1
|
Hays CL, Sladek AL, Thoreson WB. Resting and stimulated mouse rod photoreceptors show distinct patterns of vesicle release at ribbon synapses. J Gen Physiol 2021; 152:211528. [PMID: 33175961 PMCID: PMC7664508 DOI: 10.1085/jgp.202012716] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/01/2020] [Accepted: 10/19/2020] [Indexed: 01/04/2023] Open
Abstract
The vertebrate visual system can detect and transmit signals from single photons. To understand how single-photon responses are transmitted, we characterized voltage-dependent properties of glutamate release in mouse rods. We measured presynaptic glutamate transporter anion current and found that rates of synaptic vesicle release increased with voltage-dependent Ca2+ current. Ca2+ influx and release rate also rose with temperature, attaining a rate of ∼11 vesicles/s/ribbon at -40 mV (35°C). By contrast, spontaneous release events at hyperpolarized potentials (-60 to -70 mV) were univesicular and occurred at random intervals. However, when rods were voltage clamped at -40 mV for many seconds to simulate maintained darkness, release occurred in coordinated bursts of 17 ± 7 quanta (mean ± SD; n = 22). Like fast release evoked by brief depolarizing stimuli, these bursts involved vesicles in the readily releasable pool of vesicles and were triggered by the opening of nearby ribbon-associated Ca2+ channels. Spontaneous release rates were elevated and bursts were absent after genetic elimination of the Ca2+ sensor synaptotagmin 1 (Syt1). This study shows that at the resting potential in darkness, rods release glutamate-filled vesicles from a pool at the base of synaptic ribbons at low rates but in Syt1-dependent bursts. The absence of bursting in cones suggests that this behavior may have a role in transmitting scotopic responses.
Collapse
Affiliation(s)
- Cassandra L Hays
- Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE.,Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Asia L Sladek
- Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Wallace B Thoreson
- Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE.,Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
2
|
Thoreson WB. Transmission at rod and cone ribbon synapses in the retina. Pflugers Arch 2021; 473:1469-1491. [PMID: 33779813 DOI: 10.1007/s00424-021-02548-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/29/2022]
Abstract
Light-evoked voltage responses of rod and cone photoreceptor cells in the vertebrate retina must be converted to a train of synaptic vesicle release events for transmission to downstream neurons. This review discusses the processes, proteins, and structures that shape this critical early step in vision, focusing on studies from salamander retina with comparisons to other experimental animals. Many mechanisms are conserved across species. In cones, glutamate release is confined to ribbon release sites although rods are also capable of release at non-ribbon sites. The role of non-ribbon release in rods remains unclear. Release from synaptic ribbons in rods and cones involves at least three vesicle pools: a readily releasable pool (RRP) matching the number of membrane-associated vesicles along the ribbon base, a ribbon reserve pool matching the number of additional vesicles on the ribbon, and an enormous cytoplasmic reserve. Vesicle release increases in parallel with Ca2+ channel activity. While the opening of only a few Ca2+ channels beneath each ribbon can trigger fusion of a single vesicle, sustained release rates in darkness are governed by the rate at which the RRP can be replenished. The number of vacant release sites, their functional status, and the rate of vesicle delivery in turn govern replenishment. Along with an overview of the mechanisms of exocytosis and endocytosis, we consider specific properties of ribbon-associated proteins and pose a number of remaining questions about this first synapse in the visual system.
Collapse
Affiliation(s)
- Wallace B Thoreson
- Truhlsen Eye Institute, Departments of Ophthalmology & Visual Sciences and Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
3
|
Oesterle J, Behrens C, Schröder C, Hermann T, Euler T, Franke K, Smith RG, Zeck G, Berens P. Bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics. eLife 2020; 9:e54997. [PMID: 33107821 PMCID: PMC7673784 DOI: 10.7554/elife.54997] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 10/26/2020] [Indexed: 01/02/2023] Open
Abstract
While multicompartment models have long been used to study the biophysics of neurons, it is still challenging to infer the parameters of such models from data including uncertainty estimates. Here, we performed Bayesian inference for the parameters of detailed neuron models of a photoreceptor and an OFF- and an ON-cone bipolar cell from the mouse retina based on two-photon imaging data. We obtained multivariate posterior distributions specifying plausible parameter ranges consistent with the data and allowing to identify parameters poorly constrained by the data. To demonstrate the potential of such mechanistic data-driven neuron models, we created a simulation environment for external electrical stimulation of the retina and optimized stimulus waveforms to target OFF- and ON-cone bipolar cells, a current major problem of retinal neuroprosthetics.
Collapse
Affiliation(s)
- Jonathan Oesterle
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
| | - Christian Behrens
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
| | - Cornelius Schröder
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
| | - Thoralf Hermann
- Naturwissenschaftliches und Medizinisches Institut an der Universität TübingenReutlingenGermany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
- Center for Integrative Neuroscience, University of TübingenTübingenGermany
- Bernstein Center for Computational Neuroscience, University of TübingenTübingenGermany
| | - Katrin Franke
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
- Bernstein Center for Computational Neuroscience, University of TübingenTübingenGermany
| | - Robert G Smith
- Department of Neuroscience, University of PennsylvaniaPhiladelphiaUnited States
| | - Günther Zeck
- Naturwissenschaftliches und Medizinisches Institut an der Universität TübingenReutlingenGermany
| | - Philipp Berens
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
- Center for Integrative Neuroscience, University of TübingenTübingenGermany
- Bernstein Center for Computational Neuroscience, University of TübingenTübingenGermany
- Institute for Bioinformatics and Medical Informatics, University of TübingenTübingenGermany
| |
Collapse
|
4
|
Abstract
Under twenty-first-century metropolitan conditions, almost all of our vision is mediated by cones and the photopic system, yet cones make up barely 5% of our retinal photoreceptors. This paper looks at reasons why we additionally possess rods and a scotopic system, and asks why rods comprise 95% of our retinal photoreceptors. It considers the ability of rods to reliably signal the arrival of individual photons of light, as well as the ability of the retina to process these single-photon signals, and it discusses the advantages that accrue. Drawbacks in the arrangement, including the very slow dark adaptation of scotopic vision, are also considered. Finally, the timing of the evolution of cone and rod photoreceptors, the retina, and the camera-style eye is summarised.
Collapse
|
5
|
Rapid kinetics of endocytosis at rod photoreceptor synapses depends upon endocytic load and calcium. Vis Neurosci 2014; 31:227-35. [PMID: 24735554 DOI: 10.1017/s095252381400011x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Release from rods is triggered by the opening of L-type Ca2+ channels that lie beneath synaptic ribbons. After exocytosis, vesicles are retrieved by compensatory endocytosis. Previous work showed that endocytosis is dynamin-dependent in rods but dynamin-independent in cones. We hypothesized that fast endocytosis in rods may also differ from cones in its dependence upon the amount of Ca2+ influx and/or endocytic load. We measured exocytosis and endocytosis from membrane capacitance (C m) changes evoked by depolarizing steps in voltage clamped rods from tiger salamander retinal slices. Similar to cones, the time constant for endocytosis in rods was quite fast, averaging <200 ms. We manipulated Ca2+ influx and the amount of vesicle release by altering the duration and voltage of depolarizing steps. Unlike cones, endocytosis kinetics in rods slowed after increasing Ca2+ channel activation with longer step durations or more strongly depolarized voltage steps. Endocytosis kinetics also slowed as Ca2+ buffering was decreased by replacing BAPTA (10 or 1 mM) with the slower Ca2+ buffer EGTA (5 or 0.5 mM) in the pipette solution. These data provide further evidence that endocytosis mechanisms differ in rods and cones and suggest that endocytosis in rods is regulated by both endocytic load and local Ca2+ levels.
Collapse
|
6
|
Baden T, Euler T, Weckström M, Lagnado L. Spikes and ribbon synapses in early vision. Trends Neurosci 2013; 36:480-8. [DOI: 10.1016/j.tins.2013.04.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/18/2013] [Accepted: 04/18/2013] [Indexed: 01/01/2023]
|
7
|
Abstract
The function of the retina is crucial, for it must encode visual signals so the brain can detect objects in the visual world. However, the biological mechanisms of the retina add noise to the visual signal and therefore reduce its quality and capacity to inform about the world. Because an organism's survival depends on its ability to unambiguously detect visual stimuli in the presence of noise, its retinal circuits must have evolved to maximize signal quality, suggesting that each retinal circuit has a specific functional role. Here we explain how an ideal observer can measure signal quality to determine the functional roles of retinal circuits. In a visual discrimination task the ideal observer can measure from a neural response the increment threshold, the number of distinguishable response levels, and the neural code, which are fundamental measures of signal quality relevant to behavior. It can compare the signal quality in stimulus and response to determine the optimal stimulus, and can measure the specific loss of signal quality by a neuron's receptive field for non-optimal stimuli. Taking into account noise correlations, the ideal observer can track the signal-to-noise ratio available from one stage to the next, allowing one to determine each stage's role in preserving signal quality. A comparison between the ideal performance of the photon flux absorbed from the stimulus and actual performance of a retinal ganglion cell shows that in daylight a ganglion cell and its presynaptic circuit loses a factor of approximately 10-fold in contrast sensitivity, suggesting specific signal-processing roles for synaptic connections and other neural circuit elements. The ideal observer is a powerful tool for characterizing signal processing in single neurons and arrays along a neural pathway.
Collapse
Affiliation(s)
- Robert G Smith
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104-6058, USA.
| | | |
Collapse
|
8
|
Cadetti L, Bartoletti TM, Thoreson WB. Quantal mEPSCs and residual glutamate: how horizontal cell responses are shaped at the photoreceptor ribbon synapse. Eur J Neurosci 2008; 27:2575-86. [PMID: 18547244 DOI: 10.1111/j.1460-9568.2008.06226.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
At the photoreceptor ribbon synapse, glutamate released from vesicles at different positions along the ribbon reaches the same postsynaptic receptors. Thus, vesicles may not exert entirely independent effects. We examined whether responses of salamander retinal horizontal cells evoked by light or direct depolarization during paired recordings could be predicted by summation of individual miniature excitatory postsynaptic currents (mEPSCs). For EPSCs evoked by depolarization of rods or cones, linear convolution of mEPSCs with photoreceptor release functions predicted EPSC waveforms and changes caused by inhibiting glutamate receptor desensitization. A low-affinity glutamate antagonist, kynurenic acid (KynA), preferentially reduced later components of rod-driven EPSCs, suggesting lower levels of glutamate are present during the later sustained component of the EPSC. A glutamate-scavenging enzyme, glutamic-pyruvic transaminase, did not inhibit mEPSCs or the initial component of rod-driven EPSCs, but reduced later components of the EPSC. Inhibiting glutamate uptake with a low concentration of DL-threo-beta-benzoyloxyaspartate (TBOA) also did not alter mEPSCs or the initial component of rod-driven EPSCs, but enhanced later components of the EPSC. Low concentrations of TBOA and KynA did not affect the kinetics of fast cone-driven EPSCs. Under both rod- and cone-dominated conditions, light-evoked currents (LECs) were enhanced considerably by TBOA. LECs were more strongly inhibited than EPSCs by KynA, suggesting the presence of lower glutamate levels. Collectively, these results indicate that the initial EPSC component can be largely predicted from a linear sum of individual mEPSCs, but with sustained release, residual amounts of glutamate from multiple vesicles pool together, influencing LECs and later components of EPSCs.
Collapse
Affiliation(s)
- Lucia Cadetti
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Durham Research Center Room 4050, Omaha, NE 68198-5840, USA
| | | | | |
Collapse
|
9
|
Retinal bipolar cells: temporal filtering of signals from cone photoreceptors. Vis Neurosci 2008; 24:765-74. [PMID: 18093365 DOI: 10.1017/s0952523807070630] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 08/08/2007] [Indexed: 11/06/2022]
Abstract
The temporal dynamics of the response of neurons in the outer retina were investigated by intracellular recording from cones, bipolar, and horizontal cells in the intact, light-adapted retina of the tiger salamander (Ambystoma tigrinum), with special emphasis on comparing the two major classes of bipolars cells, the ON depolarizing bipolars (Bd) and the OFF hyperpolarizing bipolars (Bh). Transfer functions were computed from impulse responses evoked by a brief light flash on a steady background of 20 cd/m(2). Phase delays ranged from about 89 ms for cones to 170 ms for Bd cells, yielding delays relative to that of cones of about 49 ms for Bh cells and 81 ms for Bd cells. The difference between Bd and Bh cells, which may be due to a delay introduced by the second messenger G-protein pathway unique to Bd cells, was further quantified by latency measurements and responses to white noise. The amplitude transfer functions of the outer retinal neurons varied with light adaptation in qualitative agreement with results for other vertebrates and human vision. The transfer functions at 20 cd/m(2) were predominantly low pass with 10-fold attenuation at about 13, 14, 9.1, and 7.7 Hz for cones, horizontal, Bh, and Bd cells, respectively. The transfer function from the cone voltage to the bipolar voltage response, as computed from the above measurements, was low pass and approximated by a cascade of three low pass RC filters ("leaky integrators"). These results for cone-->bipolar transmission are surprisingly similar to recent results for rod-->bipolar transmission in salamander slice preparations. These and other findings suggest that the rate of vesicle replenishment rather than the rate of release may be a common factor shaping synaptic signal transmission from rods and cones to bipolar cells.
Collapse
|
10
|
Thoreson WB. Kinetics of synaptic transmission at ribbon synapses of rods and cones. Mol Neurobiol 2007; 36:205-23. [PMID: 17955196 PMCID: PMC2474471 DOI: 10.1007/s12035-007-0019-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 05/18/2007] [Indexed: 11/24/2022]
Abstract
The ribbon synapse is a specialized structure that allows photoreceptors to sustain the continuous release of vesicles for hours upon hours and years upon years but also respond rapidly to momentary changes in illumination. Light responses of cones are faster than those of rods and, mirroring this difference, synaptic transmission from cones is also faster than transmission from rods. This review evaluates the various factors that regulate synaptic kinetics and contribute to kinetic differences between rod and cone synapses. Presynaptically, the release of glutamate-laden synaptic vesicles is regulated by properties of the synaptic proteins involved in exocytosis, influx of calcium through calcium channels, calcium release from intracellular stores, diffusion of calcium to the release site, calcium buffering, and extrusion of calcium from the cytoplasm. The rate of vesicle replenishment also limits the ability of the synapse to follow changes in release. Post-synaptic factors include properties of glutamate receptors, dynamics of glutamate diffusion through the cleft, and glutamate uptake by glutamate transporters. Thus, multiple synaptic mechanisms help to shape the responses of second-order horizontal and bipolar cells.
Collapse
Affiliation(s)
- Wallace B Thoreson
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, 4th floor, Durham Research Center, 985840 Nebraska Medical Center, Omaha, NE 68198-5840, USA.
| |
Collapse
|
11
|
Choi SY, Borghuis BG, Borghuis B, Rea R, Levitan ES, Sterling P, Kramer RH. Encoding light intensity by the cone photoreceptor synapse. Neuron 2006; 48:555-62. [PMID: 16301173 DOI: 10.1016/j.neuron.2005.09.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 08/19/2005] [Accepted: 09/19/2005] [Indexed: 11/15/2022]
Abstract
How cone synapses encode light intensity determines the precision of information transmission at the first synapse on the visual pathway. Although it is known that cone photoreceptors hyperpolarize to light over 4-5 log units of intensity, the relationship between light intensity and transmitter release at the cone synapse has not been determined. Here, we use two-photon microscopy to visualize release of the synaptic vesicle dye FM1-43 from cone terminals in the intact lizard retina, in response to different stimulus light intensities. We then employ electron microscopy to translate these measurements into vesicle release rates. We find that from darkness to bright light, release decreases from 49 to approximately 2 vesicles per 200 ms; therefore, cones compress their 10,000-fold operating range for phototransduction into a 25-fold range for synaptic vesicle release. Tonic release encodes ten distinguishable intensity levels, skewed to most finely represent bright light, assuming release obeys Poisson statistics.
Collapse
Affiliation(s)
- Sue-Yeon Choi
- Department of Molecular and Cell Biology and the Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Schein S, Ahmad KM. A clockwork hypothesis: synaptic release by rod photoreceptors must be regular. Biophys J 2005; 89:3931-49. [PMID: 16169984 PMCID: PMC1366960 DOI: 10.1529/biophysj.105.070623] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Accepted: 09/07/2005] [Indexed: 11/18/2022] Open
Abstract
We can see at light intensities much lower than an average of one photon per rod photoreceptor, demonstrating that rods must be able to transmit a signal after absorption of a single photon. However, activation of one rhodopsin molecule (Rh*) hyperpolarizes a mammalian rod by just 1 mV. Based on the properties of the voltage-dependent Ca2+ channel and data on [Ca2+] in the rod synaptic terminal, the 1 mV hyperpolarization should reduce the rate of release of quanta of neurotransmitter by only 20%. If quantal release were Poisson, the distributions of quantal count in the dark and in response to one Rh* would overlap greatly. Depending on the threshold quantal count, the overlap would generate too frequent false positives in the dark, too few true positives in response to one Rh*, or both. Therefore, quantal release must be regular, giving narrower distributions of quantal count that overlap less. We model regular release as an Erlang process, essentially a mechanism that counts many Poisson events before release of a quantum of neurotransmitter. The combination of appropriately narrow distributions of quantal count and a suitable threshold can give few false positives and appropriate (e.g., 35%) efficiency for one Rh*.
Collapse
Affiliation(s)
- Stan Schein
- Department of Psychology, and Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90095-1563, USA.
| | | |
Collapse
|
13
|
Abstract
The molecular organization of ribbon synapses in photoreceptors and ON bipolar cells is reviewed in relation to the process of neurotransmitter release. The interactions between ribbon synapse-associated proteins, synaptic vesicle fusion machinery and the voltage-gated calcium channels that gate transmitter release at ribbon synapses are discussed in relation to the process of synaptic vesicle exocytosis. We describe structural and mechanistic specializations that permit the ON bipolar cell to release transmitter at a much higher rate than the photoreceptor does, under in vivo conditions. We also consider the modulation of exocytosis at photoreceptor synapses, with an emphasis on the regulation of calcium channels.
Collapse
Affiliation(s)
- Ruth Heidelberger
- Department of Neurobiology & Anatomy, University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Wallace B. Thoreson
- Department of Ophthalmology & Visual Sciences and Department of Pharmacology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Paul Witkovsky
- Department of Ophthalmology and Department of Physiology & Neuroscience, New York University School of Medicine, New York, NY 10016, USA
- *Corresponding author. Tel: +1 212 263 6488; fax: +1 212 263 7602. E-mail address: (P. Witkovsky)
| |
Collapse
|
14
|
Hemara-Wahanui A, Berjukow S, Hope CI, Dearden PK, Wu SB, Wilson-Wheeler J, Sharp DM, Lundon-Treweek P, Clover GM, Hoda JC, Striessnig J, Marksteiner R, Hering S, Maw MA. A CACNA1F mutation identified in an X-linked retinal disorder shifts the voltage dependence of Cav1.4 channel activation. Proc Natl Acad Sci U S A 2005; 102:7553-8. [PMID: 15897456 PMCID: PMC1140436 DOI: 10.1073/pnas.0501907102] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Indexed: 11/18/2022] Open
Abstract
Light stimuli produce graded hyperpolarizations of the photoreceptor plasma membrane and an associated decrease in a voltagegated calcium channel conductance that mediates release of glutamate neurotransmitter. The Ca(v)1.4 channel is thought to be involved in this process. The CACNA1F gene encodes the poreforming subunit of the Ca(v)1.4 channel and various mutations in CACNA1F cause X-linked incomplete congenital stationary night blindness (CSNB2). The molecular mechanism of the pathology underlying the CSNB2 phenotype remains to be established. Recent clinical investigations of a New Zealand family found a severe visual disorder that has some clinical similarities to, but is clearly distinct from, CSNB2. Here, we report investigations into the molecular mechanism of the pathology of this condition. Molecular genetic analyses identified a previously undescribed nucleotide substitution in CACNA1F that is predicted to encode an isoleucine to threonine substitution at CACNA1F residue 745. The I745T CACNA1F allele produced a remarkable approximately -30-mV shift in the voltage dependence of Ca(v)1.4 channel activation and significantly slower inactivation kinetics in an expression system. These findings imply that substitution of this wild-type residue in transmembrane segment IIS6 may have decreased the energy required to open the channel. Collectively, these findings suggest that a gain-of-function mechanism involving increased Ca(v)1.4 channel activity is likely to cause the unusual phenotype.
Collapse
Affiliation(s)
- Ariana Hemara-Wahanui
- Biochemistry Department, University of Otago, P.O. Box 56, Dunedin, Aotearoa New Zealand
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Sensory neurons with short conduction distances can use nonregenerative, graded potentials to modulate transmitter release continuously. This mechanism can transmit information at much higher rates than spiking. Graded signaling requires a synapse to sustain high rates of exocytosis for relatively long periods, and this capacity is the special virtue of ribbon synapses. Vesicles tethered to the ribbon provide a pool for sustained release that is typically fivefold greater than the docked pool available for fast release. The current article, which is part of the TINS Synaptic Connectivity series, reviews recent evidence for this fundamental computational strategy and its underlying cell biology.
Collapse
Affiliation(s)
- Peter Sterling
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
16
|
Berntson A, Smith RG, Taylor WR. Postsynaptic calcium feedback between rods and rod bipolar cells in the mouse retina. Vis Neurosci 2005; 21:913-24. [PMID: 15733346 DOI: 10.1017/s095252380421611x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Indexed: 11/07/2022]
Abstract
Light-evoked currents were recorded from rod bipolar cells in a dark-adapted mouse retinal slice preparation. Low-intensity light steps evoked a sustained inward current. Saturating light steps evoked an inward current with an initial peak that inactivated, with a time constant of about 60-70 ms, to a steady plateau level that was maintained for the duration of the step. The inactivation was strongest at hyperpolarized potentials, and absent at positive potentials. Inactivation was mediated by an increase in the intracellular calcium concentration, as it was abolished in cells dialyzed with 10 mM BAPTA, but was present in cells dialyzed with 1 mM EGTA. Moreover, responses to brief flashes of light were broader in the presence of intracellular BAPTA indicating that the calcium feedback actively shapes the time course of the light responses. Recovery from inactivation observed for paired-pulse stimuli occurred with a time constant of about 375 ms. Calcium feedback could act to increase the dynamic range of the bipolar cells, and to reduce variability in the amplitude and duration of the single-photon signal. This may be important for nonlinear processing at downstream sites of convergence from rod bipolar cells to AII amacrine cells. A model in which intracellular calcium rapidly binds to the light-gated channel and reduces the conductance can account for the results.
Collapse
Affiliation(s)
- Amy Berntson
- John Curtin School of Medical Research and Centre for Visual Sciences, Australian National University, Canberra, Australia
| | | | | |
Collapse
|