1
|
Zhao D, Lee PY, Wong VHY, Hoang A, Tran KKN, Van Koeverden AK, Afiat BC, Nguyen CTO, Bui BV. Full-Field Electroretinogram Responses in Rodent Models of Ganglion Cell Injury. Methods Mol Biol 2025; 2858:207-218. [PMID: 39433678 DOI: 10.1007/978-1-0716-4140-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Preclinical studies of optic nerve injury models have led to significant insight into the mechanism underlying retinal ganglion cell neurodegeneration. During the process of ganglion cell injury, morphological changes can occur prior to gross structural changes and cell death. Similarly, following injury, functional changes can occur in the absence of substantive structural changes. These more subtle effects can often be detected using functional tools such as the electroretinogram. Moreover, the electroretinogram is a sensitive and complementary means to quantify treatment efficacy. Here, we describe in vivo electroretinography for assessing ganglion cell injury in rodent models.
Collapse
Affiliation(s)
- Da Zhao
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Pei Ying Lee
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Vickie H Y Wong
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Anh Hoang
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Katie K N Tran
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Anna K Van Koeverden
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Brianna C Afiat
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Christine T O Nguyen
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
2
|
Lee PY, Zhao D, Wong VHY, Hoang A, Tran KKN, van Koeverden AK, Afiat BC, Nguyen CTO, Bui BV. Measuring the Full-Field Electroretinogram in Rodents. Methods Mol Biol 2023; 2708:131-140. [PMID: 37558967 DOI: 10.1007/978-1-0716-3409-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Electroretinography allows for noninvasive functional assessment of the retina and is a mainstay for preclinical studies of retinal function in health and disease. The full-field electroretinogram is useful for a variety of applications as it returns a functional readout from each of the major cell classes within the retina: photoreceptors, bipolar cells, amacrine cells, and retinal ganglion cells. Rodent models are commonly employed in ocular degeneration studies due to the fast throughput of these mammalian species and the conservation of the electroretinogram from the preclinic to the clinic. Here we describe approaches for in vivo electroretinography in rodent models.
Collapse
Affiliation(s)
- Pei Ying Lee
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Da Zhao
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Vickie H Y Wong
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Anh Hoang
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Katie K N Tran
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Anna K van Koeverden
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Brianna C Afiat
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Christine T O Nguyen
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
3
|
Tran KKN, Wong VHY, Lim JKH, Shahandeh A, Hoang A, Finkelstein DI, Bui BV, Nguyen CTO. Characterization of retinal function and structure in the MPTP murine model of Parkinson’s disease. Sci Rep 2022; 12:7610. [PMID: 35534594 PMCID: PMC9085791 DOI: 10.1038/s41598-022-11495-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/18/2022] [Indexed: 12/14/2022] Open
Abstract
AbstractIn addition to well characterized motor symptoms, visual disturbances are increasingly recognized as an early manifestation in Parkinson’s disease (PD). A better understanding of the mechanisms underlying these changes would facilitate the development of vision tests which can be used as preclinical biomarkers to support the development of novel therapeutics for PD. This study aims to characterize the retinal phenotype of a mouse model of dopaminergic dysfunction and to examine whether these changes are reversible with levodopa treatment. We use a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD to characterize the neurotoxic effects of MPTP on in vivo retinal function (electroretinography, ERG), retinal structure (optical coherence tomography, OCT) and retinal dopaminergic cell number (tyrosine hydroxylase immunohistochemistry, IHC) at two time points (21 and 45 days) post MPTP model induction. We also investigate the effect of levodopa (L-DOPA) as a proof-of-principle chronic intervention against MPTP-induced changes in the retina. We show that MPTP decreases dopaminergic amacrine cell number (9%, p < 0.05) and that a component of the ERG that involves these cells, in particular oscillatory potential (OP) peak timing, was significantly delayed at Day 45 (7–13%, p < 0.01). This functional deficit was paralleled by outer plexiform layer (OPL) thinning (p < 0.05). L-DOPA treatment ameliorated oscillatory potential deficits (7–13%, p < 0.001) in MPTP animals. Our data suggest that the MPTP toxin slows the timing of inner retinal feedback circuits related to retinal dopaminergic pathways which mirrors findings from humans with PD. It also indicates that the MPTP model causes structural thinning of the outer retinal layer on OCT imaging that is not ameliorated with L-DOPA treatment. Together, these non-invasive measures serve as effective biomarkers for PD diagnosis as well as for quantifying the effect of therapy.
Collapse
|
4
|
Li Y, Cohen ED, Qian H. Rod and Cone Coupling Modulates Photopic ERG Responses in the Mouse Retina. Front Cell Neurosci 2020; 14:566712. [PMID: 33100974 PMCID: PMC7546330 DOI: 10.3389/fncel.2020.566712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/31/2020] [Indexed: 11/13/2022] Open
Abstract
Light adaptation changes both the sensitivity and maximum amplitude (Rmax) of the mouse photopic electroretinogram (ERG) b-wave. Using the ERG, we examined how modulation of gap junctional coupling between rod and cones alters the light-adapted ERG. To measure changes, a b-wave light adaptation enhancement factor (LAEF), was defined as the ratio of Rmax after 15 min light adaptation to Rmax recorded at the onset of an adapting light. For wild-type mice (WT), the LAEF averaged 2.64 ± 0.29, however, it was significantly reduced (1.06 ± 0.04) for connexin 36 knock out (Cx36KO) mice, which lack electrical coupling between photoreceptors. Wild type mice intraocularly injected with meclofenamic acid (MFA), a gap junction blocker, also showed a significantly reduced LAEF. Degeneration of rod photoreceptors significantly alters the effects of light adaptation on the photopic ERG response. Rd10 mice at P21, with large portions of their rod photoreceptors present in the retina, exhibited a similar b-wave enhancement as wildtype controls, with a LAEF of 2.55 ± 0.19. However, by P31 with most of their rod photoreceptors degenerated, rd10 mice had a much reduced b-wave enhancement during light-adaptation (LAEF of 1.54 ± 0.12). Flicker ERG responses showed a higher temporal amplitude in mesopic conditions for WT than those of Cx36KO mice, suggesting rod-cone coupling help high-frequency signals to pass from rods to cone pathways in the retina. In conclusion, our study provides a novel method to noninvasively measure the dynamics and modulation by the light adaptation for rod-cone gap junctional coupling in intact eyes.
Collapse
Affiliation(s)
- Yichao Li
- Visual Function Core, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD, United States
| | - Ethan D Cohen
- Division of Biomedical Physics, Office of Science and Engineering Labs, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, United States
| | - Haohua Qian
- Visual Function Core, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
5
|
Bush RA, Tanikawa A, Zeng Y, Sieving PA. Cone ERG Changes During Light Adaptation in Two All-Cone Mutant Mice: Implications for Rod-Cone Pathway Interactions. Invest Ophthalmol Vis Sci 2019; 60:3680-3688. [PMID: 31469895 PMCID: PMC6716952 DOI: 10.1167/iovs.19-27242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The b-wave of the cone ERG increases in amplitude and speed during the first few minutes of adaptation to a rod-suppressing background light. Earlier studies implicate rod pathway input to the cone pathway in these changes. Methods The timing and amplitude of the cone b-wave and isolated oscillatory potentials (OP) during the first 10 minutes of light adaptation in wild-type (WT) mice and two mutant lines without functional rods was examined: rhodopsin knockout (Rho-/-), lacking rod outer segments, and NRL knockout (Nrl-/-), in which rods are replaced by S-cones. Expression of the immediate-early gene c-fos, which is increased in the inner retina by light-induced activity, was evaluated by immunohistochemistry in dark- and light-adapted retinas. Results WT b-wave and OP amplitudes increased, and implicit times decreased during light adaptation. Subtracting OP did not alter b-wave changes. Rho-/- b-wave and OP amplitudes did not increase during adaptation. B-wave timing and amplitude and the timing of the major OP at 1 minute of adaptation were equivalent to WT at 10 minutes. The light-adapted ERG b-wave in Nrl-/- mice, which originates in both the rod and cone pathways, changed in absolute amplitude and timing similar to WT. C-fos expression was present in the inner retinas of dark-adapted Rho-/- but not WT or Nrl-/- mice. Conclusions Activity in the distal rod pathway produces changes in the cone ERG during light adaptation. Rods in Rho-/- mice constitutively activate this rod-cone pathway interaction. The rod pathway S-cones in Nrl-/- mice may maintain the WT interaction.
Collapse
Affiliation(s)
- Ronald A Bush
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - Atsuhiro Tanikawa
- Department of Ophthalmology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Yong Zeng
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - Paul A Sieving
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States.,National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
6
|
Joachimsthaler A, Tsai TI, Kremers J. Electrophysiological Studies on The Dynamics of Luminance Adaptation in the Mouse Retina. Vision (Basel) 2017; 1:vision1040023. [PMID: 31740648 PMCID: PMC6835873 DOI: 10.3390/vision1040023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/11/2017] [Accepted: 10/15/2017] [Indexed: 12/31/2022] Open
Abstract
To date, most studies involving in vivo electroretinography in mice are performed on steady state adapted animals. In this study, we focused on the dynamics of adaptation to high and low light levels in the mouse retina. Two flash electroretinogram (ERG) protocols and one flicker ERG protocol were employed. In the two flash ERG protocols, the animals were adapted to either 25 or 40 cd/m2 white light and ERGs were recorded for up to 15 min of adaptation. Afterwards, flash ERGs were recorded for up to 45 min of dark adaptation. Amplitudes of the flash ERG increased during light adaptation, while implicit times of the different wave components decreased. During subsequent dark adaptation, the amplitudes further increased. The increase in a-to-b-wave ratio indicated adaptational processes at the photoreceptor synapse. In the flicker ERG protocol, the responses to 12 Hz sinusoidal luminance modulation during the adaptation to 25 cd/m2 and a 1 cd/m2 mean luminances were recorded. The amplitudes of the first harmonic components in the flicker protocol decreased during light adaptation but increased during dark adaptation. This is at odds with the changes in the flash ERG, indicating that adaptation may be different in different retinal pathways.
Collapse
Affiliation(s)
- Anneka Joachimsthaler
- Department of Ophthamlology, University Hospital Erlangen, 91054 Erlangen, Germany
- Department of Biology, Animal Physiology, FAU Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Tina I. Tsai
- Department of Ophthamlology, University Hospital Erlangen, 91054 Erlangen, Germany
- Department of Biology, Animal Physiology, FAU Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Jan Kremers
- Department of Ophthamlology, University Hospital Erlangen, 91054 Erlangen, Germany
- Correspondence:
| |
Collapse
|
7
|
M1 ipRGCs Influence Visual Function through Retrograde Signaling in the Retina. J Neurosci 2017; 36:7184-97. [PMID: 27383593 DOI: 10.1523/jneurosci.3500-15.2016] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 05/26/2016] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs, with five subtypes named M1-M5) are a unique subclass of RGCs with axons that project directly to many brain nuclei involved in non-image-forming functions such as circadian photoentrainment and the pupillary light reflex. Recent evidence suggests that melanopsin-based signals also influence image-forming visual function, including light adaptation, but the mechanisms involved are unclear. Intriguingly, a small population of M1 ipRGCs have intraretinal axon collaterals that project toward the outer retina. Using genetic mouse models, we provide three lines of evidence showing that these axon collaterals make connections with upstream dopaminergic amacrine cells (DACs): (1) ipRGC signaling to DACs is blocked by tetrodotoxin both in vitro and in vivo, indicating that ipRGC-to-DAC transmission requires voltage-gated Na(+) channels; (2) this transmission is partly dependent on N-type Ca(2+) channels, which are possibly expressed in the axon collateral terminals of ipRGCs; and (3) fluorescence microscopy reveals that ipRGC axon collaterals make putative presynaptic contact with DACs. We further demonstrate that elimination of M1 ipRGCs attenuates light adaptation, as evidenced by an impaired electroretinogram b-wave from cones, whereas a dopamine receptor agonist can potentiate the cone-driven b-wave of retinas lacking M1 ipRGCs. Together, the results strongly suggest that ipRGCs transmit luminance signals retrogradely to the outer retina through the dopaminergic system and in turn influence retinal light adaptation. SIGNIFICANCE STATEMENT Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) comprise a third class of retinal photoreceptors that are known to mediate physiological responses such as circadian photoentrainment. However, investigation into whether and how ipRGCs contribute to vision has just begun. Here, we provide convergent anatomical and physiological evidence that axon collaterals of ipRGCs constitute a centrifugal pathway to DACs, conveying melanopsin-based signals from the innermost retina to the outer retina. We further demonstrate that retrograde signals likely influence visual processing because elimination of axon collateral-bearing ipRGCs impairs light adaptation by limiting dopamine-dependent facilitation of the cone pathway. Our findings strongly support the hypothesis that retrograde melanopsin-based signaling influences visual function locally within the retina, a notion that refutes the dogma that RGCs only provide physiological signals to the brain.
Collapse
|
8
|
Nguyen CT, Tsai TI, He Z, Vingrys AJ, Lee PY, Bui BV. Simultaneous Recording of Electroretinography and Visual Evoked Potentials in Anesthetized Rats. J Vis Exp 2016. [PMID: 27404129 DOI: 10.3791/54158] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The electroretinogram (ERG) and visual evoked potential (VEP) are commonly used to assess the integrity of the visual pathway. The ERG measures the electrical responses of the retina to light stimulation, while the VEP measures the corresponding functional integrity of the visual pathways from the retina to the primary visual cortex following the same light event. The ERG waveform can be broken down into components that reflect responses from different retinal neuronal and glial cell classes. The early components of the VEP waveform represent the integrity of the optic nerve and higher cortical centers. These recordings can be conducted in isolation or together, depending on the application. The methodology described in this paper allows simultaneous assessment of retinal and cortical visual evoked electrophysiology from both eyes and both hemispheres. This is a useful way to more comprehensively assess retinal function and the upstream effects that changes in retinal function can have on visual evoked cortical function.
Collapse
Affiliation(s)
| | - Tina I Tsai
- Department of Optometry and Vision Sciences, University of Melbourne
| | - Zheng He
- Department of Optometry and Vision Sciences, University of Melbourne
| | - Algis J Vingrys
- Department of Optometry and Vision Sciences, University of Melbourne
| | - Pei Y Lee
- Department of Optometry and Vision Sciences, University of Melbourne
| | - Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne;
| |
Collapse
|
9
|
Nagaya M, Ueno S, Kominami T, Nakanishi A, Koyasu T, Kondo M, Furukawa T, Terasaki H. Pikachurin Protein Required for Increase of Cone Electroretinogram B-Wave during Light Adaptation. PLoS One 2015; 10:e0128921. [PMID: 26091521 PMCID: PMC4475018 DOI: 10.1371/journal.pone.0128921] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 05/01/2015] [Indexed: 11/18/2022] Open
Abstract
In normal eyes, the amplitude of the b-wave of the photopic ERGs increases during light adaptation, but the mechanism causing this increase has not been fully determined. The purpose of this study was to evaluate the contribution of receptoral and post-receptoral components of the retina to this phenomenon. To accomplish this, we examined the ERGs during light adaptation in Pikachurin null-mutant (Pika -/-) mice, which have a misalignment of the bipolar cell dendritic tips to the photoreceptor ribbon synapses. After dark-adaptation, photopic ERGs were recorded from Pika -/- and wild type (WT) mice during the first 9 minutes of light adaptation. In some of the mice, post-receptoral components were blocked pharmacologically. The photopic b-waves of WT mice increased by 50% during the 9 min of light adaptation as previously reported. On the other hand, the b-waves of the Pika -/- mice decreased by 20% during the same time period. After blocking post-receptoral components, the b-waves were abolished from the WT mice, and the ERGs resembled those of the Pika -/- mice. The extracted post-receptoral component increased during light adaptation in the WT mice, but decreased for the first 3 minutes to a plateau in Pika -/- mice. We conclude that the normal synaptic connection between photoreceptor and retinal ON bipolar cells, which is controlled by pikachurin, is required for the ERGs to increase during light-adaptation. The contributions of post-receptoral components are essential for the photopic b-wave increase during the light adaptation.
Collapse
Affiliation(s)
- Masatoshi Nagaya
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shinji Ueno
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- * E-mail:
| | - Taro Kominami
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Ayami Nakanishi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toshiyuki Koyasu
- Department of Ophthalmology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- JST, CREST, Suita, Osaka, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
10
|
Smith BJ, Côté PD, Tremblay F. D1 Dopamine receptors modulate cone ON bipolar cell Nav channels to control daily rhythms in photopic vision. Chronobiol Int 2014; 32:48-58. [DOI: 10.3109/07420528.2014.951054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
McAnany JJ, Nolan PR. Changes in the harmonic components of the flicker electroretinogram during light adaptation. Doc Ophthalmol 2014; 129:1-8. [PMID: 24788470 DOI: 10.1007/s10633-014-9437-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/17/2014] [Indexed: 11/28/2022]
Abstract
PURPOSE To evaluate the nature and extent of changes in the fundamental and harmonic components of the 31-Hz flicker electroretinogram (ERG) during light adaptation. METHODS Full-field ERGs were recorded from five visually normal subjects (ages 21-60 years). Following 30 min of dark adaptation, the subjects were exposed to a uniform adapting field of 50 cd/m(2). The field, which was presented for approximately 15 min, was intermittently modulated sinusoidally at 31.25 Hz. The ERG was recorded during the sinusoidal modulation, and Fourier analysis was used to obtain the amplitude and phase of the fundamental (F), second (2F), and third (3F) harmonic response components. RESULTS F amplitude increased by almost a factor of two over approximately 6 min (time constant, τ, of 3.0 min). The 2F amplitude increased by a smaller amount, a factor of 1.4, and the time-course was approximately eight times faster than that of F (τ = 0.4 min). The 3F amplitude increased by a factor of 4.6, an increase that was larger than F or 2F, with a time-course that was between that of F and 2F (τ = 1.4 min). F phase was unaffected by light adaptation, whereas the 2F and 3F phases both increased by approximately 45° over similar time-courses (τ = 2.0 min). CONCLUSIONS Light adaptation had different effects on the fundamental, second, and third harmonic components of the 31-Hz flicker ERG, which resulted in a change in waveform shape during light adaptation. The previously reported flicker ERG amplitude growth is driven primarily, but not entirely, by changes in the fundamental.
Collapse
Affiliation(s)
- J Jason McAnany
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St., Chicago, IL, 60612, USA,
| | | |
Collapse
|
12
|
Dreixler JC, Poston JN, Balyasnikova I, Shaikh AR, Tupper KY, Conway S, Boddapati V, Marcet MM, Lesniak MS, Roth S. Delayed administration of bone marrow mesenchymal stem cell conditioned medium significantly improves outcome after retinal ischemia in rats. Invest Ophthalmol Vis Sci 2014; 55:3785-96. [PMID: 24699381 DOI: 10.1167/iovs.13-11683] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Delayed treatment after ischemia is often unsatisfactory. We hypothesized that injection of bone marrow stem cell (BMSC) conditioned medium after ischemia could rescue ischemic retina, and in this study we characterized the functional and histological outcomes and mechanisms of this neuroprotection. METHODS Retinal ischemia was produced in adult Wistar rats by increasing intraocular pressure for 55 minutes. Conditioned medium (CM) from rat BMSCs or unconditioned medium (uCM) was injected into the vitreous 24 hours after the end of ischemia. Recovery was assessed 7 days after ischemia using electroretinography, at which time we euthanized the animals and then prepared 4-μm-thick paraffin-embedded retinal sections. TUNEL and Western blot were used to identify apoptotic cells and apoptosis-related gene expression 24 hours after injections; that is, 48 hours after ischemia. Protein content in CM versus uCM was studied using tandem mass spectrometry, and bioinformatics methods were used to model protein interactions. RESULTS Intravitreal injection of CM 24 hours after ischemia significantly improved retinal function and attenuated cell loss in the retinal ganglion cell layer. CM attenuated postischemic apoptosis and apoptosis-related gene expression. By spectral counting, 19 proteins that met stringent identification criteria were increased in the CM compared to uCM; the majority were extracellular matrix proteins that mapped into an interactional network together with other proteins involved in cell growth and adhesion. CONCLUSIONS By restoring retinal function, attenuating apoptosis, and preventing retinal cell loss after ischemia, CM is a robust means of delayed postischemic intervention. We identified some potential candidate proteins for this effect.
Collapse
Affiliation(s)
- John C Dreixler
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, Illinois, United States
| | - Jacqueline N Poston
- Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Irina Balyasnikova
- Department of Surgery (Neurosurgery), The University of Chicago, Chicago, Illinois, United States
| | - Afzhal R Shaikh
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, Illinois, United States
| | - Kelsey Y Tupper
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, Illinois, United States
| | - Sineadh Conway
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, Illinois, United States
| | - Venkat Boddapati
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, Illinois, United States
| | - Marcus M Marcet
- Department of Surgery (Ophthalmology and Visual Science), The University of Chicago, Chicago, Illinois, United States
| | - Maciej S Lesniak
- Department of Surgery (Neurosurgery), The University of Chicago, Chicago, Illinois, United States
| | - Steven Roth
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, Illinois, United States
| |
Collapse
|
13
|
Robson JG, Frishman LJ. The rod-driven a-wave of the dark-adapted mammalian electroretinogram. Prog Retin Eye Res 2013; 39:1-22. [PMID: 24355774 DOI: 10.1016/j.preteyeres.2013.12.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/29/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022]
Abstract
The a-wave of the electroretinogram (ERG) reflects the response of photoreceptors to light, but what determines the exact waveform of the recorded voltage is not entirely understood. We have now simulated the trans-retinal voltage generated by the photocurrent of dark-adapted mammalian rods, using an electrical model based on the in vitro measurements of Hagins et al. (1970) and Arden (1976) in rat retinas. Our simulations indicate that in addition to the voltage produced by extracellular flow of photocurrent from rod outer to inner segments, a substantial fraction of the recorded a-wave is generated by current that flows in the outer nuclear layer (ONL) to hyperpolarize the rod axon and synaptic terminal. This current includes a transient capacitive component that contributes an initial negative "nose" to the trans-retinal voltage when the stimulus is strong. Recordings in various species of the a-wave, including the peak and initial recovery towards the baseline, are consistent with simulations showing an initial transient primarily related to capacitive currents in the ONL. Existence of these capacitive currents can explain why there is always a substantial residual transient a-wave when post-receptoral responses are pharmacologically inactivated in rodents and nonhuman primates, or severely genetically compromised in humans (e.g. complete congenital stationary night blindness) and nob mice. Our simulations and analysis of ERGs indicate that the timing of the leading edge and peak of dark-adapted a-waves evoked by strong stimuli could be used in a simple way to estimate rod sensitivity.
Collapse
Affiliation(s)
- John G Robson
- College of Optometry, University of Houston, Houston, TX, USA
| | | |
Collapse
|
14
|
Smith BJ, Tremblay F, Côté PD. Voltage-gated sodium channels contribute to the b-wave of the rodent electroretinogram by mediating input to rod bipolar cell GABAc receptors. Exp Eye Res 2013; 116:279-90. [DOI: 10.1016/j.exer.2013.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/23/2013] [Accepted: 09/10/2013] [Indexed: 11/26/2022]
|
15
|
Heikkinen H, Vinberg F, Nymark S, Koskelainen A. Mesopic background lights enhance dark-adapted cone ERG flash responses in the intact mouse retina: a possible role for gap junctional decoupling. J Neurophysiol 2011; 105:2309-18. [PMID: 21389302 DOI: 10.1152/jn.00536.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The cone-driven flash responses of mouse electroretinogram (ERG) increase as much as twofold over the course of several minutes during adaptation to a rod-compressing background light. The origins of this phenomenon were investigated in the present work by recording preflash-isolated (M-)cone flash responses ex vivo in darkness and during application of various steady background lights. In this protocol, the cone stimulating flash was preceded by a preflash that maintains rods under saturation (hyperpolarized) to allow selective stimulation of the cones at varying background light levels. The light-induced growth was found to represent true enhancement of cone flash responses with respect to their dark-adapted state. It developed within minutes, and its overall magnitude was a graded function of the background light intensity. The threshold intensity of cone response growth was observed with lights in the low mesopic luminance region, at which rod responses are partly compressed. Maximal effect was reached at intensities sufficient to suppress ∼ 90% of the rod responses. Light-induced enhancement of the cone photoresponses was not sensitive to antagonists and agonists of glutamatergic transmission. However, applying gap junction blockers to the dark-adapted retina produced qualitatively similar changes in the cone flash responses as did background light and prevented further growth during subsequent light-adaptation. These results are consistent with the idea that cone ERG photoresponses are suppressed in the dark-adapted mouse retina by gap junctional coupling between rods and cones. This coupling would then be gradually and reversibly removed by mesopic background lights, allowing larger functional range for the cone light responses.
Collapse
Affiliation(s)
- H Heikkinen
- Aalto University School of Science, Department of Biomedical Engineering and Computational Science, PO Box 12200, FI-00076 Aalto, Finland.
| | | | | | | |
Collapse
|
16
|
Sato M, Ohtsuka T, Stell WK. Endogenous nitric oxide enhances the light-response of cones during light-adaptation in the rat retina. Vision Res 2010; 51:131-7. [PMID: 20951158 DOI: 10.1016/j.visres.2010.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 09/23/2010] [Accepted: 10/07/2010] [Indexed: 11/25/2022]
Abstract
The electroretinogram (ERG) is a non-invasive indicator of retinal function. Light flashes evoke a cornea-negative a-wave followed by a cornea-positive b-wave. Light-adaptation is known to increase the amplitude of cone-dependent b-waves. To identify the underlying mechanism, we recorded rat cone photoresponses in situ, using intravitreally-injected glutamate to block synaptic transmission and intense paired-flash stimuli to isolate cone a-waves. Steady adapting illumination caused a progressive increase in cone a-wave amplitude, which was suppressed in a dose-dependent manner by intravitreal CPTIO, a nitric oxide scavenger. We conclude that light-adaptation causes release of nitric oxide, which enhances the cone photoresponse.
Collapse
Affiliation(s)
- Masaki Sato
- Biology Research Division, Graduate School of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510 Chiba, Japan
| | | | | |
Collapse
|
17
|
Asymmetrical growth of the photopic hill during the light adaptation effect. Doc Ophthalmol 2010; 121:177-87. [PMID: 20711798 DOI: 10.1007/s10633-010-9243-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 07/26/2010] [Indexed: 10/19/2022]
Abstract
In response to progressively stronger flashes delivered against a rod saturating background light, the amplitude of the photopic ERG b-wave first increases, reaches a maximal value (V (max)) and then decreases gradually to a plateau where the amplitude of the b-wave equals that of the a-wave, a phenomenon known as the photopic hill (PH). The purpose of this study was to investigate how the PH grew during the course of the light adaptation (LA) process that follows a period of dark adaptation (DA): the so-called light adaptation effect (LAE). Photopic ERG (time-integrated) luminance-response (LR) functions were obtained prior to (control-fully light adapted) and at 0, 5 and 10 min of LA following a 30-min period of DA. A mathematical model combining a Gaussian and a logistic growth function, suggested to reflect the OFF and ON retinal contribution to the PH respectively, was fitted to the LR functions thus obtained. Our results indicate that the magnitude of the cone ERG LAE is modulated by the stimulus luminance, with b-wave enhancements being maximal for luminance levels that result in the descent of the PH. The Gaussian function grew significantly with LA while the logistic growth function remained basically unchanged. Our findings would therefore suggest that the LAE reflects primarily an increase in the retinal OFF response during LA.
Collapse
|
18
|
Brown BM, Ramirez T, Rife L, Craft CM. Visual Arrestin 1 contributes to cone photoreceptor survival and light adaptation. Invest Ophthalmol Vis Sci 2009; 51:2372-80. [PMID: 20019357 DOI: 10.1167/iovs.09-4895] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To evaluate morphologic and functional contributions of Arrestin 1 (Arr1) and Arrestin 4 (Arr4) in cone photoreceptors, the authors examined the phenotypes of visual arrestin knockout mice (Arr1(-/-), Arr4(-/-), Arr1(-/-)Arr4(-/-) [Arr-DKO]) reared in darkness. METHODS Retinal rods and cones were evaluated in wild-type (WT), Arr1(-/-), Arr4(-/-), and Arr-DKO mice using quantitative morphologic analysis, immunoblot, immunohistochemistry, TUNEL, and electroretinographic (ERG) techniques. RESULTS Compared with either Arr4(-/-) or WT, Arr1(-/-) and Arr-DKO mice had increased apoptotic nuclei in their retinal outer nuclear layer (ONL) at postnatal day (P) 22. By P60, cone density was significantly diminished, but the ONL appeared normal. After 1 minute of background illumination, cone ERG b-wave amplitudes were similar in WT and all Arr KO mice. However, by 3 minutes and continuing through 15 minutes of light adaptation, the cone b-wave amplitudes of WT and Arr4(-/-) mice increased significantly over those of the Arr1(-/-) and Arr-DKO mice, which demonstrated no cone b-wave amplitude increase. In contrast, ERG flicker analysis after the 15-minute light adaptation period demonstrated no loss in amplitude for either Arr1(-/-) or Arr4(-/-) mice, whereas Arr-DKO had significantly lower amplitudes. When Arr1 expression was restored in Arr1(-/-) mice (+p48(Arr1-/-)), normal cone density and light-adapted ERG b-wave amplitudes were observed. CONCLUSIONS In the adult dark-reared Arr1(-/-) and Arr-DKO mice, viable cones diminish over time. Arr1 expression is essential for cone photoreceptor survival and light adaptation, whereas either Arr1 or Arr4 is necessary for maintaining normal flicker responses.
Collapse
Affiliation(s)
- Bruce M Brown
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033-9224, USA
| | | | | | | |
Collapse
|
19
|
Codega P, Della Santina L, Gargini C, Bedolla DE, Subkhankulova T, Livesey FJ, Cervetto L, Torre V. Prolonged illumination up-regulates arrestin and two guanylate cyclase activating proteins: a novel mechanism for light adaptation. J Physiol 2009; 587:2457-72. [PMID: 19332500 DOI: 10.1113/jphysiol.2009.168609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Light adaptation in vertebrate photoreceptors is mediated by multiple mechanisms, one of which could involve nuclear feedback and changes in gene expression. Therefore, we have investigated light adaptation-associated changes in gene expression using microarrays and real-time PCR in isolated photoreceptors, in cultured isolated retinas and in acutely isolated retinas. In all three preparations after 2 h of an exposure to a bright light, we observed an up-regulation of almost 100% of three genes, Sag, Guca1a and Guca1b, coding for proteins known to play a major role in phototransduction: arrestin, GCAP1 and GCAP2. No detectable up-regulation occurred for light exposures of less than 1 h. Functional in vivo electroretinographic tests show that a partial recovery of the dark current occurred 1-2 h after prolonged illumination with a steady light that initially caused a substantial suppression of the photoresponse. These observations demonstrate that prolonged illumination results in the up-regulation of genes coding for proteins involved in the phototransduction signalling cascade, possibly underlying a novel component of light adaptation occurring 1-2 h after the onset of a steady bright light.
Collapse
Affiliation(s)
- Paolo Codega
- International School for Advanced Studies (SISSA), Trieste, Italy
| | | | | | | | | | | | | | | |
Collapse
|
20
|
O'Brien BJ, Caldwell JH, Ehring GR, Bumsted O'Brien KM, Luo S, Levinson SR. Tetrodotoxin-resistant voltage-gated sodium channels Na(v)1.8 and Na(v)1.9 are expressed in the retina. J Comp Neurol 2008; 508:940-51. [PMID: 18399542 DOI: 10.1002/cne.21701] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Voltage-gated sodium channels (VGSCs) are one of the fundamental building blocks of electrically excitable cells in the nervous system. These channels are responsible for the generation of action potentials that are required for the communication of neuronal signals over long distances within a cell. VGSCs are encoded by a family of nine genes whose products have widely varying biophysical properties. In this study, we have detected the expression of two atypical VGSCs (Na(v)1.8 and Na(v)1.9) in the retina. Compared with more common VGSCs, Na(v)1.8 and Na(v)1.9 have unusual biophysical and pharmacological properties, including persistent sodium currents and resistance to the canonical sodium channel blocker tetrodotoxin (TTX). Our molecular biological and immunohistochemical data derived from mouse (Mus musculus) retina demonstrate expression of Na(v)1.8 by retinal amacrine and ganglion cells, whereas Na(v)1.9 is expressed by photoreceptors and Müller glia. The fact that these channels exist in the central nervous system (CNS) and exhibit robust TTX resistance requires a re-evaluation of prior physiological, pharmacological, and developmental data in the visual system, in which the diversity of VGSCs has been previously underestimated.
Collapse
Affiliation(s)
- Brendan J O'Brien
- Department of Optometry & Vision Science, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | | | | | |
Collapse
|
21
|
Mojumder DK, Sherry DM, Frishman LJ. Contribution of voltage-gated sodium channels to the b-wave of the mammalian flash electroretinogram. J Physiol 2008; 586:2551-80. [PMID: 18388140 DOI: 10.1113/jphysiol.2008.150755] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Voltage-gated sodium channels (Na(v) channels) in retinal neurons are known to contribute to the mammalian flash electroretinogram (ERG) via activity of third-order retinal neurons, i.e. amacrine and ganglion cells. This study investigated the effects of tetrodotoxin (TTX) blockade of Na(v) channels on the b-wave, an ERG wave that originates mainly from activity of second-order retinal neurons. ERGs were recorded from anaesthetized Brown Norway rats in response to brief full-field flashes presented over a range of stimulus energies, under dark-adapted conditions and in the presence of steady mesopic and photopic backgrounds. Recordings were made before and after intravitreal injection of TTX (approximately 3 microm) alone, 3-6 weeks after optic nerve transection (ONTx) to induce ganglion cell degeneration, or in combination with an ionotropic glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 200 microm) to block light-evoked activity of inner retinal, horizontal and OFF bipolar cells, or with the glutamate agonist N-methyl-D-aspartate (NMDA, 100-200 microm) to reduce light-evoked inner retinal activity. TTX reduced ERG amplitudes measured at fixed times corresponding to b-wave time to peak. Effects of TTX were seen under all background conditions, but were greatest for mesopic backgrounds. In dark-adapted retina, b-wave amplitudes were reduced only when very low stimulus energies affecting the inner retina, or very high stimulus energies were used. Loss of ganglion cells following ONTx did not affect b-wave amplitudes, and injection of TTX in eyes with ONTx reduced b-wave amplitudes by the same amount for each background condition as occurred when ganglion cells were intact, thereby eliminating a ganglion cell role in the TTX effects. Isolation of cone-driven responses by presenting test flashes after cessation of a rod-saturating conditioning flash indicated that the TTX effects were primarily on cone circuits contributing to the mixed rod-cone ERG. NMDA significantly reduced only the additional effects of TTX on the mixed rod-cone ERG observed under mesopic conditions, implicating inner retinal involvement in those effects. After pharmacological blockade with CNQX, TTX still reduced b-wave amplitudes in cone-isolated ERGs indicating Na(v) channels in ON cone bipolar cells themselves augment b-wave amplitude and sensitivity. This augmentation was largest under dark-adapted conditions, and decreased with increasing background illumination, indicating effects of background illumination on Na(v) channel function. These findings indicate that activation of Na(v) channels in ON cone bipolar cells affects the b-wave of the rat ERG and must be considered when analysing results of ERG studies of retinal function.
Collapse
Affiliation(s)
- Deb Kumar Mojumder
- College of Optometry, University of Houston, 505 J Davis Armistead Bldg, 4901 Calhoun Road, Houston, TX 77204-2020, USA
| | | | | |
Collapse
|
22
|
Feigl B, Zele AJ. A method for investigating the temporal dynamics of local neuroretinal responses. J Neurosci Methods 2008; 167:207-12. [PMID: 17913236 DOI: 10.1016/j.jneumeth.2007.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 08/15/2007] [Accepted: 08/15/2007] [Indexed: 11/25/2022]
Abstract
Visual sensitivity improves with prolonged exposure to light. Global neuroretinal responses increase, but little is known about the dynamics of local retinal responses over brief time intervals after changes in light level. This study applies the time-slice multifocal electroretinogram (TS mfERG) paradigm for the measurement of local electrical responses of the human eye over brief time intervals. Sixty-one, localised retinal areas were assessed over 25 degrees of the visual field. Cone-mediated contributions to the time-slice waveform were established. The time-slice mfERG waveforms were similar in shape and timing for pre- and post-photopigment bleach conditions after saturation of rod-mediated responses, suggesting there was no rod-mediated intrusion in the waveform. The temporal dynamics of the mfERG components show that N1P1 amplitudes decrease with each successive time-slice probe, with larger amplitude responses in the central retina compared to nasal and temporal retina. The time-slice mfERG waveform is a technique for assessing the temporal dynamics of cone-generated neural responses over time. The data are interpreted in terms of the vascular supplies and lower-level visual adaptation mechanisms.
Collapse
Affiliation(s)
- Beatrix Feigl
- Institute of Health and Biomedical Innovation and the School of Optometry, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, 4059 Qld, Australia.
| | | |
Collapse
|
23
|
Sun D, Vingrys AJ, Kalloniatis M. Metabolic and functional profiling of the normal rat retina. J Comp Neurol 2007; 505:92-113. [PMID: 17729258 DOI: 10.1002/cne.21478] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We established a metabolic and functional profile map of the normal rat retina, given the premise that: 1) amino acid neurochemistry reflects metabolic integrity and cellular identity, and 2) the permeation of a cation channel probe, agmatine (1-amino-4-guanidobutane, AGB), reflects cation channel functionality. The purpose was to provide a unique method of simultaneously assessing the metabolic and functional characteristics of the normal retina, upon which a comparison can be made to disease models. Quantitative pattern recognition analysis of overlapping amino acid and AGB expression profiles was used to provide a statistically robust classification of all neural elements according to their metabolic and functional characteristics. This classification was spatially complete and with single-cell resolution. The resulting classification demonstrated 28 statistically separable theme classes dominated by characteristic glutamate, GABA, glycine, and/or taurine profiles, with each of the neuronal theme classes containing further subtypes. The inclusion of a functional parameter (AGB mapping) in the classification process nearly doubled the number of neural elements that could be ascribed a neurochemical/cation profile, compared to when amino acid labeling was used alone. Strong endogenous glutamate gated AGB labeling was observed in horizontal cells, rod bipolar cells, cholinergic amacrine cells, and AII amacrine cells. The resulting amino acid and AGB profile matrix constitutes a nomogram for assessing cellular responses to experimental challenges in models of ocular disease.
Collapse
Affiliation(s)
- Daniel Sun
- Department of Optometry and Vision Science, University of Auckland, New Zealand
| | | | | |
Collapse
|