1
|
Pan F, Toychiev A, Zhang Y, Atlasz T, Ramakrishnan H, Roy K, Völgyi B, Akopian A, Bloomfield SA. Inhibitory masking controls the threshold sensitivity of retinal ganglion cells. J Physiol 2016; 594:6679-6699. [PMID: 27350405 DOI: 10.1113/jp272267] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/23/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Retinal ganglion cells (RGCs) in dark-adapted retinas show a range of threshold sensitivities spanning ∼3 log units of illuminance. Here, we show that the different threshold sensitivities of RGCs reflect an inhibitory mechanism that masks inputs from certain rod pathways. The masking inhibition is subserved by GABAC receptors, probably on bipolar cell axon terminals. The GABAergic masking inhibition appears independent of dopaminergic circuitry that has been shown also to affect RGC sensitivity. The results indicate a novel mechanism whereby inhibition controls the sensitivity of different cohorts of RGCs. This can limit and thereby ensure that appropriate signals are carried centrally in scotopic conditions when sensitivity rather than acuity is crucial. ABSTRACT The responses of rod photoreceptors, which subserve dim light vision, are carried through the retina by three independent pathways. These pathways carry signals with largely different sensitivities. Retinal ganglion cells (RGCs), the output neurons of the retina, show a wide range of sensitivities in the same dark-adapted conditions, suggesting a divergence of the rod pathways. However, this organization is not supported by the known synaptic morphology of the retina. Here, we tested an alternative idea that the rod pathways converge onto single RGCs, but inhibitory circuits selectively mask signals so that one pathway predominates. Indeed, we found that application of GABA receptor blockers increased the sensitivity of most RGCs by unmasking rod signals, which were suppressed. Our results indicate that inhibition controls the threshold responses of RGCs under dim ambient light. This mechanism can ensure that appropriate signals cross the bottleneck of the optic nerve in changing stimulus conditions.
Collapse
Affiliation(s)
- Feng Pan
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY, USA.,Current address: School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Abduqodir Toychiev
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY, USA
| | - Yi Zhang
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tamas Atlasz
- Department of Sport Biology, Janos Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | | | - Kaushambi Roy
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY, USA
| | - Béla Völgyi
- Department of Sport Biology, Janos Szentagothai Research Center, University of Pécs, Pécs, Hungary.,Department of Experimental Zoology and Neurobiology, Janos Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | - Abram Akopian
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY, USA
| | - Stewart A Bloomfield
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY, USA
| |
Collapse
|
2
|
Popova E. Ionotropic GABA Receptors and Distal Retinal ON and OFF Responses. SCIENTIFICA 2014; 2014:149187. [PMID: 25143858 PMCID: PMC4131092 DOI: 10.1155/2014/149187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/24/2014] [Accepted: 05/27/2014] [Indexed: 05/27/2023]
Abstract
In the vertebrate retina, visual signals are segregated into parallel ON and OFF pathways, which provide information for light increments and decrements. The segregation is first evident at the level of the ON and OFF bipolar cells in distal retina. The activity of large populations of ON and OFF bipolar cells is reflected in the b- and d-waves of the diffuse electroretinogram (ERG). The role of gamma-aminobutyric acid (GABA), acting through ionotropic GABA receptors in shaping the ON and OFF responses in distal retina, is a matter of debate. This review summarized current knowledge about the types of the GABAergic neurons and ionotropic GABA receptors in the retina as well as the effects of GABA and specific GABAA and GABAC receptor antagonists on the activity of the ON and OFF bipolar cells in both nonmammalian and mammalian retina. Special emphasis is put on the effects on b- and d-waves of the ERG as a useful tool for assessment of the overall function of distal retinal ON and OFF channels. The role of GABAergic system in establishing the ON-OFF asymmetry concerning the time course and absolute and relative sensitivity of the ERG responses under different conditions of light adaptation in amphibian retina is also discussed.
Collapse
Affiliation(s)
- E. Popova
- Department of Physiology, Medical Faculty, Medical University, 1431 Sofia, Bulgaria
| |
Collapse
|
3
|
El-Sayyad HIH, Khalifa SA, AL-Gebaly AS, El-Mansy AA. Aging related changes of retina and optic nerve of Uromastyx aegyptia and Falco tinnunculus. ACS Chem Neurosci 2014; 5:39-50. [PMID: 24215233 DOI: 10.1021/cn400154k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Aging is a biological phenomenon that involves gradual degradation of the structure and function of the retina and optic nerve. To our knowledge, little is known about the aging-related ocular cell loss in avian (Falco tinnunculus) and reptilian species (Uromastyx aegyptia). A selected 90 animals of pup, middle, and old age U. aegyptia (reptilian) and F. tinnunculus (avian) were used. The retinae and optic nerves were investigated by light and transmission electron microscopy (TEM) and assessments of neurotransmitters, antioxidant enzymes (catalase, superoxide dismustase and glutathione s transferase), caspase-3 and -7, malonadialdhyde, and DNA fragmentation. Light and TEM observations of the senile specimens revealed apparent deterioration of retinal cell layers, especially the pigmented epithelium and photoreceptor outer segments. Their inclusions of melanin were replaced by lipofuscins. Also, vacuolar degeneration and demyelination of the optic nerve axons were detected. Concomitantly, there was a marked increase of oxidative stress involved reduction of neurotransmitters and antioxidant enzymes and an increase of lipid peroxidation, caspase-3 and -7, subG0/G1 apoptosis, and P53. We conclude that aging showed an inverse relationship with the neurotransmitters and antioxidant enzymes and a linear relationship of caspases, malondialdhyde, DNA apoptosis, and P53 markers of cell death. These markers reflected the retinal cytological alterations and lipofuscin accumulation within inner segments.
Collapse
Affiliation(s)
| | - Soad A. Khalifa
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura 002050, Egypt
| | - Asma S. AL-Gebaly
- Department of Biology, Science College, Princess Noura Bint Abdul Rahman University, Riyadh 11421, Kingdom of Saudia Arabia
| | - Ahmed A. El-Mansy
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura 002050, Egypt
| |
Collapse
|
4
|
Buldyrev I, Taylor WR. Inhibitory mechanisms that generate centre and surround properties in ON and OFF brisk-sustained ganglion cells in the rabbit retina. J Physiol 2012; 591:303-25. [PMID: 23045347 DOI: 10.1113/jphysiol.2012.243113] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Lateral inhibition produces the centre-surround organization of retinal receptive fields, in which inhibition driven by the mean luminance enhances the sensitivity of ganglion cells to spatial and temporal contrast. Surround inhibition is generated in both synaptic layers; however, the synaptic mechanisms within the inner plexiform layer are not well characterized within specific classes of retinal ganglion cell. Here, we compared the synaptic circuits generating concentric centre-surround receptive fields in ON and OFF brisk-sustained ganglion cells (BSGCs) in the rabbit retina. We first characterized the synaptic inputs to the centre of ON BSGCs, for comparison with previous results from OFF BSGCs. Similar to wide-field ganglion cells, the spatial extent of the excitatory centre and inhibitory surround was larger for the ON than the OFF BSGCs. The results indicate that the surrounds of ON and OFF BSGCs are generated in both the outer and the inner plexiform layers. The inner plexiform layer surround inhibition comprised GABAergic suppression of excitatory inputs from bipolar cells. However, ON and OFF BSGCs displayed notable differences. Surround suppression of excitatory inputs was weaker in ON than OFF BSGCs, and was mediated largely by GABA(C) receptors in ON BSGCs, and by both GABA(A) and GABA(C) receptors in OFF BSGCs. Large ON pathway-mediated glycinergic inputs to ON and OFF BSGCs also showed surround suppression, while much smaller GABAergic inputs showed weak, if any, spatial tuning. Unlike OFF BSGCs, which receive strong glycinergic crossover inhibition from the ON pathway, the ON BSGCs do not receive crossover inhibition from the OFF pathway. We compare and discuss possible roles for glycinergic inhibition in the two cell types.
Collapse
Affiliation(s)
- Ilya Buldyrev
- Casey Eye Institute, Department of Ophthalmology, School of Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
5
|
Abstract
Amacrine cells are a morphologically and functionally diverse group of inhibitory interneurons. Morphologically, they have been divided into approximately 30 types. Although this diversity is probably important to the fine structure and function of the retinal circuit, the amacrine cells have been more generally divided into two subclasses. Glycinergic narrow-field amacrine cells have dendrites that ramify close to their somas, cross the sublaminae of the inner plexiform layer, and create cross talk between its parallel ON and OFF pathways. GABAergic wide-field amacrine cells have dendrites that stretch long distances from their soma but ramify narrowly within an inner plexiform layer sublamina. These wide-field cells are thought to mediate inhibition within a sublamina and thus within the ON or OFF pathway. The postsynaptic targets of all amacrine cell types include bipolar, ganglion, and other amacrine cells. Almost all amacrine cells use GABA or glycine as their primary neurotransmitter, and their postsynaptic receptor targets include the most common GABA(A), GABA(C), and glycine subunit receptor configurations. This review addresses the diversity of amacrine cells, the postsynaptic receptors on their target cells in the inner plexiform layer of the retina, and some of the inhibitory mechanisms that arise as a result. When possible, the effects of GABAergic and glycinergic inputs on the visually evoked responses of their postsynaptic targets are discussed.
Collapse
|
6
|
Farajian R, Pan F, Akopian A, Völgyi B, Bloomfield SA. Masked excitatory crosstalk between the ON and OFF visual pathways in the mammalian retina. J Physiol 2011; 589:4473-89. [PMID: 21768265 DOI: 10.1113/jphysiol.2011.213371] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A fundamental organizing feature of the visual system is the segregation of ON and OFF responses into parallel streams to signal light increment and decrement. However, we found that blockade of GABAergic inhibition unmasks robust ON responses in OFF α-ganglion cells (α-GCs). These ON responses had the same centre-mediated structure as the classic OFF responses of OFF α-GCs, but were abolished following disruption of the ON pathway with L-AP4. Experiments showed that both GABA(A) and GABA(C) receptors are involved in the masking inhibition of this ON response, located at presynaptic inhibitory synapses on bipolar cell axon terminals and possibly amacrine cell dendrites. Since the dendrites of OFF α-GCs are not positioned to receive excitatory inputs from ON bipolar cell axon terminals in sublamina-b of the inner plexiform layer (IPL), we investigated the possibility that gap junction-mediated electrical synapses made with neighbouring amacrine cells form the avenue for reception of ON signals. We found that the application of gap junction blockers eliminated the unmasked ON responses in OFF α-GCs, while the classic OFF responses remained. Furthermore, we found that amacrine cells coupled to OFF α-GCs display processes in both sublaminae of the IPL, thus forming a plausible substrate for the reception and delivery of ON signals to OFF α-GCs. Finally, using a multielectrode array, we found that masked ON and OFF signals are displayed by over one-third of ganglion cells in the rabbit and mouse retinas, suggesting that masked crossover excitation is a widespread phenomenon in the inner mammalian retina.
Collapse
Affiliation(s)
- Reza Farajian
- Department of Physiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
7
|
Bai X, Zhu J, Yang J, Savoie BT, Wang GY. Mechanisms that limit the light stimulus frequency following through the DL-2-amino-4-phosphonobutyric acid sensitive and insensitive rod Off-pathways. Neuroscience 2009; 162:184-94. [PMID: 19406212 DOI: 10.1016/j.neuroscience.2009.04.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 04/24/2009] [Accepted: 04/24/2009] [Indexed: 11/18/2022]
Abstract
In the retina, rod signal pathways process scotopic visual information. Light decrements are mediated by two distinct groups of rod pathways in the dark-adapted retina that can be differentiated on the basis of their sensitivity to the glutamate agonist dl-2-amino-4-phosphonobutyric acid (APB). We have found that the APB sensitive and insensitive rod Off-pathways signal different light decrement information: the APB sensitive rod Off-pathway conveys slow and low frequency light signals, whereas the APB insensitive rod Off-pathways mediate fast and high frequency light signals [Wang GY (2006) Unique functional properties of the APB sensitive and insensitive rod pathways signaling light decrements in mouse retinal ganglion cells. Vis Neurosci 23:127-135]. However, the mechanisms which limit the frequency following through the APB sensitive and insensitive rod Off-pathways remain unknown. In the current study, whole-cell patch-clamp recordings were made from ganglion cells in dark and light adapted mouse retina to identify the mechanisms that limit the frequency following through the APB sensitive and insensitive rod Off-pathways. The results showed that the sites from AII amacrine cells to Off cone bipolar cells are the major mechanisms that limit the frequency following through the APB sensitive rod Off-pathway. In the APB insensitive rod Off-pathways, rods themselves limited the frequency following through these pathways. Moreover, ganglion cells were able to follow higher frequencies under photopic conditions than under scotopic conditions. The Off responses followed lower frequencies than On responses under photopic conditions. This finding was observed in cells that yielded On or Off responses only as well as in On-Off cells.
Collapse
Affiliation(s)
- X Bai
- Department of Structural and Cellular Biology, School of Medicine, Tulane University, 1430 Tulane Avenue, SL-49, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
8
|
Electrophysiological evidence of GABAA and GABAC receptors on zebrafish retinal bipolar cells. Vis Neurosci 2008; 25:139-53. [PMID: 18442437 DOI: 10.1017/s0952523808080322] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To refine inhibitory circuitry models for ON and OFF pathways in zebrafish retina, GABAergic properties of zebrafish bipolar cells were studied with two techniques: whole cell patch responses to GABA puffs in retinal slice, and voltage probe responses in isolated cells. Retinal slices documented predominantly axon terminal responses; isolated cells revealed mainly soma-dendritic responses. In the slice, GABA elicited a conductance increase, GABA responses were more robust at axon terminals than dendrites, and Erev varied with [Cl(-)]in. Axon terminals of ON- and OFF-type cells were similarly sensitive to GABA (30-40 pA peak current); axotomized cells were unresponsive. Bicuculline-sensitive, picrotoxin-sensitive, and picrotoxin-insensitive components were identified. Muscimol was as effective as GABA; baclofen was ineffective. Isolated bipolar cells were either intact or axotomized. Even in cells without an axon, GABA or muscimol (but not baclofen) hyperpolarized dendritic and somatic regions, suggesting significant distal expression. Median fluorescence change for GABA was -0.22 log units (approximately -16 mV); median half-amplitude dose was 0.4 microM. Reduced [Cl(-)]out blocked GABA responses. GABA hyperpolarized isolated ON-bipolar cells; OFF-cells were either unresponsive or depolarized. Hyperpolarizing GABA responses in isolated cells were bicuculline and TPMPA insensitive, but blocked or partially blocked by picrotoxin or zinc. In summary, axon terminals contain bicuculline-sensitive GABAA receptors and both picrotoxin-sensitive and insensitive GABAC receptors. Dendritic processes express zinc- and picrotoxin-sensitive GABAC receptors.
Collapse
|
9
|
Molnar A, Werblin F. Inhibitory feedback shapes bipolar cell responses in the rabbit retina. J Neurophysiol 2007; 98:3423-35. [PMID: 17928553 DOI: 10.1152/jn.00838.2007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Retinal bipolar cells can be divided into on and off types based on the polarity of their response to light. Bipolar activity is further shaped by inhibitory inputs, characterized here by the events that occur immediately after the onset of a light step: 1) in most off bipolar cells, excitatory current decreased, whereas inhibitory current increased. These currents reinforced each other, enhancing the light response. 2) In about half of the on cone bipolar cells, the excitatory current increased, whereas inhibitory current decreased, also reinforcing the light response. Both of these reinforcing interactions were mediated by glycinergic inhibition. 3) In the remaining on cone bipolar cells, excitation and inhibition both increased, but inhibition was delayed so that these cells responded transiently. 4) Finally, in rod bipolar cells, excitation and inhibition both increased so that inhibition suppressed excitation, reducing the light response at all time scales. The suppressive inhibition seen in on cone and rod bipolar cells was mediated by GABA. Thus morphologically diverse bipolar cells receive only four main types of inhibitory input, and the majority of "inhibitory" inputs actually serve to enhance excitation.
Collapse
Affiliation(s)
- Alyosha Molnar
- Department of Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
10
|
Shen W, Jiang Z. Characterization of glycinergic synapses in vertebrate retinas. J Biomed Sci 2006; 14:5-13. [PMID: 17061147 DOI: 10.1007/s11373-006-9118-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Accepted: 09/12/2006] [Indexed: 11/29/2022] Open
Abstract
Glycine is one of the essential neurotransmitters modulating visual signals in retina. Glycine activates Cl(-) permeable receptors that conduct either inhibitory or excitatory actions, depending on the Cl(-) electrical-chemical gradient (E (Cl)) positive or negative to the resting potential in the cells. Interestingly, both glycine-induced inhibitory and excitatory responses are present in adult retinas, and the effects are confined in the inner and outer retinal neurons. Glycine inhibits glutamate synapses in the inner plexiform layer (IPL), resulting in shaping light responses in ganglion cells. In contrast, glycine excites horizontal cells and On-bipolar dendrites in the outer plexiform layer (OPL). The function of glycinergic synapse in the outer retina represents the effect of network feedback from a group of centrifugal neurons, glycinergic interplexiform cells. Moreover, immunocytochemical studies identify glycine receptor subunits (alpha1, alpha2, alpha3 and beta) in retinas, forming picrotoxin-sensitive alpha-homomeric and picrotoxin-insensitive alpha/beta-heteromeric receptors. Glycine receptors are modulated by intracellular Ca(2+) and protein kinas C and A pathways. Extracellular Zn(2+) regulates glycine receptors in a concentration-dependent manner, nanomolar Zn(2+) enhancing glycine responses, and micromolar Zn(2+) suppressing glycine responses in retinal neurons. These studies describe the function and mechanism of glycinergic synapses in retinas.
Collapse
Affiliation(s)
- Wen Shen
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | | |
Collapse
|