neurons and context-dependent surround effects on receptive fields in the tectum of the salamander Plethodon shermani. Neuroscience 2005; 134:617-32. [PMID: 15975725 DOI: 10.1016/j.neuroscience.2005.04.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 04/15/2005] [Accepted: 04/23/2005] [Indexed: 11/21/2022]
Abstract
Neuronal responses to complex prey-like stimuli and rectangles were investigated in the tectum of the salamander Plethodon shermani using extracellular single-cell recording. Cricket dummies differing in size, contrast or movement pattern or a rectangle were moved singly through the excitatory receptive field of a neuron. Paired presentations were performed, in which a reference stimulus was moved inside and the different cricket dummies or the rectangle outside the excitatory receptive field. Visual object recognition involves much more complex spatial and temporal processing than previously assumed in amphibians. This concerns significant changes in absolute number of spikes, temporal discharge pattern, and receptive field size. At single presentation of stimuli, the number of discharges was significantly changed compared with the reference stimulus, and in the majority of neurons the temporal pattern of discharges was changed in addition. At paired presentation of stimuli, neurons mainly revealed a significant decrease in average spike number and a reduction of excitatory receptive field size to presentation of the reference stimulus inside the excitatory receptive field, when a large-sized cricket stimulus or the rectangle was located outside the excitatory receptive field. This inhibition was significantly greater for the large-sized cricket stimulus than for the rectangle, and indicates the biological relevance of the prey-like stimulus in object selection. The response properties of tectal neurons at single or paired presentation of stimuli indicate that tectal neurons integrate information across a much larger part of visual space than covered by the excitatory receptive field. The spike number of a tectal neuron and the spatio-temporal extent of its excitatory receptive field are not fixed but depend on the context, i.e. the stimulus type and combination. This dynamic processing corresponds with the selection of the stimuli in the visual orienting behavior of Plethodon investigated in a previous study, and we assume that tectal processing is modulated by top down processes as well as feedback circuitries.
Collapse
Affiliation(s)
- N Schuelert
- Brain Research Institute, Department of Behavioral Physiology and Developmental Neurobiology, University of Bremen, 28334 Bremen, Germany
| | | |
Collapse
|
5
|
Cui H, Malpeli JG. Activity in the parabigeminal nucleus during eye movements directed at moving and stationary targets. J Neurophysiol 2003; 89:3128-42. [PMID: 12611992 DOI: 10.1152/jn.01067.2002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The parabigeminal nucleus (PBN) is a small satellite of the superior colliculus located on the edge of the midbrain. To identify activity related to visuomotor behavior, we recorded from PBN cells in cats trained to fixate moving and stationary targets. Cats tracked moving targets primarily with small catch-up saccades, and for target speeds of 2-6 degrees /s, they did so with sufficient accuracy to keep targets within 2.5 degrees of the visual axis most of the time. During intersaccade intervals of such close-order tracking, PBN cells fired at rates related to retinal position error (RPE), the distance between the center of the retina and the saccade target. Each cell was characterized by a best direction of RPE. Most commonly, activity rose rapidly with increasing RPE, peaked at a small RPE within the area centralis, and dropped off gradually with increasing target distance. For some cells, the range over which activity was monotonically related to RPE was considerably larger, but because the PBN was not systematically sampled, the maximum range of RPE encoded is presently unknown. During saccades, activity began to change at about peak saccade velocity and then rapidly reached a level appropriate to the RPE achieved at saccade end. Most response fields were large, and stationary saccade targets presented anywhere within them evoked brisk responses that terminated abruptly on saccade offset. Spontaneous saccades in the dark had little effect on PBN activity. These data suggest that the PBN is an integral part of a midbrain circuit generating target location information.
Collapse
Affiliation(s)
- He Cui
- Neuroscience Program, University of Illinois, Champaign, Illinois 61820, USA
| | | |
Collapse
|
6
|
Dudkin EA, Gruberg ER. Nucleus isthmi enhances calcium influx into optic nerve fiber terminals in Rana pipiens. Brain Res 2003; 969:44-52. [PMID: 12676363 DOI: 10.1016/s0006-8993(03)02274-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We examined the role of nucleus isthmi in enhancing intracellular calcium concentrations in retinotectal fibers in the frog optic tectum in vitro. The intracellular calcium levels were measured using the fluorescent calcium-sensitive dye, Calcium Green-1 3000 mw dextran conjugate (CG-1), which was injected into one optic nerve. Electrical stimulation of the labeled optic nerve alone increased tectal CG-1 fluorescence whereas electrical stimulation of nucleus isthmi alone had no effect on CG-1 fluorescence. Electrical stimulation of the nucleus isthmi ipsilateral to the labeled tectum, followed by electrical stimulation to the optic nerve can enhance calcium uptake more than a double pulse stimulation of the optic nerve alone. Maximum enhancement of the calcium signal by nucleus isthmi occurs when optic nerve stimulation follows the ipsilateral nucleus isthmi stimulation by 10 ms. These results suggest that nucleus isthmi input can facilitate retinotectal neurotransmission, and the mechanism could be used to allow the frog to attend to a single prey stimulus in an environment of several prey stimuli.
Collapse
Affiliation(s)
- Elizabeth A Dudkin
- Division of Science, Commonwealth College, Pennsylvania State University, 25 Yearsley Mill Road, Media, PA 19063, USA.
| | | |
Collapse
|
7
|
Schülert N, Dicke U. The effect of stimulus features on the visual orienting behaviour of the salamander Plethodon jordani. J Exp Biol 2002; 205:241-51. [PMID: 11821490 DOI: 10.1242/jeb.205.2.241] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The effects of the visual features of prey-like objects on the orienting behaviour of the salamander Plethodon jordani were studied. Two stimuli (cricket dummies, rectangles), moving in opposite directions, were presented simultaneously on a computer screen. They differed in size, contrast, velocity and movement pattern of the entire body or the body appendages. Size and velocity appeared to be the dominant features; shape was of lesser importance. Contrast and movement pattern were of intermediate importance and local motion of little importance. This rank order was the same when the probability of a response to the different stimuli was estimated by means of the maximum-likelihood method. Cluster analysis revealed that in all animals stimuli could be grouped into five clusters. Among individuals, the rank order of stimuli was similar for high- and low-ranking stimuli and varied for those of intermediate rank; stimuli could be grouped into 3–5 clusters. Our findings favour the view that, in amphibians, prey recognition is guided by a number of visual features acting either alone or in combination and depending on internal motivational or attentional states and individual experience.
Movie available on-line: http://www.biologists.com/JEB/movies/jeb3864.html.
Collapse
Affiliation(s)
- Niklas Schülert
- Brain Research Institute, University of Bremen, 28334 Bremen, Germany
| | | |
Collapse
|
8
|
Ewert JP, Buxbaum-Conradi H, Dreisvogt F, Glagow M, Merkel-Harff C, Röttgen A, Schürg-Pfeiffer E, Schwippert WW. Neural modulation of visuomotor functions underlying prey-catching behaviour in anurans: perception, attention, motor performance, learning. Comp Biochem Physiol A Mol Integr Physiol 2001; 128:417-61. [PMID: 11246037 DOI: 10.1016/s1095-6433(00)00333-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present review points out that visuomotor functions in anurans are modifiable and provides neurophysiological data which suggest modulatory forebrain functions. The retino-tecto/tegmento-bulbar/spinal serial processing streams are sufficient for stimulus-response mediation in prey-catching behaviour. Without its modulatory connections to forebrain structures, however, these processing streams cannot manage perceptual tasks, directed attention, learning performances, and motor skills. (1) Visual prey/non-prey discrimination is based on the interaction of this processing stream with the pretectal thalamus involving the neurotransmitter neuropeptide-Y. (2) Experiments applying the dopamine agonist apomorphine in combination with 2DG mapping and single neurone recording suggest that prey-catching strategies in terms of hunting prey and waiting for prey depend on dose dependent dopaminergic adjustments in the neural macronetwork in which retinal, pretecto-tectal, basal ganglionic, limbic, and mesolimbic structures participate. (3) Visual response properties of striatal efferent neurones support the concept that ventral striatum is involved in directed attention. (4) Various modulatory loops involving the ventral medial pallium modify prey-recognition in the course of visual or visual-olfactory learning (associative learning) or are responsible for stimulus-specific habituation (non-associative learning). (5) The circuits suggested to underlie modulatory forebrain functions are accentuated in standard schemes of the neural macronetwork. These provide concepts suitable for future decisive experiments.
Collapse
Affiliation(s)
- J P Ewert
- Department of Neurobiology, FB19 Biology/Chemistry, University of, Kassel, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Dudkin EA, Gruberg ER. Relative number of cells projecting from contralateral and ipsilateral nucleus isthmi to loci in the optic tectum is dependent on visuotopic location: Horseradish peroxidase study in the leopard frog. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19991115)414:2<212::aid-cne5>3.0.co;2-#] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Edward R. Gruberg
- Biology Department, Temple University, Philadelphia, Pennsylvania 19122
| |
Collapse
|
10
|
King JG, Lettvin JY, Gruberg ED. Selective, unilateral, reversible loss of behavioral responses to looming stimuli after injection of tetrodotoxin of cadmium chloride into the frog optic nerve. Brain Res 1999; 841:20-6. [PMID: 10546984 DOI: 10.1016/s0006-8993(99)01764-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Unilateral injection of tetrodotoxin or cadmium chloride into the frog optic nerve selectively eliminates behavioral responses to looming stimuli while sparing responses to prey stimuli. This behavioral loss is correlated with a loss of activity of "dimming" units in tectal layer G. These findings suggest that separate sets of retinal ganglion cell fibers carry information concerning looming stimuli and prey stimuli. The lack of activity in layer G suggests that information about looming stimuli is being conveyed by myelinated retinal ganglion cell axons. It is argued that unmyelinated fibers are not blocked by the neurotoxins because the extracellular space around the fibers is mostly inaccessible.
Collapse
Affiliation(s)
- J G King
- Biology Department, Temple University, Philadelphia, PA 19122, USA
| | | | | |
Collapse
|
11
|
|