1
|
Observations on the retina and ‘optical fold’ of a mesopelagic sabretooth fish, Evermanella balbo. Cell Tissue Res 2019; 378:411-425. [DOI: 10.1007/s00441-019-03060-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/16/2019] [Indexed: 11/26/2022]
|
2
|
Zeymer M, von der Emde G, Wullimann MF. The Mormyrid Optic Tectum Is a Topographic Interface for Active Electrolocation and Visual Sensing. Front Neuroanat 2018; 12:79. [PMID: 30327593 PMCID: PMC6174230 DOI: 10.3389/fnana.2018.00079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/13/2018] [Indexed: 01/14/2023] Open
Abstract
The African weakly electric fish Gnathonemus petersii is capable of cross-modal object recognition using its electric sense or vision. Thus, object features stored in the brain are accessible by multiple senses, either through connections between unisensory brain regions or because of multimodal representations in multisensory areas. Primary electrosensory information is processed in the medullary electrosensory lateral line lobe, which projects topographically to the lateral nucleus of the torus semicircularis (NL). Visual information reaches the optic tectum (TeO), which projects to various other brain regions. We investigated the neuroanatomical connections of these two major midbrain visual and electrosensory brain areas, focusing on the topographical relationship of interconnections between the two structures. Thus, the neural tracer DiI was injected systematically into different tectal quadrants, as well as into the NL. Tectal tracer injections revealed topographically organized retrograde and anterograde label in the NL. Rostral and caudal tectal regions were interconnected with rostral and caudal areas of the NL, respectively. However, dorsal and ventral tectal regions were represented in a roughly inverted fashion in NL, as dorsal tectal injections labeled ventral areas in NL and vice versa. In addition, tracer injections into TeO or NL revealed extensive inputs to both structures from ipsilateral (NL also contralateral) efferent basal cells in the valvula cerebelli; the NL furthermore projected back to the valvula. Additional tectal and NL connections were largely confirmatory to earlier studies. For example, the TeO received ipsilateral inputs from the central zone of the dorsal telencephalon, torus longitudinalis, nucleus isthmi, various tegmental, thalamic and pretectal nuclei, as well as other nuclei of the torus semicircularis. Also, the TeO projected to the dorsal preglomerular and dorsal posterior thalamic nuclei as well as to nuclei in the torus semicircularis and nucleus isthmi. Beyond the clear topographical relationship of NL and TeO interconnections established here, the known neurosensory upstream circuitry was used to suggest a model of how a defined spot in the peripheral sensory world comes to be represented in a common associated neural locus both in the NL and the TeO, thereby providing the neural substrate for cross-modal object recognition.
Collapse
Affiliation(s)
- Malou Zeymer
- Department of Neuroethology/Sensory Ecology, Institute for Zoology, University of Bonn, Bonn, Germany
| | - Gerhard von der Emde
- Department of Neuroethology/Sensory Ecology, Institute for Zoology, University of Bonn, Bonn, Germany
| | - Mario F Wullimann
- Biocenter, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
3
|
Francke M, Kreysing M, Mack A, Engelmann J, Karl A, Makarov F, Guck J, Kolle M, Wolburg H, Pusch R, von der Emde G, Schuster S, Wagner HJ, Reichenbach A. Grouped retinae and tapetal cups in some Teleostian fish: Occurrence, structure, and function. Prog Retin Eye Res 2014; 38:43-69. [DOI: 10.1016/j.preteyeres.2013.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/01/2013] [Accepted: 10/02/2013] [Indexed: 11/27/2022]
|
4
|
Pusch R, Kassing V, Riemer U, Wagner HJ, von der Emde G, Engelmann J. A grouped retina provides high temporal resolution in the weakly electric fish Gnathonemus petersii. ACTA ACUST UNITED AC 2012; 107:84-94. [PMID: 22771549 DOI: 10.1016/j.jphysparis.2012.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 06/24/2012] [Accepted: 06/25/2012] [Indexed: 11/24/2022]
Abstract
Weakly electric fish orient, hunt and communicate by emitting electrical pulses, enabling them to discriminate objects, conspecifics and prey. In addition to the electrosensory modality - although dominating in importance in these fishes - other modalities, like vision, play important roles for survival. The visual system of Gnathonemus petersii, a member of the family mormyridae living in West African blackwater streams shows remarkable specializations: Cone photoreceptors are grouped in bundles within a light reflecting tapetum lucidum, while the rods are also bundled but located at the back within a light-scattering guanine layer. Such an organization does not improve light sensitivity nor does it provide high spatial resolution. Thus, the function of the grouped retinal arrangement for the visual performance of the fish remains unclear. Here we investigated the contrast sensitivity of the temporal transfer properties of the visual system of Gnathonemus. To do so, we analyzed visual evoked potentials in the optic tectum and tested the critical flicker fusion frequency in a behavioral paradigm. Results obtained in Gnathonemus are compared to results obtained with goldfish (Carassius auratus), revealing differences in the filter characteristics of their visual systems: While goldfish responds best to low frequencies, Gnathonemus responds best at higher frequencies. The visual system of goldfish shows characteristics of a low-pass filter while the visual system of Gnathonemus has characteristics of a band-pass filter. Furthermore we show that the visual system of Gnathonemus is more robust towards contrast reduction as compared to the goldfish. The grouped retina might enable Gnathonemus to see large, fast moving objects even under low contrast conditions. Due to the fact that the electric sense is a modality of limited range, it is tempting to speculate that the retinal specialization of Gnathonemus petersii might be advantageous for predator avoidance even when brightness differences are small.
Collapse
Affiliation(s)
- Roland Pusch
- University of Bonn, Institute of Zoology, Department Neuroethology/Sensory Ecology, Endenicher Allee 11-13, 53115 Bonn, Germany
| | - Vanessa Kassing
- Bielefeld University, Faculty of Biology, AG Active Sensing, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Ursula Riemer
- University of Bonn, Institute of Zoology, Department Neuroethology/Sensory Ecology, Endenicher Allee 11-13, 53115 Bonn, Germany
| | - Hans-Joachim Wagner
- University of Tübingen, Institute of Anatomy, Österbergstraße 3, 72074 Tübingen, Germany
| | - Gerhard von der Emde
- University of Bonn, Institute of Zoology, Department Neuroethology/Sensory Ecology, Endenicher Allee 11-13, 53115 Bonn, Germany
| | - Jacob Engelmann
- Bielefeld University, Faculty of Biology, AG Active Sensing, Universitätsstraße 25, 33615 Bielefeld, Germany.
| |
Collapse
|
5
|
Communication in troubled waters: responses of fish communication systems to changing environments. Evol Ecol 2010. [DOI: 10.1007/s10682-010-9450-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Pignatelli V, Marshall J. Morphological characterization of retinal bipolar cells in the marine teleost Rhinecanthus aculeatus. J Comp Neurol 2010; 518:3117-29. [PMID: 20533363 DOI: 10.1002/cne.22386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The marine teleost Rhinecanthus aculeatus (Balistidae) has recently been shown to possess trichromatic color vision supported by a retinal combination of double and single cones. Double cones are composed of two members with different spectral sensitivity. It is not known whether a correlation exists between the chromatic wiring of double cones to the inner retina and trichromacy, nor how unmixed, chromatic information is extracted from the two members of the couple. In mammalians, bipolar cells determine color segregation by means of the midget system, central to trichromatic color vision; however, midget bipolar cells have never been described in teleosts. On the basis of its likely importance in transferring chromatic photoreceptor signals to the inner retina, we have morphologically characterized the retinal bipolar cell types of R. aculeatus using DiOlistic staining techniques to verify if an anatomical specialization of this group of cells is required to support trichromatic color vision. Thirteen cell types are described: eight putative OFF types and five putative ON types. Of these, four had axonal boutons ramifying in both sublayers (ON and OFF) of the inner plexiform layer, six had terminals restricted to the OFF layer, and three cell types had terminals restricted to the ON layer. Dendritic arbors of bipolar cells had narrower diameters (5-40 microm) in comparison to bipolar cells of other teleost species; this supports the idea that a low degree of photoreceptor to bipolar convergence is correlated with trichromacy in this retina and possibly with the function of double cones as color receptors.
Collapse
Affiliation(s)
- Vincenzo Pignatelli
- Sensory Neurobiology Group (SNG), Brisbane, University of Queensland, 4020, Australia.
| | | |
Collapse
|
7
|
von der Emde G, Behr K, Bouton B, Engelmann J, Fetz S, Folde C. 3-Dimensional Scene Perception during Active Electrolocation in a Weakly Electric Pulse Fish. Front Behav Neurosci 2010; 4:26. [PMID: 20577635 PMCID: PMC2889722 DOI: 10.3389/fnbeh.2010.00026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 05/04/2010] [Indexed: 11/17/2022] Open
Abstract
Weakly electric fish use active electrolocation for object detection and orientation in their environment even in complete darkness. The African mormyrid Gnathonemus petersii can detect object parameters, such as material, size, shape, and distance. Here, we tested whether individuals of this species can learn to identify 3-dimensional objects independently of the training conditions and independently of the object's position in space (rotation-invariance; size-constancy). Individual G. petersii were trained in a two-alternative forced-choice procedure to electrically discriminate between a 3-dimensional object (S+) and several alternative objects (S−). Fish were then tested whether they could identify the S+ among novel objects and whether single components of S+ were sufficient for recognition. Size-constancy was investigated by presenting the S+ together with a larger version at different distances. Rotation-invariance was tested by rotating S+ and/or S− in 3D. Our results show that electrolocating G. petersii could (1) recognize an object independently of the S− used during training. When only single components of a complex S+ were offered, recognition of S+ was more or less affected depending on which part was used. (2) Object-size was detected independently of object distance, i.e. fish showed size-constancy. (3) The majority of the fishes tested recognized their S+ even if it was rotated in space, i.e. these fishes showed rotation-invariance. (4) Object recognition was restricted to the near field around the fish and failed when objects were moved more than about 4 cm away from the animals. Our results indicate that even in complete darkness our G. petersii were capable of complex 3-dimensional scene perception using active electrolocation.
Collapse
Affiliation(s)
- Gerhard von der Emde
- Neuroethology/Sensory Ecology, Institute of Zoology, University of Bonn Bonn, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Dim light vision – Morphological and functional adaptations of the eye of the mormyrid fish, Gnathonemus petersii. ACTA ACUST UNITED AC 2008; 102:291-303. [DOI: 10.1016/j.jphysparis.2008.10.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Engelmann J, Bacelo J, Metzen M, Pusch R, Bouton B, Migliaro A, Caputi A, Budelli R, Grant K, von der Emde G. Electric imaging through active electrolocation: implication for the analysis of complex scenes. BIOLOGICAL CYBERNETICS 2008; 98:519-539. [PMID: 18491164 DOI: 10.1007/s00422-008-0213-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 01/29/2008] [Indexed: 05/26/2023]
Abstract
The electric sense of mormyrids is often regarded as an adaptation to conditions unfavourable for vision and in these fish it has become the dominant sense for active orientation and communication tasks. With this sense, fish can detect and distinguish the electrical properties of the close environment, measure distance, perceive the 3-D shape of objects and discriminate objects according to distance or size and shape, irrespective of conductivity, thus showing a degree of abstraction regarding the interpretation of sensory stimuli. The physical properties of images projected on the sensory surface by the fish's own discharge reveal a "Mexican hat" opposing centre-surround profile. It is likely that computation of the image amplitude to slope ratio is used to measure distance, while peak width and slope give measures of shape and contrast. Modelling has been used to explore how the images of multiple objects superimpose in a complex manner. While electric images are by nature distributed, or 'blurred', behavioural strategies orienting sensory surfaces and the neural architecture of sensory processing networks both contribute to resolving potential ambiguities. Rostral amplification is produced by current funnelling in the head and chin appendage regions, where high density electroreceptor distributions constitute foveal regions. Central magnification of electroreceptive pathways from these regions particularly favours the detection of capacitive properties intrinsic to potential living prey. Swimming movements alter the amplitude and contrast of pre-receptor object-images but image modulation is normalised by central gain-control mechanisms that maintain excitatory and inhibitory balance, removing the contrast-ambiguity introduced by self-motion in much the same way that contrast gain-control is achieved in vision.
Collapse
Affiliation(s)
- Jacob Engelmann
- Neuroethology and Sensory Ecology, Institute of Zoology, University of Bonn, Endenicher Allee 11-13, 43115, Bonn, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Pusch R, von der Emde G, Hollmann M, Bacelo J, Nöbel S, Grant K, Engelmann J. Active sensing in a mormyrid fish: electric images and peripheral modifications of the signal carrier give evidence of dual foveation. J Exp Biol 2008; 211:921-34. [DOI: 10.1242/jeb.014175] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Weakly electric fish generate electric fields with an electric organ and perceive them with cutaneous electroreceptors. During active electrolocation,nearby objects are detected by the distortions they cause in the electric field. The electrical properties of objects, their form and their distance,can be analysed and distinguished. Here we focus on Gnathonemus petersii (Günther 1862), an African fish of the family Mormyridae with a characteristic chin appendix, the Schnauzenorgan. Behavioural and anatomical results suggest that the mobile Schnauzenorgan and the nasal region serve special functions in electroreception, and can therefore be considered as electric foveae. We investigated passive pre-receptor mechanisms that shape and enhance the signal carrier. These mechanisms allow the fish to focus the electric field at the tip of its Schnauzenorgan where the density of electroreceptors is highest (tip-effect). Currents are funnelled by the open mouth (funnelling-effect), which leads to a homogenous voltage distribution in the nasal region. Field vectors at the trunk, the nasal region and the Schnauzenorgan are collimated but differ in the angle at which they are directed onto the sensory surface. To investigate the role of those pre-receptor effects on electrolocation, we recorded electric images of objects at the foveal regions. Furthermore, we used a behavioural response(novelty response) to assess the sensitivity of different skin areas to electrolocation stimuli and determined the receptor densities of these regions. Our results imply that both regions – the Schnauzenorgan and the nasal region – can be termed electric fovea but they serve separate functions during active electrolocation.
Collapse
Affiliation(s)
- Roland Pusch
- University of Bonn, Institute of Zoology, Department Neuroethology/Sensory Ecology, Endenicher Allee 11-13, 43115 Bonn, Germany
| | - Gerhard von der Emde
- University of Bonn, Institute of Zoology, Department Neuroethology/Sensory Ecology, Endenicher Allee 11-13, 43115 Bonn, Germany
| | - Michael Hollmann
- University of Bonn, Institute of Zoology, Department Neuroethology/Sensory Ecology, Endenicher Allee 11-13, 43115 Bonn, Germany
| | - Joao Bacelo
- UNIC, CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Sabine Nöbel
- University of Bonn, Institute of Zoology, Department Neuroethology/Sensory Ecology, Endenicher Allee 11-13, 43115 Bonn, Germany
| | - Kirsty Grant
- UNIC, CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Jacob Engelmann
- University of Bonn, Institute of Zoology, Department Neuroethology/Sensory Ecology, Endenicher Allee 11-13, 43115 Bonn, Germany
| |
Collapse
|
11
|
Engelmann J, Pusch R, von der Emde G. Active sensing: Pre-receptor mechanisms and behavior in electric fish. Commun Integr Biol 2008; 1:29-31. [PMID: 19704784 PMCID: PMC2633792 DOI: 10.4161/cib.1.1.6609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 07/15/2008] [Indexed: 11/19/2022] Open
Abstract
Weakly electric fish perceive their actively generated electrical field with cutaneous electroreceptors. This active sensory system is used both for orientation and for communication. In a recent paper1 we focussed on how anatomical adaptations (pre-receptor mechanisms), biophysical constraints and behavior all contribute to active electrolocation, i.e., the fishes' unique ability to determine and distinguish the electrical properties of objects based on the modulation of a self-generated carrier signal, the so-called electric organ discharge.
Collapse
Affiliation(s)
- Jacob Engelmann
- University of Bonn; Institute of Zoology; Department Neuroethology & Sensory Ecology; Bonn Germany
| | | | | |
Collapse
|