1
|
Fan H, Wang Y, Zou Y, Song W, Xie J, Tang X, Chen S. ARC/Arg3.1 expression in the lateral geniculate body of monocular form deprivation amblyopic kittens. BMC Ophthalmol 2023; 23:3. [PMID: 36597053 PMCID: PMC9809052 DOI: 10.1186/s12886-022-02757-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
PURPOSE The present study compared the expression of activity-regulated cytoskeleton-associated protein (ARC/Arg3.1) in the lateral geniculate body between form deprivation amblyopia kittens and normal kittens to examine the significance of ARC/Arg3.1 in the lateral geniculate body in the pathogenesis of amblyopia. METHODS Twenty kittens were randomly divided into an experimental group (n = 10) and a control group (n = 10). Black opaque covering cloth was used to cover the right eye of kittens in the experimental group. Pattern visual evoked potentials (PVEP) were detected weekly in all kittens. The expression of the ARC/Arg3.1 gene was detected by immunohistochemistry and in situ hybridization, and apoptosis of lateral geniculate body cells was detected by TUNEL. RESULTS PVEP detection showed that at the age of 5 and 7 weeks, the latency of P100 in the right eye of the experimental group was higher than that of the other three groups (P < 0.05), and the amplitude of P100 was lower than that of the other three groups (P < 0.05). The expression of ARC/Arg3.1 protein (P < 0.05) and mRNA (P < 0.05) in the lateral geniculate body of the experimental group was significantly lower than that of the control group. The level of neuronal apoptosis in the experimental group was higher than that in the control group (P < 0.05). The expression of the ARC/Arg3.1 gene was negatively correlated with the apoptosis level of lateral geniculate body neurons. CONCLUSIONS The expression of ARC/Arg3.1 is associated with monocular form deprivation amblyopia and apoptosis of lateral geniculate body cells.
Collapse
Affiliation(s)
- Haobo Fan
- Department of Optometry, North Sichuan Medical College, No.234 FuJiang Road, Nanchong, 637000, China
- Department of Optometry and Pediatric Ophthalmology, Ineye Hospital of Chengdu University of TCM, Chengdu, China
| | - Ying Wang
- Department of Optometry, North Sichuan Medical College, No.234 FuJiang Road, Nanchong, 637000, China
| | - Yunchun Zou
- Department of Optometry, North Sichuan Medical College, No.234 FuJiang Road, Nanchong, 637000, China.
- Department of Ophthalmology, the Second Clinical College of North Sichuan Medical College (Nanchong Central Hospital), Nanchong, China.
| | - Weiqi Song
- Department of Optometry, North Sichuan Medical College, No.234 FuJiang Road, Nanchong, 637000, China
| | - Juan Xie
- Department of Optometry, North Sichuan Medical College, No.234 FuJiang Road, Nanchong, 637000, China
| | - Xiuping Tang
- Department of Optometry, North Sichuan Medical College, No.234 FuJiang Road, Nanchong, 637000, China
| | - Siyu Chen
- Department of Optometry, North Sichuan Medical College, No.234 FuJiang Road, Nanchong, 637000, China
| |
Collapse
|
2
|
Classification of Visual Cortex Plasticity Phenotypes following Treatment for Amblyopia. Neural Plast 2019; 2019:2564018. [PMID: 31565045 PMCID: PMC6746165 DOI: 10.1155/2019/2564018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/04/2019] [Accepted: 05/13/2019] [Indexed: 12/25/2022] Open
Abstract
Monocular deprivation (MD) during the critical period (CP) has enduring effects on visual acuity and the functioning of the visual cortex (V1). This experience-dependent plasticity has become a model for studying the mechanisms, especially glutamatergic and GABAergic receptors, that regulate amblyopia. Less is known, however, about treatment-induced changes to those receptors and if those changes differentiate treatments that support the recovery of acuity versus persistent acuity deficits. Here, we use an animal model to explore the effects of 3 visual treatments started during the CP (n = 24, 10 male and 14 female): binocular vision (BV) that promotes good acuity versus reverse occlusion (RO) and binocular deprivation (BD) that causes persistent acuity deficits. We measured the recovery of a collection of glutamatergic and GABAergic receptor subunits in the V1 and modeled recovery of kinetics for NMDAR and GABAAR. There was a complex pattern of protein changes that prompted us to develop an unbiased data-driven approach for these high-dimensional data analyses to identify plasticity features and construct plasticity phenotypes. Cluster analysis of the plasticity phenotypes suggests that BV supports adaptive plasticity while RO and BD promote a maladaptive pattern. The RO plasticity phenotype appeared more similar to adults with a high expression of GluA2, and the BD phenotypes were dominated by GABAA α1, highlighting that multiple plasticity phenotypes can underlie persistent poor acuity. After 2-4 days of BV, the plasticity phenotypes resembled normals, but only one feature, the GluN2A:GluA2 balance, returned to normal levels. Perhaps, balancing Hebbian (GluN2A) and homeostatic (GluA2) mechanisms is necessary for the recovery of vision.
Collapse
|
3
|
Altered Balance of Receptive Field Excitation and Suppression in Visual Cortex of Amblyopic Macaque Monkeys. J Neurosci 2017; 37:8216-8226. [PMID: 28743725 DOI: 10.1523/jneurosci.0449-17.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/21/2017] [Accepted: 07/14/2017] [Indexed: 11/21/2022] Open
Abstract
In amblyopia, a visual disorder caused by abnormal visual experience during development, the amblyopic eye (AE) loses visual sensitivity whereas the fellow eye (FE) is largely unaffected. Binocular vision in amblyopes is often disrupted by interocular suppression. We used 96-electrode arrays to record neurons and neuronal groups in areas V1 and V2 of six female macaque monkeys (Macaca nemestrina) made amblyopic by artificial strabismus or anisometropia in early life, as well as two visually normal female controls. To measure suppressive binocular interactions directly, we recorded neuronal responses to dichoptic stimulation. We stimulated both eyes simultaneously with large sinusoidal gratings, controlling their contrast independently with raised-cosine modulators of different orientations and spatial frequencies. We modeled each eye's receptive field at each cortical site using a difference of Gaussian envelopes and derived estimates of the strength of central excitation and surround suppression. We used these estimates to calculate ocular dominance separately for excitation and suppression. Excitatory drive from the FE dominated amblyopic visual cortex, especially in more severe amblyopes, but suppression from both the FE and AEs was prevalent in all animals. This imbalance created strong interocular suppression in deep amblyopes: increasing contrast in the AE decreased responses at binocular cortical sites. These response patterns reveal mechanisms that likely contribute to the interocular suppression that disrupts vision in amblyopes.SIGNIFICANCE STATEMENT Amblyopia is a developmental visual disorder that alters both monocular vision and binocular interaction. Using microelectrode arrays, we examined binocular interaction in primary visual cortex and V2 of six amblyopic macaque monkeys (Macaca nemestrina) and two visually normal controls. By stimulating the eyes dichoptically, we showed that, in amblyopic cortex, the binocular combination of signals is altered. The excitatory influence of the two eyes is imbalanced to a degree that can be predicted from the severity of amblyopia, whereas suppression from both eyes is prevalent in all animals. This altered balance of excitation and suppression reflects mechanisms that may contribute to the interocular perceptual suppression that disrupts vision in amblyopes.
Collapse
|
4
|
Experience-dependent central vision deficits: Neurobiology and visual acuity. Vision Res 2015; 114:68-78. [PMID: 25668772 DOI: 10.1016/j.visres.2015.01.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/06/2015] [Accepted: 01/10/2015] [Indexed: 01/24/2023]
Abstract
Abnormal visual experience during childhood often leads to amblyopia, with strong links to binocular dysfunction that can include poor acuity in both eyes, especially in central vision. In animal models of amblyopia, the non-deprived eye is often considered normal and what limits binocular acuity. This leaves open the question whether monocular deprivation (MD) induces binocular dysfunction similar to what is found in amblyopia. In previous studies of MD cats, we found a loss of excitatory receptors restricted to the central visual field representation in visual cortex (V1), including both eyes' columns. This led us to ask two questions about the effects of MD: how quickly are receptors lost in V1? and is there an impact on binocular acuity? We found that just a few hours of MD caused a rapid loss of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor proteins across all of V1. But after a few days of MD, there was recovery in the visual periphery, leaving a loss of AMPA receptors only in the central region of V1. We reared animals with early MD followed by a long period of binocular vision and found binocular acuity deficits that were greatest in the central visual field. Our results suggest that the greater binocular acuity deficits in the central visual field are driven in part by the long-term loss of AMPA receptors in the central region of V1.
Collapse
|
5
|
Sun X, Zhang J. The expression of NMDA receptor and pCREB in the visual cortex of monocularly-deprived rats. Mol Med Rep 2013; 7:1273-7. [PMID: 23381906 DOI: 10.3892/mmr.2013.1304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 01/07/2013] [Indexed: 11/06/2022] Open
Abstract
N-methyl-D-aspartate receptor subunit 1 (NMDAR1) and cAMP response element binding protein (CREB) play a role in vision plasticity. However, the correlation between their expression and vision plasticity is not clear. The present study aimed to examine the expression of NMDAR1 and phosphorylated CREB (pCREB) in the visual cortex of monocularly-deprived (MD) rats in the developmental phase. Eighty healthy Sprague Dawley rats were randomly divided into 4 groups (n=20); normal, MD, KN-93 (MD rats treated with KN-93, a calmodulin kinase IV inhibitor) and saline (MD rats treated with saline as control). All rats were reared for 45 days in a naturally lit environment. The expression of NMDAR1 and pCREB in the hibateral visual cortex of rats from each group was detected by immunohistochemistry and western blot analysis. The results demonstrate that, compared with the normal group, the expression of NMDAR1 and pCREB was increased in deprived and decreased in the non-deprived-side visual cortex in MD. Compared with the saline group, no significant difference was identified in NMDAR1 expression while pCREB expression was decreased in the deprived-side visual cortex in KN‑93. No significant difference in the expression of NMDAR1 and pCREB in the non-deprived-side visual cortex between the KN-93 and saline groups was observed. The results indicate that NMDAR1 and CREB are involved in the ocular dominance forming process and play a role in vision plasticity.
Collapse
Affiliation(s)
- Xiaonan Sun
- The Fourth Affiliated Hospital of China Medical University, Shenyang 110005, P.R. China
| | | |
Collapse
|
6
|
Zhu Q, Chen J, Zheng M, Chen L, Liu J, Tian J, Huang W, Yang X. Mineral elements in the hair of amblyopic children. Biol Trace Elem Res 2011; 141:119-25. [PMID: 20490709 DOI: 10.1007/s12011-010-8730-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 05/05/2010] [Indexed: 10/19/2022]
Abstract
Amblyopia is a common cause of vision damage in children, and some aspects of its etiology are not clear. A number of mineral elements have important effects on the nerve and visual nerve systems. However, little is known about the relationship between amblyopia and nutritional mineral elements. In this study, hair samples were collected from 67 children with amblyopia and 57 age-matched control groups. The height and weight of each child was measured, and body mass index (BMI) was calculated. Mineral elements were determined by atomic absorption spectrometry and inductively coupled plasma-atomic emission spectrometry. The calcium and magnesium levels in the hair of amblyopic children were higher (p < 0.006), but the level of manganese were lower compared with those in the control groups (p < 0.006). Other elements measured were found to have an insignificant difference between the two groups (p > 0.006). The BMI of amblyopic children was higher (p < 0.001). These results show that mineral elements may play an important role in the visual development of children. Therefore, studies should pay more attention to investigating the impact of mineral elements on child vision.
Collapse
Affiliation(s)
- Qiaolin Zhu
- School of Ophthalmology and Optometry and Affiliated Eye Hospital, Wenzhou Medical College, Wenzhou City, Zhejiang, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Beston BR, Jones DG, Murphy KM. Experience-dependent changes in excitatory and inhibitory receptor subunit expression in visual cortex. Front Synaptic Neurosci 2010; 2:138. [PMID: 21423524 PMCID: PMC3059668 DOI: 10.3389/fnsyn.2010.00138] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 08/06/2010] [Indexed: 02/01/2023] Open
Abstract
Experience-dependent development of visual cortex depends on the balance between excitatory and inhibitory activity. This activity is regulated by key excitatory (NMDA, AMPA) and inhibitory (GABAA) receptors. The composition of these receptors changes developmentally, affecting the excitatory–inhibitory (E/I) balance and synaptic plasticity. Until now, it has been unclear how abnormal visual experience affects this balance. To examine this question, we measured developmental changes in excitatory and inhibitory receptor subunits in visual cortex following normal visual experience and monocular deprivation. We used Western blot analysis to quantify expression of excitatory (NR1, NR2A, NR2B, GluR2) and inhibitory (GABAAα1, GABAAα3) receptor subunits. Monocular deprivation promoted a complex pattern of changes in receptor subunit expression that varied with age and was most severe in the region of visual cortex representing the central visual field. To characterize the multidimensional pattern of experience-dependent change in these synaptic mechanisms, we applied a neuroinformatics approach using principal component analysis. We found that monocular deprivation (i) causes a large portion of the normal developmental trajectory to be bypassed, (ii) shifts the E/I balance in favor of more inhibition, and (iii) accelerates the maturation of receptor subunits. Taken together, these results show that monocularly deprived animals have an abnormal balance of the synaptic machinery needed for functional maturation of cortical circuits and for developmental plasticity. This raises the possibility that interventions intended to treat amblyopia may need to address multiple synaptic mechanisms to produce optimal recovery.
Collapse
Affiliation(s)
- Brett R Beston
- McMaster Integrative Neuroscience Discovery and Study Program, McMaster University Hamilton, ON, Canada
| | | | | |
Collapse
|
8
|
Lee LJ, Chen WJ, Chuang YW, Wang YC. Neonatal whisker trimming causes long-lasting changes in structure and function of the somatosensory system. Exp Neurol 2009; 219:524-32. [PMID: 19619534 DOI: 10.1016/j.expneurol.2009.07.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 07/10/2009] [Accepted: 07/11/2009] [Indexed: 12/01/2022]
Abstract
The significance of very early experience in the maturation of whisker-to-barrel system comes primarily from neonatal whisker or infraorbital nerve lesion studies conducted prior to the formation of cortical barrels. However, the surgical procedures damage the sensory pathway; it is difficult to examine the consequence after the recovery of sensory deprivation. To address this issue, we performed a neonatal whisker-cut (WC) paradigm and examined their behavioral performance during P30 to P35. With fully regrown whiskers, the rats that had whisker cut from the date of birth (P0) to postnatal day (P) 3 (WC 0-3) exhibited shorter crossable distance in the gap-crossing test. However, the rats had whisker cut at P3 only (WC 3) behaved normally in this test, suggesting the critical period for the development of whisker-specific tactile function is P0-P3, agreed with previous findings demonstrated by lesion methods. In the WC 0-3 rats, the cortical areas in the layer IV somatosensory region in relation to the trimmed whiskers were enlarged and the spiny stellate neurons within had larger dendritic span and greater spine density. Furthermore, more long and multiple-head spines were found in these rats. With abnormal structure and function in the somatosensory system, the WC 0-3 rats showed higher explorative activity and more frequent social interactions. Our results have demonstrated that the early tactile deprivation, similar to early visual deprivation, perturbed the developmental program of the brain and affected later behaviors in various aspects.
Collapse
Affiliation(s)
- Li-Jen Lee
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan.
| | | | | | | |
Collapse
|
9
|
Cnops L, Hu TT, Burnat K, Arckens L. Influence of binocular competition on the expression profiles of CRMP2, CRMP4, Dyn I, and Syt I in developing cat visual cortex. Cereb Cortex 2007; 18:1221-31. [PMID: 17951599 DOI: 10.1093/cercor/bhm157] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The visual cortex is vulnerable to changes in visual input, especially during the critical period when numerous molecules drive the refinement of the circuitry. From a list of potential actors identified in a recent proteomics study, we selected 2 collapsin response mediator proteins (CRMP2/CRMP4) and 2 synaptic proteins, Dynamin I (Dyn I) and Synaptotagmin I (Syt I), for in-depth analysis of their developmental expression profile in cat visual cortex. CRMP2 and CRMP4 levels were high early in life and clearly declined toward adulthood. In contrast, Dyn I expression levels progressively augmented during maturation. Syt I showed low levels at eye opening and in adults, high levels around the peak of the critical period, and maximal levels at juvenile age. We further determined a role for each molecule in ocular dominance plasticity. CRMP2 and Syt I levels decreased in area 17 upon monocular deprivation, whereas CRMP4 and Dyn I levels remained unaffected. In contrast, binocular removal of pattern vision had no influence on CRMP2 and Syt I expression in kitten area 17. This study illustrates that not the loss of quality of vision through visual deprivation, but disruption of normal binocular visual experience is crucial to induce the observed molecular changes.
Collapse
Affiliation(s)
- Lieselotte Cnops
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
10
|
Abstract
In the past five years, substantial progress has been made in our knowledge of the neural basis of amblyopia. Recent advances based on animal models are described, along with new psychophysical data showing perceptual deficits in amblyopic animals that are not explained by simple losses in contrast sensitivity. Studies of contour integration and integration of motion and form signals in the presence of noise show that 1) there are fundamental losses in temporal as well as spatial vision, 2) the losses extend to the fellow eye in many cases, 3) amblyopic animals are especially impaired in the presence of background noise, and 4) these losses must depend on a process downstream from area V1 in the extrastriate cortex.
Collapse
Affiliation(s)
- Lynne Kiorpes
- Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|