1
|
Pang VY, Yang Z, Wu SM, Pang JJ. The co-expression of the depolarizing and hyperpolarizing mechanosensitive ion channels in mammalian retinal neurons. Front Med (Lausanne) 2024; 11:1463898. [PMID: 39606631 PMCID: PMC11601153 DOI: 10.3389/fmed.2024.1463898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/25/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction The elevation of the intraocular and extraocular pressures is associated with various visual conditions, including glaucoma and traumatic retinal injury. The retina expresses mechanosensitive channels (MSCs), but the role of MSCs in retinal physiology and pathologies has been unclear. Methods Using immunocytochemistry, confocal microscopy, and patch-clamp recording techniques, we studied the co-expression of K+-permeable (K-MSCs) TRAAK and big potassium channel BK with the epithelial sodium channel ENaC and transient receptor potential channel vanilloid TPRV4 and TRPV2 favorably permeable to Ca2+ than Na+ (together named N-MSCs), and TRPV4 activity in the mouse retina. Results TRAAK immunoreactivity (IR) was mainly located in Müller cells. Photoreceptor outer segments (OSs) expressed BK and ENaCα intensively and TRAAK, TRPV2, and TRPV4 weakly. Somas and axons of retinal ganglion cells (RGCs) retrograde-identified clearly expressed ENaCα, TRPV4, and TRPV2 but lacked TRAAK and BK. Rod bipolar cells (RBCs) showed TRPV4-IR in somas and BK-IR in axonal globules. Horizontal cells were BK-negative, and some cone BCs lacked TRPV4-IR. TRPV4 agonist depolarized RGCs, enhanced spontaneous spikes and excitatory postsynaptic currents, reduced the visual signal reliability (VSR = 1-noise/signal) by ~50%, and resulted in ATP crisis, which could inactivate voltage-gated sodium channels in RGCs. Conclusion Individual neurons co-express hyperpolarizing K-MSCs with depolarizing N-MSCs to counterbalance the pressure-induced excitation, and the level of K-MSCs relative to N-MSCs (RK/N ratio) is balanced in the outer retina but low in RGCs, bringing out novel determinants for the pressure vulnerability of retinal neurons and new targets for clinical interventions.
Collapse
Affiliation(s)
| | | | | | - Ji-Jie Pang
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
2
|
Pang JJ, Gao F, Wu SM. Generators of Pressure-Evoked Currents in Vertebrate Outer Retinal Neurons. Cells 2021; 10:cells10061288. [PMID: 34067375 PMCID: PMC8224636 DOI: 10.3390/cells10061288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
(1) Background: High-tension glaucoma damages the peripheral vision dominated by rods. How mechanosensitive channels (MSCs) in the outer retina mediate pressure responses is unclear. (2) Methods: Immunocytochemistry, patch clamp, and channel fluorescence were used to study MSCs in salamander photoreceptors. (3) Results: Immunoreactivity of transient receptor potential channel vanilloid 4 (TRPV4) was revealed in the outer plexiform layer, K+ channel TRAAK in the photoreceptor outer segment (OS), and TRPV2 in some rod OS disks. Pressure on the rod inner segment evoked sustained currents of three components: (A) the inward current at <-50 mV (Ipi), sensitive to Co2+; (B) leak outward current at ≥-80 mV (Ipo), sensitive to intracellular Cs+ and ruthenium red; and (C) cation current reversed at ~10 mV (Ipc). Hypotonicity induced slow currents like Ipc. Environmental pressure and light increased the FM 1-43-identified open MSCs in the OS membrane, while pressure on the OS with internal Cs+ closed a Ca2+-dependent current reversed at ~0 mV. Rod photocurrents were thermosensitive and affected by MSC blockers. (4) Conclusions: Rods possess depolarizing (TRPV) and hyperpolarizing (K+) MSCs, which mediate mutually compensating currents between -50 mV and 10 mV, serve as an electrical cushion to minimize the impact of ocular mechanical stress.
Collapse
|
3
|
Rozenblit F, Gollisch T. What the salamander eye has been telling the vision scientist's brain. Semin Cell Dev Biol 2020; 106:61-71. [PMID: 32359891 PMCID: PMC7493835 DOI: 10.1016/j.semcdb.2020.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/30/2022]
Abstract
Salamanders have been habitual residents of research laboratories for more than a century, and their history in science is tightly interwoven with vision research. Nevertheless, many vision scientists - even those working with salamanders - may be unaware of how much our knowledge about vision, and particularly the retina, has been shaped by studying salamanders. In this review, we take a tour through the salamander history in vision science, highlighting the main contributions of salamanders to our understanding of the vertebrate retina. We further point out specificities of the salamander visual system and discuss the perspectives of this animal system for future vision research.
Collapse
Affiliation(s)
- Fernando Rozenblit
- Department of Ophthalmology, University Medical Center Göttingen, 37073, Göttingen, Germany; Bernstein Center for Computational Neuroscience Göttingen, 37077, Göttingen, Germany
| | - Tim Gollisch
- Department of Ophthalmology, University Medical Center Göttingen, 37073, Göttingen, Germany; Bernstein Center for Computational Neuroscience Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
4
|
Wang ST, Chen LL, Zhang P, Wang XB, Sun Y, Ma LX, Liu Q, Zhou GM. Transplantation of Retinal Progenitor Cells from Optic Cup-Like Structures Differentiated from Human Embryonic Stem Cells In Vitro and In Vivo Generation of Retinal Ganglion-Like Cells. Stem Cells Dev 2020; 28:258-267. [PMID: 30526386 DOI: 10.1089/scd.2018.0076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human embryonic stem cells (hESCs) have the potential to differentiate along the retinal lineage. We have efficiently differentiated human pluripotent stem cells into optic cup-like structures by using a novel retinal differentiation medium (RDM). The purpose of this study was to determine whether the retinal progenitor cells (RPCs) derived from hESCs can integrate into the host retina and differentiate into retinal ganglion cells (RGCs) in vivo. In this study, hESCs (H9-GFP) were induced to differentiate into optic cup-like structures by using our novel differentiation system. The RPCs extracted from the optic cup-like structures were transplanted into the vitreous cavity of N-methyl-d-aspartic acid-treated mice. Sham-treated eyes received the same amount of RDM. The host retinas were analyzed by triple immunofluorescence on the fourth and fifth weeks after transplantation. The optic cup-like structures were efficiently differentiated from hESCs by using our novel differentiation system in vitro for 6-8 weeks. The RPCs extracted from the optic cup-like structures migrated and integrated into the ganglion cell layer (GCL) of the host retina. Furthermore, the remaining transplanted cells were spread over the GCL and had a complementary distribution with host residual RGCs in the GCL of the mouse retina. Surprisingly, some of the transplanted cells expressed the RGC-specific marker Brn3a. These findings demonstrated that the RPCs derived from hESCs could integrate into the host GCL and differentiate into retinal ganglion-like cells in vivo, suggesting that RPCs can be used as an ideal source in supplying countless RGC and embryonic stem cell-based replacement therapies may be a promising treatment to restore vision in patients with degenerative retinal diseases.
Collapse
Affiliation(s)
- Song-Tao Wang
- 1 Department of Anatomy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,2 Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li-Li Chen
- 3 Department of Biological Science and Biotechnology, Xinxiang University, Xinxiang, China
| | - Peng Zhang
- 2 Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Bing Wang
- 2 Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Sun
- 2 Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li-Xiang Ma
- 2 Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiong Liu
- 2 Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guo-Min Zhou
- 2 Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Baden T, Euler T, Berens P. Understanding the retinal basis of vision across species. Nat Rev Neurosci 2019; 21:5-20. [PMID: 31780820 DOI: 10.1038/s41583-019-0242-1] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2019] [Indexed: 12/12/2022]
Abstract
The vertebrate retina first evolved some 500 million years ago in ancestral marine chordates. Since then, the eyes of different species have been tuned to best support their unique visuoecological lifestyles. Visual specializations in eye designs, large-scale inhomogeneities across the retinal surface and local circuit motifs mean that all species' retinas are unique. Computational theories, such as the efficient coding hypothesis, have come a long way towards an explanation of the basic features of retinal organization and function; however, they cannot explain the full extent of retinal diversity within and across species. To build a truly general understanding of vertebrate vision and the retina's computational purpose, it is therefore important to more quantitatively relate different species' retinal functions to their specific natural environments and behavioural requirements. Ultimately, the goal of such efforts should be to build up to a more general theory of vision.
Collapse
Affiliation(s)
- Tom Baden
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK. .,Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Philipp Berens
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany.,Bernstein Centre for Computational Neuroscience, University of Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Gao F, Yang Z, Jacoby RA, Wu SM, Pang JJ. The expression and function of TRPV4 channels in primate retinal ganglion cells and bipolar cells. Cell Death Dis 2019; 10:364. [PMID: 31064977 PMCID: PMC6504919 DOI: 10.1038/s41419-019-1576-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/25/2019] [Indexed: 12/26/2022]
Abstract
The transient receptor potential vanilloid 4 (TRPV4) channel may be opened by mechanical stimuli to mediate Ca2+ and Na+ influxes, and it has been suggested to mediate glaucoma retinopathy. However, it has been mostly unclear how TRPV4 activities affect the function of primate retinal ganglion cells (RGCs). We studied RGCs and bipolar cells (BCs) in the peripheral retina of the old-world primate using whole-cell current-clamp and voltage-clamp recordings, immunomarkers and confocal microscopy. RGCs were distinguished from displaced amacrine cells (ACs) by the absence of GABA and glycine immunoreactivity and possession of an axon and a large soma in the RGC layer. Strong TRPV4 signal was concentrated in medium to large somas of RGCs, and some TRPV4 signal was found in BCs (including PKCα-positive rod BCs), as well as the end feet, soma and outer processes of Mȕller cells. TRPV4 immunoreactivity quantified by the pixel intensity histogram revealed a high-intensity component for the plexiform layers, a low-intensity component for the soma layers of ACs and Mȕller cells, and both components in the soma layers of RGCs and BCs. In large RGCs, TRPV4 agonists 4α-phorbol 12,13 didecanoate (4αPDD) and GSK1016790A reversibly enhanced the spontaneous firing and shortened the delay of voltage-gated Na+ (Nav) currents under current-clamp conditions, and under voltage-clamp conditions, 4αPDD largely reversibly increased the amplitude and frequency of spontaneous excitatory postsynaptic currents. In BCs, changes in the membrane tension induced by either applying pressure or releasing the pressure both activated a transient cation current, which reversed at ~ -10 mV and was enhanced by heating from 24 °C to 30 °C. The pressure for the half-maximal effect was ~18 mmHg. These data indicate that functional TRPV4 channels are variably expressed in primate RGCs and BCs, possibly contributing to pressure-related changes in RGCs in glaucoma.
Collapse
Affiliation(s)
- Fan Gao
- Department of Ophthalmology, Baylor College of Medicine, One Baylor Plaza, NC 205, Houston, TX, 77030, USA
| | - Zhuo Yang
- Department of Ophthalmology, Baylor College of Medicine, One Baylor Plaza, NC 205, Houston, TX, 77030, USA
| | - Roy A Jacoby
- Department of Ophthalmology, Baylor College of Medicine, One Baylor Plaza, NC 205, Houston, TX, 77030, USA
| | - Samuel M Wu
- Department of Ophthalmology, Baylor College of Medicine, One Baylor Plaza, NC 205, Houston, TX, 77030, USA
| | - Ji-Jie Pang
- Department of Ophthalmology, Baylor College of Medicine, One Baylor Plaza, NC 205, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Wang J, Dong Y. Characterization of intraocular pressure pattern and changes of retinal ganglion cells in DBA2J glaucoma mice. Int J Ophthalmol 2016; 9:211-7. [PMID: 26949637 DOI: 10.18240/ijo.2016.02.05] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 09/09/2015] [Indexed: 01/20/2023] Open
Abstract
AIM To characterize the pattern of intraocular pressure (IOP) change and the deficit of retinal ganglion cells (RGCs) in DBA2J, which is most well-characterized chronic glaucoma mouse model and wild type (WT) C57bl/6 mice, and to study the relationship between IOP change and RGCs deficit. METHODS IOP was monitored with a rebound tonometer in WT C57bl/6 and DBA2J mice from 3 to 15-month-old. Retinal function was evaluated by dark-adapted electroretinogram (ERG) in DBA2J and WT mice of 15-month-old. A dye (Neurobiotin) was applied to optic nerve stump to retrograde label RGCs. TO-PRO-3 visualized all nuclei of cells in the RGC layer. RESULTS The IOP in WT mice was 9.03±0.6 mm Hg on average and did not increase significantly as aging. The IOP in DBA2J mice, arranging from 7.2 to 28 mm Hg, was increasing significantly as aging, and it was normal at 3-month-old compared with WT mice, slightly increased from 7-month-old and increased in 50% animals at 11-month-old and in 38% animals at 15-month-old. The RGCs density in DBA2J mice started reducing by 7-month-old, continuously decreased until reached about 20% of RGC in WT retina by 15-month-old. RGC density was not linearly correlated with IOP in 15-month-old DBA2J mice. The amplitude of positive scotopic threshold response, and negative scotopic threshold response of ERG were significantly reduced in DBA2J mice of 15-month-old than that in age-paired WT mice. CONCLUSION The present study found that DBA2J mice display pathological and functional deficits of the retina that was not linearly correlated with IOP.
Collapse
Affiliation(s)
- Jing Wang
- Cullen Eye Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yu Dong
- Cullen Eye Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
8
|
Marre O, Botella-Soler V, Simmons KD, Mora T, Tkačik G, Berry MJ. High Accuracy Decoding of Dynamical Motion from a Large Retinal Population. PLoS Comput Biol 2015; 11:e1004304. [PMID: 26132103 PMCID: PMC4489022 DOI: 10.1371/journal.pcbi.1004304] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 04/28/2015] [Indexed: 11/18/2022] Open
Abstract
Motion tracking is a challenge the visual system has to solve by reading out the retinal population. It is still unclear how the information from different neurons can be combined together to estimate the position of an object. Here we recorded a large population of ganglion cells in a dense patch of salamander and guinea pig retinas while displaying a bar moving diffusively. We show that the bar's position can be reconstructed from retinal activity with a precision in the hyperacuity regime using a linear decoder acting on 100+ cells. We then took advantage of this unprecedented precision to explore the spatial structure of the retina's population code. The classical view would have suggested that the firing rates of the cells form a moving hill of activity tracking the bar's position. Instead, we found that most ganglion cells in the salamander fired sparsely and idiosyncratically, so that their neural image did not track the bar. Furthermore, ganglion cell activity spanned an area much larger than predicted by their receptive fields, with cells coding for motion far in their surround. As a result, population redundancy was high, and we could find multiple, disjoint subsets of neurons that encoded the trajectory with high precision. This organization allows for diverse collections of ganglion cells to represent high-accuracy motion information in a form easily read out by downstream neural circuits.
Collapse
Affiliation(s)
- Olivier Marre
- Department of Molecular Biology and Neuroscience Institute, Princeton University, Princeton, United States of America
- Institut de la Vision, INSERM UMRS 968, UPMC UM 80, CNRS UMR 7210, Paris, France
- * E-mail:
| | | | - Kristina D. Simmons
- Department of Psychology, University of Pennsylvania, Philadelphia, United States of America
| | - Thierry Mora
- Laboratoire de Physique Statistique, École Normale Supérieure, CNRS and UPMC, Paris, France
| | - Gašper Tkačik
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Michael J. Berry
- Department of Molecular Biology and Neuroscience Institute, Princeton University, Princeton, United States of America
| |
Collapse
|
9
|
Pang JJ, Paul DL, Wu SM. Survey on amacrine cells coupling to retrograde-identified ganglion cells in the mouse retina. Invest Ophthalmol Vis Sci 2013; 54:5151-62. [PMID: 23821205 DOI: 10.1167/iovs.13-11774] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Retinal amacrine cells (ACs) may make inhibitory chemical synapses and potentially excitatory gap junctions on ganglion cells (GCs). The total number and subtypes of ACs coupled to the entire GC population were investigated in wild-type and three lines of transgenic mice. METHODS GCs and GC-coupled ACs were identified by the previously established LY-NB (Lucifer yellow-Neurobiotin) retrograde double-labeling technique, in conjunction with specific antibodies and confocal microscopy. RESULTS GC-coupled ACs (NB-positive and LY-negative) comprised nearly 11% of displaced ACs and 4% of conventional ACs in wild-type mice, and were 9% and 4% of displaced ACs in Cx45(-/-) and Cx36/45(-/-) mice, respectively. Their somas were small in Cx36/45(-/-) mice, but variable in other strains. They were mostly γ-aminobutyric acid (GABA)-immunoreactive (IR) and located in the GC layer. They comprised only a small portion in the AC subpopulations, including GABA-IR, glycine-IR, calretinin-IR, 5-HT-accumulating, and ON-type choline acetyltransferase (ChAT) ACs in wild-type and ChAT transgenic mice (ChAT- tdTomato). In the distal 80% of the inner plexiform layer (IPL), dense GC dendrites coexisted with rich glycine-IR and GABA-IR. In the inner 20% of the IPL, sparse GC dendrites presented with a major GABA band and sparse glycine-IR. CONCLUSIONS Various subtypes of ACs may couple to GCs. ACs of the same immunoreactivity may either couple or not couple to GCs. Cx36 and Cx45 dominate GC-AC coupling except for small ACs. The overall potency of GC-AC coupling is moderate, especially in the proximal 20% of the IPL, where inhibitory chemical signals are dominated by GABA ACs.
Collapse
Affiliation(s)
- Ji-Jie Pang
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
10
|
Pang JJ, Wu SM. Morphology and immunoreactivity of retrogradely double-labeled ganglion cells in the mouse retina. Invest Ophthalmol Vis Sci 2011; 52:4886-96. [PMID: 21482641 DOI: 10.1167/iovs.10-5921] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To examine the specificity and reliability of a retrograde double-labeling technique that was recently established for identification of retinal ganglion cells (GCs) and to characterize the morphology of displaced (d)GCs (dGs). METHODS A mixture of the gap-junction-impermeable dye Lucifer yellow (LY) and the permeable dye neurobiotin (NB) was applied to the optic nerve stump for retrograde labeling of GCs and the cells coupled with them. A confocal microscope was adopted for morphologic observation. RESULTS GCs were identified by LY labeling, and they were all clearly labeled by NB. Cells coupled to GCs contained a weak NB signal but no LY. LY and NB revealed axon bundles, somas and dendrites of GCs. The retrogradely identified GCs numbered approximately 50,000 per retina, and they constituted 44% of the total neurons in the ganglion cell layer (GCL). Somas of retrogradely identified dGs were usually negative for glycine, ChAT (choline acetyltransferase), bNOS (brain-type nitric oxidase), GAD (glutamate decarboxylase), and glial markers, and occasionally, they were weakly GABA-positive. dGs averaged 760 per retina and composed 1.7% of total GCs. Sixteen morphologic subtypes of dGs were encountered, three of which were distinct from known GCs. dGs sent dendrites to either sublaminas of the IPL, mostly sublamina a. CONCLUSIONS The retrograde labeling is reliable for identification of GCs. dGs participate in ON and OFF light pathways but favor the OFF pathway. ChAT, bNOS, glycine, and GAD remain reliable AC markers in the GCL. GCs may couple to GABAergic ACs, and the gap junctions likely pass NB and GABA.
Collapse
Affiliation(s)
- Ji-Jie Pang
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
11
|
Koch PC, Heß M. Topographic mapping of retinal neurons in the european anchovy by nuclear staining and immunohistochemistry. J Neurosci Res 2011; 89:1316-30. [DOI: 10.1002/jnr.22651] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/14/2011] [Accepted: 03/02/2011] [Indexed: 11/09/2022]
|
12
|
Mercer AJ, Rabl K, Riccardi GE, Brecha NC, Stella SL, Thoreson WB. Location of release sites and calcium-activated chloride channels relative to calcium channels at the photoreceptor ribbon synapse. J Neurophysiol 2010; 105:321-35. [PMID: 21084687 DOI: 10.1152/jn.00332.2010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vesicle release from photoreceptor ribbon synapses is regulated by L-type Ca(2+) channels, which are in turn regulated by Cl(-) moving through calcium-activated chloride [Cl(Ca)] channels. We assessed the proximity of Ca(2+) channels to release sites and Cl(Ca) channels in synaptic terminals of salamander photoreceptors by comparing fast (BAPTA) and slow (EGTA) intracellular Ca(2+) buffers. BAPTA did not fully block synaptic release, indicating some release sites are <100 nm from Ca(2+) channels. Comparing Cl(Ca) currents with predicted Ca(2+) diffusion profiles suggested that Cl(Ca) and Ca(2+) channels average a few hundred nanometers apart, but the inability of BAPTA to block Cl(Ca) currents completely suggested some channels are much closer together. Diffuse immunolabeling of terminals with an antibody to the putative Cl(Ca) channel TMEM16A supports the idea that Cl(Ca) channels are dispersed throughout the presynaptic terminal, in contrast with clustering of Ca(2+) channels near ribbons. Cl(Ca) currents evoked by intracellular calcium ion concentration ([Ca(2+)](i)) elevation through flash photolysis of DM-nitrophen exhibited EC(50) values of 556 and 377 nM with Hill slopes of 1.8 and 2.4 in rods and cones, respectively. These relationships were used to estimate average submembrane [Ca(2+)](i) in photoreceptor terminals. Consistent with control of exocytosis by [Ca(2+)] nanodomains near Ca(2+) channels, average submembrane [Ca(2+)](i) remained below the vesicle release threshold (∼ 400 nM) over much of the physiological voltage range for cones. Positioning Ca(2+) channels near release sites may improve fidelity in converting voltage changes to synaptic release. A diffuse distribution of Cl(Ca) channels may allow Ca(2+) influx at one site to influence relatively distant Ca(2+) channels.
Collapse
Affiliation(s)
- A J Mercer
- University of Nebraska Medical Center, Department of Ophthalmology and Visual Sciences, 4050 Durham Research Center, Omaha, NE 68198-5840, USA
| | | | | | | | | | | |
Collapse
|
13
|
Koch PC, Seebacher C, Heß M. 3D-topography of cell nuclei in a vertebrate retina—A confocal and two-photon microscopic study. J Neurosci Methods 2010; 188:127-40. [DOI: 10.1016/j.jneumeth.2010.01.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Accepted: 01/23/2010] [Indexed: 10/19/2022]
|
14
|
Mizuno F, Barabas P, Krizaj D, Akopian A. Glutamate-induced internalization of Ca(v)1.3 L-type Ca(2+) channels protects retinal neurons against excitotoxicity. J Physiol 2010; 588:953-66. [PMID: 20123787 DOI: 10.1113/jphysiol.2009.181305] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Glutamate-induced rise in the intracellular Ca(2+) level is thought to be a major cause of excitotoxic cell death, but the mechanisms that control the Ca(2+) overload are poorly understood. Using immunocytochemistry, electrophysiology and Ca(2+) imaging, we show that activation of ionotropic glutamate receptors induces a selective internalization of Ca(v)1.3 L-type Ca(2+) channels in salamander retinal neurons. The effect of glutamate on Ca(v)1.3 internalization was blocked in Ca(2+)-free external solution, or by strong buffering of internal Ca(2+) with BAPTA. Downregulation of L-type Ca(2+) channel activity in retinal ganglion cells by glutamate was suppressed by inhibitors of dynamin-dependent endocytosis. Stabilization of F-actin by jasplakinolide significantly reduced the ability of glutamate to induce internalization suggesting it is mediated by Ca(2+)-dependent reorganization of actin cytoskeleton. We showed that the Ca(v)1.3 is the primary L-type Ca(2+) channel contributing to kainate-induced excitotoxic death of amacrine and ganglion cells. Block of Ca(v)1.3 internalization by either dynamin inhibition or F-actin stabilization increased vulnerability of retinal amacrine and ganglion cells to kainate-induced excitotoxicity. Our data show for the first time that Ca(v)1.3 L-type Ca(2+) channels are subject to rapid glutamate-induced internalization, which may serve as a negative feedback mechanism protecting retinal neurons against glutamate-induced excitotoxicity.
Collapse
Affiliation(s)
- Fengxia Mizuno
- Department of Ophthalmology, NYU Medical Center, New York, NY 10016, USA
| | | | | | | |
Collapse
|
15
|
Immunocytochemical analysis of photoreceptors in the tiger salamander retina. Vision Res 2008; 49:64-73. [PMID: 18977238 DOI: 10.1016/j.visres.2008.09.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Revised: 08/12/2008] [Accepted: 09/26/2008] [Indexed: 11/23/2022]
Abstract
In the tiger salamander retina, visual signals are transmitted to the inner retina via six morphologically distinct types of photoreceptors: large/small rods, large/small single cones, and double cones composed of principal and accessory members. The objective of this study was to determine the morphology of these photoreceptors and their synaptic interconnection with bipolar cells and horizontal cells in the outer plexiform layer (OPL). Here we showed that glutamate antibodies labeled all photoreceptors and recovering antibodies strongly labeled all cones and weakly labeled all rods. Antibodies against calbindin selectively stained accessory members of double cones. Antibodies against S-cone opsin stained small rods, a subpopulation of small single cones, and the outer segments of accessory double cones and a subtype of unidentified single cones. On average, large rods and small S-cone opsin positive rods accounted for 98.6% and 1.4% of all rods, respectively. Large/small cones, principle/accessory double cones, S-cone opsin positive small single cones, and S-cone opsin positive unidentified single cones accounted for about 66.9%, 23%, 4.5%, and 5.6% of the total cones, respectively. Moreover, the differential connection between rods/cones and bipolar/horizontal cells and the wide distribution of AMPA receptor subunits GluR2/3 and GluR4 at the rod/cone synapses were observed. These results provide anatomical evidence for the physiological findings that bipolar/horizontal cells in the salamander retina are driven by rod/cone inputs of different weights, and that AMPA receptors play an important role in glutamatergic neurotransmission at the first visual synapses. The different photoreceptors selectively contacting bipolar and horizontal cells support the idea that visual signals may be conveyed to the inner retina by different functional pathways in the outer retina.
Collapse
|
16
|
Pang JJ, Gao F, Barrow A, Jacoby RA, Wu SM. How do tonic glutamatergic synapses evade receptor desensitization? J Physiol 2008; 586:2889-902. [PMID: 18420706 DOI: 10.1113/jphysiol.2008.151050] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Photoreceptor output synapses are the best known tonic chemical synapses in the nervous system, in which glutamate is continuously released in darkness, activating AMPA/kainate receptors in postsynaptic neurons. It has been shown that glutamate receptors in certain types of second-order retinal cells are largely desensitized in darkness, leading to small postsynaptic currents and reduced response dynamic ranges. Here we show that the tonic glutamatergic synapses between photoreceptors and rod-dominated hyperpolarizing bipolar cells (HBC(R)s) in the salamander retina evade postsynaptic receptor desensitization by using (1) multiple invaginating ribbon junctions as releasing sites for low-frequency, synchronized multiquantal release at each site; and (2) the GluR4 AMPA receptors as the postsynaptic receptors. The multiquantal events exhibit faster decay time than the GluR4 receptor desensitization time constant and therefore self-desensitization is minimized, and the average inter-event duration in darkness is much longer than the GluR4 desensitization recovery time and thus mutual desensitization is avoided. Consequently, the HBC(R)s are not desensitized in darkness, allowing light signals to be encoded by the full operating range of the glutamate-gated postsynaptic currents. Our study illustrates for the first time how a tonic glutamatergic synapse avoids postsynaptic receptor desensitization, a strategy that may be shared by many other synapses in the nervous system that need extended operation capacity.
Collapse
Affiliation(s)
- Ji-Jie Pang
- Cullen Eye Institute, Baylor College of Medicine, One Baylor Plaza, NC-205, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
17
|
Cimini BA, Strang CE, Wotring VE, Keyser KT, Eldred WD. Role of acetylcholine in nitric oxide production in the salamander retina. J Comp Neurol 2008; 507:1952-63. [PMID: 18273886 DOI: 10.1002/cne.21655] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although acetylcholine is one of the most widely studied neurotransmitters in the retina, many questions remain about its downstream signaling mechanisms. In this study we initially characterized the cholinergic neurotransmitter system in the salamander retina by localizing a variety of cholinergic markers. We then examined the link between both muscarinic and nicotinic receptor activation and nitric oxide production by using immunocytochemistry for cyclic guanosine monophosphate (cGMP) as an indicator. We found a large increase in cGMP-like immunoreactivity (cGMP-LI) in the inner retina in response to muscarinic (but not nicotinic) receptor activation. Based on the amplification of mRNA transcripts, receptor immunocytochemistry, and the use of selective antagonists, we identified these receptors as M2 muscarinic receptors. Using double-labeling techniques, we established that these increases in cGMP-LI were seen in GABAergic but not cholinergic amacrine cells, and that the increases were blocked by inhibitors of nitric oxide production. The creation of nitric oxide in response to cholinergic receptor activation may provide a mechanism for modulating the well-known mutual interactions of acetylcholine-glycine-GABA in the inner retina. As GABA and glycine are the primary inhibitory neurotransmitters in the retina, signaling pathways that modulate their levels or release will have major implications for the processing of complex stimuli by the retina.
Collapse
Affiliation(s)
- Beth A Cimini
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
18
|
Pérez De Sevilla Müller L, Shelley J, Weiler R. Displaced amacrine cells of the mouse retina. J Comp Neurol 2008; 505:177-89. [PMID: 17853452 DOI: 10.1002/cne.21487] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The aim of this study was to characterize and classify the displaced amacrine cells in the mouse retina. Amacrine cells in the ganglion cell layer were injected with fluorescent dyes in flat-mounted retinas. Dye-filled displaced amacrine cells were classified according to dendritic field size, horizontal and vertical stratification patterns, and general morphology. We identified 10 different morphological types of displaced amacrine cell. Six of the cell types identified here are novel cell types that have not been described previously in the mouse retina, to the best of our knowledge. The displaced amacrine cells included four types of medium-field cells, with dendritic field diameters of 200-500 microm, and six types of wide-field cells, with dendritic fields extending over 500 microm. Narrow-field displaced amacrine cells, with dendritic field diameters smaller than 200 microm, were not encountered. The most frequently labeled displaced amacrine cell type was the starburst amacrine cell. At least three cell types identified here have nondisplaced counterparts in the inner nuclear layer as well. Displaced amacrine cells display a rich variety of stratification and branching patterns, which surely reflect the wide range of their functional roles in the processing of visual signals in the inner retina.
Collapse
|
19
|
Zhang J, Zhang AJ, Wu SM. Immunocytochemical analysis of GABA-positive and calretinin-positive horizontal cells in the tiger salamander retina. J Comp Neurol 2006; 499:432-41. [PMID: 16998928 DOI: 10.1002/cne.21116] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
By using immunocytochemical techniques, we demonstrate that there are two distinct, nonoverlapping populations of horizontal cells (HCs) in the tiger salamander retina: GABA-positive cells account for about 72% and GABA-negative (calretinin-positive) cells account for 28% of the total HC somas. The calretinin-positive HCs have relatively sparse and thick dendrites: soma diameter of 19.72 +/- 0.29 microm, and soma density of 140 +/- 13 cells/mm(2), morphological features very much like the A-type HCs described in the accompanying article. The GABA-positive HCs have thinner dendritic and coarse axon-terminal-like processes of higher density: soma diameter of 18 +/- 0.18 microm, and soma density of 364 +/- 18 cells/mm(2), features that very much resemble the B-type HCs and B-type HC axon terminals in the accompanying article. By using double and triple immunostaining techniques we found that only 18% of the non-GABAergic HC dendritic clusters contact rods, whereas the remaining 82% of the dendritic clusters contact cones. This is consistent with the physiological finding in the accompanying article that the A-type HCs are cone-dominated. On the other hand, 32% of GABAergic HC dendrites contact rod pedicles and 68% contact cone pedicles, consistent with the physiological finding that B-type HCs and B-type HC axon terminals receive mixed rod/cone inputs. Detailed confocal microscope analysis shows that 4% rods, 6% principal double cones/single cones, and 100% accessory double cones contact calretinin-positive HCs, and 79% rods, 100% principal double cones, 14% accessory double cones, and 82% single cones contact GABAergic HCs. These results suggest that GABAergic and non-GABAergic HC input/output synapses differ and they may mediate different functional pathways in the outer retina.
Collapse
Affiliation(s)
- Jian Zhang
- Cullen Eye Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
20
|
Margalit E, Thoreson WB. Inner retinal mechanisms engaged by retinal electrical stimulation. Invest Ophthalmol Vis Sci 2006; 47:2606-12. [PMID: 16723477 PMCID: PMC2474546 DOI: 10.1167/iovs.05-1093] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Retinal prosthetic devices are being developed to bypass degenerated retinal photoreceptors by directly activating retinal neurons with electrical stimulation. However, little is known about retinal activity during such stimulation. METHODS Whole cell patch-clamp recordings were obtained from ganglion and bipolar cells in the salamander retinal slice preparation. A stimulating electrode was positioned at the vitreal surface of the slice. RESULTS Brief pulses of cathodic current evoked transient inward currents in ganglion cells arising from action potentials. Longer pulses (>5 milliseconds) also evoked sustained inward currents in ganglion cells that appeared synaptic in origin because, unlike transient currents, sustained currents were blocked by inhibiting synaptic transmission with Cd2+. These synaptic currents reversed around ECl and were blocked by picrotoxin, strychnine, or both, suggesting they were mediated by GABAa/c and glycine receptors. Synaptic currents were also blocked by the NMDA antagonist MK801 and the KA/AMPA antagonist NBQX, suggesting that epiretinal stimulation evoked glutamate release from bipolar cells, which in turn stimulated the release of GABA and glycine from amacrine cells. Sustained currents were also evoked by epiretinal stimulation in bipolar cells. These currents reversed near ECl and were blocked by picrotoxin, suggesting they arose from GABAa/c receptors. CONCLUSIONS Pulse duration is an important parameter for effective activation of the inner retina by epiretinal stimulation. Brief pulses evoke action potentials only in ganglion cells. However, longer pulses also evoke sustained synaptic currents by stimulating glutamate release from bipolar cell terminals, which, in turn, evokes the release of GABA and glycine from amacrine cells.
Collapse
Affiliation(s)
- Eyal Margalit
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha 68198-5540, USA.
| | | |
Collapse
|
21
|
Segev R, Puchalla J, Berry MJ. Functional organization of ganglion cells in the salamander retina. J Neurophysiol 2005; 95:2277-92. [PMID: 16306176 DOI: 10.1152/jn.00928.2005] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recently, we reported a novel technique for recording all of the ganglion cells in a retinal patch and showed that their receptive fields cover visual space roughly 60 times over in the tiger salamander. Here, we carry this analysis further and divide the population of ganglion cells into functional classes using quantitative clustering algorithms that combine several response characteristics. Using only the receptive field to classify ganglion cells revealed six cell types, in agreement with anatomical studies. Adding other response measures served to blur the distinctions between these cell types rather than resolve further classes. Only the biphasic off type had receptive fields that tiled the retina. Even when we attempted to split these classes more finely, ganglion cells with almost identical functional properties were found to have strongly overlapping spatial receptive fields. A territorial spatial organization, where ganglion cell receptive fields tend to avoid those of other cells of the same type, was only found for the biphasic off cell. We further studied the functional segregation of the ganglion cell population by computing the amount of visual information shared between pairs of cells under natural movie stimulation. This analysis revealed an extensive mixing of visual information among cells of different functional type. Together, our results indicate that the salamander retina uses a population code in which every point in visual space is represented by multiple neurons with subtly different visual sensitivities.
Collapse
Affiliation(s)
- Ronen Segev
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | | | | |
Collapse
|
22
|
Segev R, Goodhouse J, Puchalla J, Berry MJ. Recording spikes from a large fraction of the ganglion cells in a retinal patch. Nat Neurosci 2004; 7:1154-61. [PMID: 15452581 DOI: 10.1038/nn1323] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Accepted: 09/02/2004] [Indexed: 11/09/2022]
Abstract
To understand a neural circuit completely requires simultaneous recording from most of the neurons in that circuit. Here we report recording and spike sorting techniques that enable us to record from all or nearly all of the ganglion cells in a patch of the retina. With a dense multi-electrode array, each ganglion cell produces a unique pattern of activity on many electrodes when it fires an action potential. Signals from all of the electrodes are combined with an iterative spike sorting algorithm to resolve ambiguities arising from overlapping spike waveforms. We verify that we are recording from a large fraction of ganglion cells over the array by labeling the ganglion cells with a retrogradely transported dye and by comparing the number of labeled and recorded cells. Using these methods, we show that about 60 receptive fields of ganglion cells cover each point in visual space in the salamander, consistent with anatomical findings.
Collapse
Affiliation(s)
- Ronen Segev
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | |
Collapse
|