1
|
Stevens-Sostre WA, Hoon M. Cellular and Molecular Mechanisms Regulating Retinal Synapse Development. Annu Rev Vis Sci 2024; 10:377-402. [PMID: 39292551 DOI: 10.1146/annurev-vision-102122-105721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Synapse formation within the retinal circuit ensures that distinct neuronal types can communicate efficiently to process visual signals. Synapses thus form the core of the visual computations performed by the retinal circuit. Retinal synapses are diverse but can be broadly categorized into multipartner ribbon synapses and 1:1 conventional synapses. In this article, we review our current understanding of the cellular and molecular mechanisms that regulate the functional establishment of mammalian retinal synapses, including the role of adhesion proteins, synaptic proteins, extracellular matrix and cytoskeletal-associated proteins, and activity-dependent cues. We outline future directions and areas of research that will expand our knowledge of these mechanisms. Understanding the regulators moderating synapse formation and function not only reveals the integrated developmental processes that establish retinal circuits, but also divulges the identity of mechanisms that could be engaged during disease and degeneration.
Collapse
Affiliation(s)
- Whitney A Stevens-Sostre
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA;
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mrinalini Hoon
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA;
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Sugden CJ, Iorio V, Troughton LD, Liu K, Morais MRPT, Lennon R, Bou-Gharios G, Hamill KJ. Laminin N-terminus α31 expression during development is lethal and causes widespread tissue-specific defects in a transgenic mouse model. FASEB J 2022; 36:e22318. [PMID: 35648586 PMCID: PMC9328196 DOI: 10.1096/fj.202002588rrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 11/11/2022]
Abstract
Laminins (LMs) are essential components of all basement membranes where they regulate an extensive array of tissue functions. Alternative splicing from the laminin α3 gene produces a non‐laminin but netrin‐like protein, Laminin N terminus α31 (LaNt α31). LaNt α31 is widely expressed in intact tissue and is upregulated in epithelial cancers and during wound healing. In vitro functional studies have shown that LaNt α31 can influence numerous aspects of epithelial cell behavior via modifying matrix organization, suggesting a new model of laminin auto‐regulation. However, the function of this protein has not been established in vivo. Here, a mouse transgenic line was generated using the ubiquitin C promoter to drive inducible expression of LaNt α31. When expression was induced at embryonic day 15.5, LaNt α31 transgenic animals were not viable at birth, exhibiting localized regions of erythema. Histologically, the most striking defect was widespread evidence of extravascular bleeding across multiple tissues. Additionally, LaNt α31 transgene expressing animals exhibited kidney epithelial detachment, tubular dilation, disruption of the epidermal basal cell layer and of the hair follicle outer root sheath, and ~50% reduction of cell numbers in the liver, associated with depletion of hematopoietic erythrocytic foci. These findings provide the first in vivo evidence that LaNt α31 can influence tissue morphogenesis.
Collapse
Affiliation(s)
- Conor J Sugden
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Valentina Iorio
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Lee D Troughton
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Ke Liu
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Mychel R P T Morais
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, The University of Manchester, Manchester, UK
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, The University of Manchester, Manchester, UK
| | - George Bou-Gharios
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Kevin J Hamill
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
3
|
Serjanov D, Bachay G, Hunter DD, Brunken WJ. Laminin β2 Chain Regulates Cell Cycle Dynamics in the Developing Retina. Front Cell Dev Biol 2022; 9:802593. [PMID: 35096830 PMCID: PMC8790539 DOI: 10.3389/fcell.2021.802593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
Vertebrate retinal development follows a highly stereotyped pattern, in which the retinal progenitor cells (RPCs) give rise to all retinal types in a conserved temporal sequence. Ensuring the proper control over RPC cell cycle exit and re-entry is, therefore, crucially important for the generation of properly functioning retina. In this study, we demonstrate that laminins, indispensible ECM components, at the retinal surface, regulate the mechanisms determining whether RPCs generate proliferative or post-mitotic progeny. In vivo deletion of laminin β2 in mice resulted in disturbing the RPC cell cycle dynamics, and premature cell cycle exit. Specifically, the RPC S-phase is shortened, with increased numbers of cells present in its late stages. This is followed by an accelerated G2-phase, leading to faster M-phase entry. Finally, the M-phase is extended, with RPCs dwelling longer in prophase. Addition of exogenous β2-containing laminins to laminin β2-deficient retinal explants restored the appropriate RPC cell cycle dynamics, as well as S and M-phase progression, leading to proper cell cycle re-entry. Moreover, we show that disruption of dystroglycan, a laminin receptor, phenocopies the laminin β2 deletion cell cycle phenotype. Together, our findings suggest that dystroglycan-mediated ECM signaling plays a critical role in regulating the RPC cell cycle dynamics, and the ensuing cell fate decisions.
Collapse
Affiliation(s)
- Dmitri Serjanov
- Department of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY, United States
| | - Galina Bachay
- Department of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY, United States
| | - Dale D Hunter
- Department of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY, United States
| | - William J Brunken
- Department of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
4
|
Ferent J, Zaidi D, Francis F. Extracellular Control of Radial Glia Proliferation and Scaffolding During Cortical Development and Pathology. Front Cell Dev Biol 2020; 8:578341. [PMID: 33178693 PMCID: PMC7596222 DOI: 10.3389/fcell.2020.578341] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/08/2020] [Indexed: 01/14/2023] Open
Abstract
During the development of the cortex, newly generated neurons migrate long-distances in the expanding tissue to reach their final positions. Pyramidal neurons are produced from dorsal progenitors, e.g., radial glia (RGs) in the ventricular zone, and then migrate along RG processes basally toward the cortex. These neurons are hence dependent upon RG extensions to support their migration from apical to basal regions. Several studies have investigated how intracellular determinants are required for RG polarity and subsequent formation and maintenance of their processes. Fewer studies have identified the influence of the extracellular environment on this architecture. This review will focus on extracellular factors which influence RG morphology and pyramidal neuronal migration during normal development and their perturbations in pathology. During cortical development, RGs are present in different strategic positions: apical RGs (aRGs) have their cell bodies located in the ventricular zone with an apical process contacting the ventricle, while they also have a basal process extending radially to reach the pial surface of the cortex. This particular conformation allows aRGs to be exposed to long range and short range signaling cues, whereas basal RGs (bRGs, also known as outer RGs, oRGs) have their cell bodies located throughout the cortical wall, limiting their access to ventricular factors. Long range signals impacting aRGs include secreted molecules present in the embryonic cerebrospinal fluid (e.g., Neuregulin, EGF, FGF, Wnt, BMP). Secreted molecules also contribute to the extracellular matrix (fibronectin, laminin, reelin). Classical short range factors include cell to cell signaling, adhesion molecules and mechano-transduction mechanisms (e.g., TAG1, Notch, cadherins, mechanical tension). Changes in one or several of these components influencing the RG extracellular environment can disrupt the development or maintenance of RG architecture on which neuronal migration relies, leading to a range of cortical malformations. First, we will detail the known long range signaling cues impacting RG. Then, we will review how short range cell contacts are also important to instruct the RG framework. Understanding how RG processes are structured by their environment to maintain and support radial migration is a critical part of the investigation of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Julien Ferent
- Inserm, U 1270, Paris, France.,Sorbonne University, UMR-S 1270, IFM, Paris, France.,Institut du Fer á Moulin, Paris, France
| | - Donia Zaidi
- Inserm, U 1270, Paris, France.,Sorbonne University, UMR-S 1270, IFM, Paris, France.,Institut du Fer á Moulin, Paris, France
| | - Fiona Francis
- Inserm, U 1270, Paris, France.,Sorbonne University, UMR-S 1270, IFM, Paris, France.,Institut du Fer á Moulin, Paris, France
| |
Collapse
|
5
|
Liu Y, Yu M, Shang X, Nguyen MHH, Balakrishnan S, Sager R, Hu H. Eyes shut homolog (EYS) interacts with matriglycan of O-mannosyl glycans whose deficiency results in EYS mislocalization and degeneration of photoreceptors. Sci Rep 2020; 10:7795. [PMID: 32385361 PMCID: PMC7210881 DOI: 10.1038/s41598-020-64752-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Mutations in eyes shut homolog (EYS), a secreted extracellular matrix protein containing multiple laminin globular (LG) domains, and in protein O-mannose β1, 2-N-acetylglucosaminyl transferase 1 (POMGnT1), an enzyme involved in O-mannosyl glycosylation, cause retinitis pigmentosa (RP), RP25 and RP76, respectively. How EYS and POMGnT1 regulate photoreceptor survival is poorly understood. Since some LG domain-containing proteins function by binding to the matriglycan moiety of O-mannosyl glycans, we hypothesized that EYS interacted with matriglycans as well. To test this hypothesis, we performed EYS Far-Western blotting assay and generated pomgnt1 mutant zebrafish. The results showed that EYS bound to matriglycans. Pomgnt1 mutation in zebrafish resulted in a loss of matriglycan, retention of synaptotagmin-1-positive EYS secretory vesicles within the outer nuclear layer, and diminished EYS protein near the connecting cilia. Photoreceptor density in 2-month old pomgnt1 mutant retina was similar to the wild-type animals but was significantly reduced at 6-months. These results indicate that EYS protein localization to the connecting cilia requires interaction with the matriglycan and that O-mannosyl glycosylation is required for photoreceptor survival in zebrafish. This study identified a novel interaction between EYS and matriglycan demonstrating that RP25 and RP76 are mechanistically linked in that O-mannosyl glycosylation controls targeting of EYS protein.
Collapse
Affiliation(s)
- Yu Liu
- Center for Vision Research, Departments of Neuroscience and Physiology and of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Miao Yu
- Center for Vision Research, Departments of Neuroscience and Physiology and of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Xuanze Shang
- Center for Vision Research, Departments of Neuroscience and Physiology and of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY, 13210, USA
| | - My Hong Hoai Nguyen
- Center for Vision Research, Departments of Neuroscience and Physiology and of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Biological Sciences, State University of New York at Plattsburgh, 101 Broad St., Plattsburgh, New York, 12901, USA
| | - Shanmuganathan Balakrishnan
- Center for Vision Research, Departments of Neuroscience and Physiology and of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Rachel Sager
- Center for Vision Research, Departments of Neuroscience and Physiology and of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Huaiyu Hu
- Center for Vision Research, Departments of Neuroscience and Physiology and of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
6
|
Affiliation(s)
- Minkyung Kang
- From the Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA
| | - Yao Yao
- From the Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA
| |
Collapse
|
7
|
Laminin β2 Chain Regulates Retinal Progenitor Cell Mitotic Spindle Orientation via Dystroglycan. J Neurosci 2018; 38:5996-6010. [PMID: 29853630 DOI: 10.1523/jneurosci.0551-18.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/10/2018] [Accepted: 05/18/2018] [Indexed: 01/27/2023] Open
Abstract
Vertebrate retinal development follows a pattern during which retinal progenitor cells (RPCs) give rise to all retinal cell types in a highly conserved temporal sequence. RPC proliferation and cell cycle exit are tightly coordinated to ensure proper and timely production of each of the retinal cell types. Extracellular matrix (ECM) plays an important role in eye development, influencing RPC proliferation and differentiation. In this study, we demonstrate that laminins, key ECM components, in the inner limiting membrane, control mitotic spindle orientation by providing environmental cues to the RPCs. In vivo deletion of laminin β2 in mice of both sexes results in a loss RPC basal processes and contact with the ECM, leading to a shift of the mitotic spindle pole orientation toward asymmetric cell divisions. This leads to decreased proliferation and premature RPC pool depletion, resulting in overproduction of rod photoreceptors at the expense of bipolar cells and Müller glia. Moreover, we show that deletion of laminin β2 leads to disruption and mislocalization of its receptors: dystroglycan and β1-integrin. Addition of exogenous β2-containing laminins to laminin β2-deficient retinal explants stabilizes the RPC basal processes and directs their mitotic spindle orientation toward symmetric divisions, leading to increased RPC proliferation, as well as restores proper receptor localization at the retinal surface. Finally, functional blocking of dystroglycan in wild-type retinal explants phenocopies laminin β2 ablation. Our data suggest that dystroglycan-mediated signaling between RPCs and the ECM is of key importance in controlling critical developmental events during retinogenesis.SIGNIFICANCE STATEMENT The mechanisms governing retinogenesis are subject to both intrinsic and extrinsic signaling cues. Although the role of intrinsic signaling has been the subject of many studies, our understanding of the role of the microenvironment in retinal development remains unclear. Using a combination of in vivo and ex vivo approaches, we demonstrate that laminins, key extracellular matrix components, provide signaling cues that control retinal progenitor cell attachment to the basement membrane, mitotic axis, proliferation, and fate adoption. Moreover, we identify, for the first time, dystroglycan as the receptor responsible for directing retinal progenitor cell mitotic spindle orientation. Our data suggest a mechanism where dystroglycan-mediated signaling between the cell and the extracellular matrix controls the proliferative potential of progenitors in the developing CNS.
Collapse
|
8
|
Dorgau B, Felemban M, Sharpe A, Bauer R, Hallam D, Steel DH, Lindsay S, Mellough C, Lako M. Laminin γ3 plays an important role in retinal lamination, photoreceptor organisation and ganglion cell differentiation. Cell Death Dis 2018; 9:615. [PMID: 29795281 PMCID: PMC5966411 DOI: 10.1038/s41419-018-0648-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/12/2018] [Accepted: 04/26/2018] [Indexed: 01/02/2023]
Abstract
Laminins are heterotrimeric glycoproteins of the extracellular matrix. Eleven different laminin chains have been identified in vertebrates. They are ubiquitously expressed in the human body, with a distinct tissue distribution. Laminin expression in neural retina and their functional role during human retinogenesis is still unknown. This study investigated the laminin expression in human developing and adult retina, showing laminin α1, α5, β1, β2 and γ1 to be predominantly expressed in Bruch's membrane and the inner limiting membrane. Laminin-332 and laminin γ3 expression were mainly observed in the neural retina during retinal histogenesis. These expression patterns were largely conserved in pluripotent stem cell-derived retinal organoids. Blocking of laminin γ3 function in retinal organoids resulted in the disruption of laminar organisation and synapse formation, the loss of photoreceptor organisation and retinal ganglion cells. Our data demonstrate a unique temporal and spatial expression for laminins and reveal a novel role for laminin γ3 during human retinogenesis.
Collapse
Affiliation(s)
- Birthe Dorgau
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Majed Felemban
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alexander Sharpe
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Roman Bauer
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Dean Hallam
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David H Steel
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Susan Lindsay
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Carla Mellough
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, University of Western Australia, Nedlands WA, Australia
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
9
|
Genetics and mechanisms leading to human cortical malformations. Semin Cell Dev Biol 2018; 76:33-75. [DOI: 10.1016/j.semcdb.2017.09.031] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
|
10
|
Eve AMJ, Smith JC. Knockdown of Laminin gamma-3 (Lamc3) impairs motoneuron guidance in the zebrafish embryo. Wellcome Open Res 2017; 2:111. [PMID: 29417095 PMCID: PMC5785718 DOI: 10.12688/wellcomeopenres.12394.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2017] [Indexed: 01/09/2023] Open
Abstract
Background: Previous work in the zebrafish embryo has shown that laminin γ-3 ( lamc3) is enriched in endothelial cells marked by expression of fli1a, but the role of Lamc3 has been unknown. Methods: We use antisense morpholino oligonucleotides, and CRISPR/Cas9 mutagenesis of F0 embryos, to create zebrafish embryos in which lamc3 expression is compromised. Transgenic imaging, immunofluorescence, and in situ hybridisation reveal that Lamc3 loss-of-function affects the development of muscle pioneers, endothelial cells, and motoneurons. Results: Lamc3 is enriched in endothelial cells during zebrafish development, but it is also expressed by other tissues. Depletion of Lamc3 by use of antisense morpholino oligonucleotides perturbs formation of the parachordal chain and subsequently the thoracic duct, but Lamc3 is not required for sprouting of the cardinal vein. F0 embryos in which lamc3 expression is perturbed by a CRISPR/Cas9 approach also fail to form a parachordal chain, but we were unable to establish a stable lamc3 null line. Lamc3 is dispensable for muscle pioneer specification and for the expression of netrin-1a in these cells. Lamc3 knockdown causes netrin-1a up-regulation in the neural tube and there is increased Netrin-1 protein throughout the trunk of the embryo. Axonal guidance of rostral primary motoneurons is defective in Lamc3 knockdown embryos. Conclusions: We suggest that knockdown of Lamc3 perturbs migration of rostral primary motoneurons at the level of the horizontal myoseptum, indicating that laminin γ3 plays a role in motoneuron guidance.
Collapse
Affiliation(s)
- Alexander M. J. Eve
- Developmental Biology Laboratory, Francis Crick Institute, London, NW1 1AT, UK
| | - James C. Smith
- Developmental Biology Laboratory, Francis Crick Institute, London, NW1 1AT, UK
| |
Collapse
|
11
|
Biswas S, Bachay G, Chu J, Hunter DD, Brunken WJ. Laminin-Dependent Interaction between Astrocytes and Microglia: A Role in Retinal Angiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2112-2127. [PMID: 28697326 DOI: 10.1016/j.ajpath.2017.05.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/25/2017] [Accepted: 05/31/2017] [Indexed: 11/18/2022]
Abstract
Retinal vascular diseases are among the leading causes of acquired blindness. In recent years, retinal microglia have been shown to influence vascular branching density and endothelial cell proliferation. However, how microglial recruitment and activation are regulated during development remains unclear. We hypothesized that microglial recruitment, activation, and down-stream signaling are modulated by components of the mural basement membrane. We used a reverse genetic approach to disrupt laminin expression in the vascular basement membrane and demonstrate that microglia respond to the mural basement membrane in an isoform-specific manner. Microglial density is significantly increased in the laminin γ3-null (Lamc3-/-) retinal superficial vascular plexus and consequently the vascular branching density is increased. Microglia also respond to astrocyte-derived matrices and become hyperactivated in the Lamc3-/- retina or when tested in vitro with cell-derived matrix. Pharmacological activation of microglia in the wild-type retina produced an Lamc3-/--like vascular phenotype, whereas pharmacological blocking of microglial activation in the Lamc3-/- retina rescued the wild-type vascular phenotype. On the molecular level, microglial transforming growth factor-β1 expression is down-regulated in the Lamc3-/- retina, and SMAD signaling decreased in endothelial cells with a consequent increase in endothelial proliferation. The reverse effects were seen in the Lamb2-/- retina. Together, our results demonstrate a novel mechanism by which laminins modulate vascular branching and endothelial cell proliferation during retinal angiogenesis.
Collapse
Affiliation(s)
- Saptarshi Biswas
- Department of Ophthalmology, State University of New York Upstate Medical University, Syracuse, New York; Department of Ophthalmology, State University of New York Downstate Medical Center, Brooklyn, New York; Center for Vision Research, Syracuse, New York
| | - Galina Bachay
- Department of Ophthalmology, State University of New York Upstate Medical University, Syracuse, New York; Department of Ophthalmology, State University of New York Downstate Medical Center, Brooklyn, New York; Center for Vision Research, Syracuse, New York
| | - Julianne Chu
- Department of Ophthalmology, State University of New York Downstate Medical Center, Brooklyn, New York
| | - Dale D Hunter
- Department of Ophthalmology, State University of New York Upstate Medical University, Syracuse, New York; Department of Ophthalmology, State University of New York Downstate Medical Center, Brooklyn, New York; Center for Vision Research, Syracuse, New York
| | - William J Brunken
- Department of Ophthalmology, State University of New York Upstate Medical University, Syracuse, New York; Department of Ophthalmology, State University of New York Downstate Medical Center, Brooklyn, New York; Center for Vision Research, Syracuse, New York.
| |
Collapse
|
12
|
Yao Y. Laminin: loss-of-function studies. Cell Mol Life Sci 2017; 74:1095-1115. [PMID: 27696112 PMCID: PMC11107706 DOI: 10.1007/s00018-016-2381-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 01/13/2023]
Abstract
Laminin, one of the most widely expressed extracellular matrix proteins, exerts many important functions in multiple organs/systems and at various developmental stages. Although its critical roles in embryonic development have been demonstrated, laminin's functions at later stages remain largely unknown, mainly due to its intrinsic complexity and lack of research tools (most laminin mutants are embryonic lethal). With the advance of genetic and molecular techniques, many new laminin mutants have been generated recently. These new mutants usually have a longer lifespan and show previously unidentified phenotypes. Not only do these studies suggest novel functions of laminin, but also they provide invaluable animal models that allow investigation of laminin's functions at late stages. Here, I first briefly introduce the nomenclature, structure, and biochemistry of laminin in general. Next, all the loss-of-function mutants/models for each laminin chain are discussed and their phenotypes compared. I hope to provide a comprehensive review on laminin functions and its loss-of-function models, which could serve as a reference for future research in this understudied field.
Collapse
Affiliation(s)
- Yao Yao
- College of Pharmacy, University of Minnesota, Duluth, MN, 55812, USA.
| |
Collapse
|
13
|
Autoimmunity against laminins. Clin Immunol 2016; 170:39-52. [PMID: 27464450 DOI: 10.1016/j.clim.2016.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/30/2016] [Accepted: 07/22/2016] [Indexed: 12/12/2022]
Abstract
Laminins are ubiquitous constituents of the basement membranes with major architectural and functional role as supported by the fact that absence or mutations of laminins lead to either lethal or severely impairing phenotypes. Besides genetic defects, laminins are involved in a wide range of human diseases including cancer, infections, and inflammatory diseases, as well as autoimmune disorders. A growing body of evidence implicates several laminin chains as autoantigens in blistering skin diseases, collagenoses, vasculitis, or post-infectious autoimmunity. The current paper reviews the existing knowledge on autoimmunity against laminins referring to both experimental and clinical data, and on therapeutic implications of anti-laminin antibodies. Further investigation of relevant laminin epitopes in pathogenic autoimmunity would facilitate the development of appropriate diagnostic tools for thorough characterization of patients' antibody specificities and should decisively contribute to designing more specific therapeutic interventions.
Collapse
|
14
|
Varshney S, Hunter DD, Brunken WJ. Extracellular Matrix Components Regulate Cellular Polarity and Tissue Structure in the Developing and Mature Retina. J Ophthalmic Vis Res 2016; 10:329-39. [PMID: 26730321 PMCID: PMC4687269 DOI: 10.4103/2008-322x.170354] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
While genetic networks and other intrinsic mechanisms regulate much of retinal development, interactions with the extracellular environment shape these networks and modify their output. The present review has focused on the role of one family of extracellular matrix molecules and their signaling pathways in retinal development. In addition to their effects on the developing retina, laminins play a role in maintaining Müller cell polarity and compartmentalization, thereby contributing to retinal homeostasis. This article which is intended for the clinical audience, reviews the fundamentals of retinal development, extracellular matrix organization and the role of laminins in retinal development. The role of laminin in cortical development is also briefly discussed.
Collapse
Affiliation(s)
- Shweta Varshney
- Department of Ophthalmology and Cell Biology, SUNY Downstate Medical Center, Brooklyn NY, USA; SUNY Eye Institute, NY, USA
| | - Dale D Hunter
- Department of Ophthalmology and Cell Biology, SUNY Downstate Medical Center, Brooklyn NY, USA; SUNY Eye Institute, NY, USA; Department of Ophthalmology and Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - William J Brunken
- Department of Ophthalmology and Cell Biology, SUNY Downstate Medical Center, Brooklyn NY, USA; SUNY Eye Institute, NY, USA; Department of Ophthalmology and Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
15
|
Yamada M, Sekiguchi K. Molecular Basis of Laminin-Integrin Interactions. CURRENT TOPICS IN MEMBRANES 2015; 76:197-229. [PMID: 26610915 DOI: 10.1016/bs.ctm.2015.07.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Laminins are composed of three polypeptide chains, designated as α, β, and γ. The C-terminal region of laminin heterotrimers, containing coiled-coil regions, short tails, and laminin globular (LG) domains, is necessary and sufficient for binding to integrins, which are the major laminin receptor class. Laminin recognition by integrins critically requires the α chain LG domains and a glutamic acid residue of the γ chain at the third position from the C-terminus. Furthermore, the C-terminal region of the β chain contains a short amino acid sequence that modulates laminin affinity for integrins. Thus, all three of the laminin chains act cooperatively to facilitate integrin binding. Mammals possess 5 α (α1-5), 3 β (β1-3), and 3 γ (γ1-3) chains, combinations of which give rise to 16 distinct laminin isoforms. Each isoform is expressed in a tissue-specific and developmental stage-specific manner, exerting its functions through binding of integrins. In this review, we detail the current knowledge surrounding the molecular basis and physiological relevance of specific interactions between laminins and integrins, and describe the mechanisms underlying laminin action through integrins.
Collapse
Affiliation(s)
- Masashi Yamada
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Kiyotoshi Sekiguchi
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
16
|
Reinhard J, Joachim SC, Faissner A. Extracellular matrix remodeling during retinal development. Exp Eye Res 2015; 133:132-40. [DOI: 10.1016/j.exer.2014.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 10/25/2022]
|
17
|
Kostourou V, Papalazarou V. Non-collagenous ECM proteins in blood vessel morphogenesis and cancer. Biochim Biophys Acta Gen Subj 2014; 1840:2403-13. [PMID: 24576673 DOI: 10.1016/j.bbagen.2014.02.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND The extracellular matrix (ECM) is constituted by diverse composite structures, which determine the specific to each organ, histological architecture and provides cells with biological information, mechanical support and a scaffold for adhesion and migration. The pleiotropic effects of the ECM stem from the dynamic changes in its molecular composition and the ability to remodel in order to effectively regulate biological outcomes. Besides collagens, fibronectin and laminin are two major fiber-forming constituents of various ECM structures. SCOPE OF REVIEW This review will focus on the properties and the biological functions of non-collagenous extracellular matrix especially on laminin and fibronectin that are currently emerging as important regulators of blood vessel formation and function in health and disease. MAJOR CONCLUSIONS The ECM is a fundamental component of the microenvironment of blood vessels, with activities extending beyond providing a vascular scaffold; extremely versatile it directly or indirectly modulates all essential cellular functions crucial for angiogenesis, including cell adhesion, migration, proliferation, differentiation and lumen formation. Specifically, fibronectin and laminins play decisive roles in blood vessel morphogenesis both during embryonic development and in pathological conditions, such as cancer. GENERAL SIGNIFICANCE Emerging evidence demonstrates the importance of ECM function during embryonic development, organ formation and tissue homeostasis. A wealth of data also illustrates the crucial role of the ECM in several human pathophysiological processes, including fibrosis, skeletal diseases, vascular pathologies and cancer. Notably, several ECM components have been identified as potential therapeutic targets for various diseases, including cancer. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
Affiliation(s)
- Vassiliki Kostourou
- Vascular Adhesion Lab, BSRC Alexander Fleming, 34 Fleming Str., Vari, 166 72 Athens, Greece
| | - Vassilis Papalazarou
- Vascular Adhesion Lab, BSRC Alexander Fleming, 34 Fleming Str., Vari, 166 72 Athens, Greece
| |
Collapse
|
18
|
Gnanaguru G, Bachay G, Biswas S, Pinzón-Duarte G, Hunter DD, Brunken WJ. Laminins containing the β2 and γ3 chains regulate astrocyte migration and angiogenesis in the retina. Development 2013; 140:2050-60. [PMID: 23571221 DOI: 10.1242/dev.087817] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pathologies of retinal blood vessels are among the major causes of blindness worldwide. A key cell type that regulates retinal vascular development is the astrocyte. Generated extrinsically to the retina, astrocytes migrate into the retina through the optic nerve head. Even though there is a strong correlation between astrocyte distribution and retinal vascular development, the factors that guide astrocytes into the retina remain unclear. In this study, we show that astrocytes migrate within a laminin-containing basement membrane - the inner limiting membrane. Genetic deletion of the laminin β2 and γ3 chains affects astrocyte migration and spatial distribution. We show that laminins act as haptotactic factors in vitro in an isoform-specific manner, inducing astrocyte migration and promoting astrocyte differentiation. The addition of exogenous laminins to laminin-null retinal explants rescues astrocyte migration and spatial patterning. Furthermore, we show that the loss of laminins reduces β1 integrin expression in astrocytes. Culturing laminin-null retinal astrocytes on laminin substrates restores focal localization of β1 integrin. Finally, we show that laminins containing β2 and γ3 chains regulate subsequent retinal blood vessel growth and maintain vascular integrity. These in vivo and in vitro studies demonstrate clearly that laminins containing β2 and γ3 chains are indispensable for migration and spatial organization of astrocytes and that they play a crucial role during retinal angiogenesis in vivo.
Collapse
Affiliation(s)
- Gopalan Gnanaguru
- Departments of Ophthalmology and Cell Biology, and the SUNY Eye Institute, State University of New York, Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, New York 11203, USA
| | | | | | | | | | | |
Collapse
|
19
|
Cyclic AMP-dependent regulation of tyrosine hydroxylase mRNA and immunofluorescence levels in rat retinal precursor cells. Cell Tissue Res 2013; 352:207-16. [PMID: 23355011 DOI: 10.1007/s00441-013-1555-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/03/2013] [Indexed: 10/27/2022]
Abstract
Stimulation of tyrosine hydroxylase (TH) gene transcription by cyclic AMP (cAMP) has been clearly established in adrenal medula cells and neural-crest-derived cell lines but information on this mechanism is still lacking in dopaminergic neurons. Because they are easily amenable to in vitro experiments, dopaminergic amacrine cells of the retina might constitute a valuable model system to study this mechanism. We have used real-time reverse transcription with the polymerase chain reaction to quantify TH mRNA levels in the rat retina during post-natal development and in retinal precursor cells obtained from neonatal rats and cultured for 3 days in serum-free medium. Whereas the TH mRNA concentration remains consistantly low in control cultures, treatment with cAMP-increasing agents (forskolin, membrane depolarization, phosphodiesterase inhibitors) is sufficient to raise it to the level observed in adult retina (15-fold increase). Treatment of the cultured cells can be delayed by up to 2 days with identical results at the TH mRNA level, thus ruling out a survival-promoting effect of cAMP. TH immunofluorescence has confirmed cAMP-dependent regulation of TH expression at the protein level and indicates that the frequency of TH-positive cells in the cultures is similar to that observed in the adult retina. Selective phosphodiesterase inhibitors suggest that PDE4 is the major subtype involved in the dopaminergic amacrine cell response. Our data clearly establish the cAMP-dependent regulation of TH mRNA and immunofluorescence levels in retinal precursor cells. The possible role of this regulation mechanism in the developmental activation of TH gene expression is discussed.
Collapse
|
20
|
Abstract
The mechanisms controlling vascular development, both normal and pathological, are not yet fully understood. Many diseases, including cancer and diabetic retinopathy, involve abnormal blood vessel formation. Therefore, increasing knowledge of these mechanisms may help develop novel therapeutic targets. The identification of novel proteins or cells involved in this process would be particularly useful. The retina is an ideal model for studying vascular development because it is easy to access, particularly in rodents where this process occurs post-natally. Recent studies have suggested potential roles for laminin chains in vascular development of the retina. This review will provide an overview of these studies, demonstrating the importance of further research into the involvement of laminins in retinal blood vessel formation.
Collapse
|
21
|
Li YN, Radner S, French MM, Pinzón-Duarte G, Daly GH, Burgeson RE, Koch M, Brunken WJ. The γ3 chain of laminin is widely but differentially expressed in murine basement membranes: expression and functional studies. Matrix Biol 2011; 31:120-34. [PMID: 22222602 DOI: 10.1016/j.matbio.2011.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 12/09/2011] [Accepted: 12/09/2011] [Indexed: 10/14/2022]
Abstract
Laminins are heterotrimeric extracellular glycoproteins found in, but not confined to, basement membranes (BMs). They are important components in formation of the molecular networks of BMs as well as in cell polarity, cell differentiation and tissue morphogenesis. Each laminin is composed by an α, a β and a γ chain. Previous studies have shown that the γ3 chain is partnered with either the β1 chain (in placenta) or β2 chain (in the CNS) (Libby et al., 2000). Several studies, including our own, suggested that the γ3 chain is expressed in both apical and basal compartments (Koch et al., 1999; Gersdorff et al., 2005; Yan and Cheng, 2006). This study investigates the expression pattern of the γ3 chain in mouse. We developed three new γ3-reactive antibodies, and we show that the γ3 chain is present in BMs. The distribution pattern is considerably more restricted than that of the γ1 chain and within any tissue there is differential deposition into BM compartments. This is particularly true in the retina and brain, where γ3 is uniquely expressed in a subset of the vascular basement membranes and the pial surface. We used conventional genetic ablation techniques to remove the γ3 chain in mice; unlike other laminin null mice (α5, β2, γ1 nulls), these mice live a normal lifespan and have only minor abnormalities, the most striking of which are ectopic granule cells in the cerebellum and an apparent increase in capillary branching in the outer retina. These data support the suggestion that the γ3 chain is deposited in BMs and contributes some unique properties to their function, particularly in the nervous system.
Collapse
Affiliation(s)
- Yong N Li
- Sackler School for Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, United States
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Recessive LAMC3 mutations cause malformations of occipital cortical development. Nat Genet 2011; 43:590-4. [PMID: 21572413 DOI: 10.1038/ng.836] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 04/21/2011] [Indexed: 11/08/2022]
Abstract
The biological basis for regional and inter-species differences in cerebral cortical morphology is poorly understood. We focused on consanguineous Turkish families with a single affected member with complex bilateral occipital cortical gyration abnormalities. By using whole-exome sequencing, we initially identified a homozygous 2-bp deletion in LAMC3, the laminin γ3 gene, leading to an immediate premature termination codon. In two other affected individuals with nearly identical phenotypes, we identified a homozygous nonsense mutation and a compound heterozygous mutation. In human but not mouse fetal brain, LAMC3 is enriched in postmitotic cortical plate neurons, localizing primarily to the somatodendritic compartment. LAMC3 expression peaks between late gestation and late infancy, paralleling the expression of molecules that are important in dendritogenesis and synapse formation. The discovery of the molecular basis of this unusual occipital malformation furthers our understanding of the complex biology underlying the formation of cortical gyrations.
Collapse
|
23
|
Hirrlinger PG, Pannicke T, Winkler U, Claudepierre T, Varshney S, Schulze C, Reichenbach A, Brunken WJ, Hirrlinger J. Genetic deletion of laminin isoforms β2 and γ3 induces a reduction in Kir4.1 and aquaporin-4 expression and function in the retina. PLoS One 2011; 6:e16106. [PMID: 21283711 PMCID: PMC3025027 DOI: 10.1371/journal.pone.0016106] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 12/07/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Glial cells such as retinal Müller glial cells are involved in potassium ion and water homeostasis of the neural tissue. In these cells, inwardly rectifying potassium (Kir) channels and aquaporin-4 water channels play an important role in the process of spatial potassium buffering and water drainage. Moreover, Kir4.1 channels are involved in the maintenance of the negative Müller cell membrane potential. The subcellular distribution of Kir4.1 and aquaporin-4 channels appears to be maintained by interactions with extracellular and intracellular molecules. Laminins in the extracellular matrix, dystroglycan in the membrane, and dystrophins in the cytomatrix form a complex mediating the polarized expression of Kir4.1 and aquaporin-4 in Müller cells. METHODOLOGY/PRINCIPAL FINDINGS The aim of the present study was to test the function of the β2 and γ3 containing laminins in murine Müller cells. We used knockout mice with genetic deletion of both β2 and γ3 laminin genes to assay the effects on Kir4.1 and aquaporin-4. We studied protein and mRNA expression by immunohistochemistry, Western Blot, and quantitative RT-PCR, respectively, and membrane currents of isolated cells by patch-clamp experiments. We found a down-regulation of mRNA and protein of Kir4.1 as well as of aquaporin-4 protein in laminin knockout mice. Moreover, Müller cells from laminin β2 and γ3 knockout mice had reduced Kir-mediated inward currents and their membrane potentials were more positive than those in age-matched wild-type mice. CONCLUSION These findings demonstrate a strong impact of laminin β2 and γ3 subunits on the expression and function of both aquaporin-4 and Kir4.1, two important membrane proteins in Müller cells.
Collapse
Affiliation(s)
- Petra G Hirrlinger
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mokkapati S, Fleger-Weckmann A, Bechtel M, Koch M, Breitkreutz D, Mayer U, Smyth N, Nischt R. Basement membrane deposition of nidogen 1 but not nidogen 2 requires the nidogen binding module of the laminin gamma1 chain. J Biol Chem 2010; 286:1911-8. [PMID: 21084308 DOI: 10.1074/jbc.m110.149864] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The nidogen-laminin interaction is proposed to play a key role in basement membrane (BM) assembly. However, though there are similarities, the phenotypes in mice lacking nidogen 1 and 2 (nidogen double null) differ to those of mice lacking the nidogen binding module (γ1III4) of the laminin γ1 chain. This indicates different cell- and tissue-specific functions for nidogens and their interaction with laminin and poses the question of whether the phenotypes in nidogen double null mice are caused by the loss of the laminin-nidogen interaction or rather by other unknown nidogen functions. To investigate this, we analyzed BMs, in particular those in the skin of mice lacking the nidogen binding module. In contrast to nidogen double null mice, all skin BMs in γ1III4-deficient mice appeared normal. Furthermore, although nidogen 1 deposition was strongly reduced, nidogen 2 appeared unchanged. Mice with additional deletion of the laminin γ3 chain, which contains a γ1-like nidogen binding module, showed a further reduction of nidogen 1 in the dermoepidermal BM; however, this again did not affect nidogen 2. This demonstrates that in vivo only nidogen 1 deposition is critically dependent on the nidogen binding modules of the laminin γ1 and γ3 chains, whereas nidogen 2 is independently recruited either by binding to an alternative site on laminin or to other BM proteins.
Collapse
Affiliation(s)
- Sharada Mokkapati
- Department of Dermatology, University Hospital of Cologne, 50937 Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Sherry DM, Murray AR, Kanan Y, Arbogast KL, Hamilton RA, Fliesler SJ, Burns ME, Moore KL, Al-Ubaidi MR. Lack of protein-tyrosine sulfation disrupts photoreceptor outer segment morphogenesis, retinal function and retinal anatomy. Eur J Neurosci 2010; 32:1461-72. [PMID: 21039965 DOI: 10.1111/j.1460-9568.2010.07431.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To investigate the role(s) of protein-tyrosine sulfation in the retina, we examined retinal function and structure in mice lacking tyrosylprotein sulfotransferases (TPST) 1 and 2. Tpst double knockout (DKO; Tpst1(-/-) /Tpst2 (-/-) ) retinas had drastically reduced electroretinographic responses, although their photoreceptors exhibited normal responses in single cell recordings. These retinas appeared normal histologically; however, the rod photoreceptors had ultrastructurally abnormal outer segments, with membrane evulsions into the extracellular space, irregular disc membrane spacing and expanded intradiscal space. Photoreceptor synaptic terminals were disorganized in Tpst DKO retinas, but established ultrastructurally normal synapses, as did bipolar and amacrine cells; however, the morphology and organization of neuronal processes in the inner retina were abnormal. These results indicate that protein-tyrosine sulfation is essential for proper outer segment morphogenesis and synaptic function, but is not critical for overall retinal structure or synapse formation, and may serve broader functions in neuronal development and maintenance.
Collapse
Affiliation(s)
- David M Sherry
- Department of Cell Biology, University of Oklahoma Health Sciences Center, BMSB 781, 940 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hu H, Candiello J, Zhang P, Ball SL, Cameron DA, Halfter W. Retinal ectopias and mechanically weakened basement membrane in a mouse model of muscle-eye-brain (MEB) disease congenital muscular dystrophy. Mol Vis 2010; 16:1415-28. [PMID: 20680099 PMCID: PMC2913139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 07/23/2010] [Indexed: 10/28/2022] Open
Abstract
PURPOSE Some forms of congenital muscular dystrophy are associated with cortical and retinal dysplasias. Protein O-mannose N-acetylglucosaminyltransferase 1 (POMGnT1) knockout mice, one of the mouse models of muscular dystrophy, exhibit a thinner retina with reduced density of retinal ganglion cells. This study is aimed to further characterize the knockout retina, with special emphasis on the inner limiting membrane, the basement membrane of the retina. METHODS Immunofluorescence staining and transmission electron microscopy were used to analyze the retinas. Atomic force microscopy was performed on the inner limiting membrane preparations to examine their mechanical properties. RESULTS The inner limiting membrane of the knockout mice exhibited frequent breaks with protrusions of the Müller glial processes and ectopic placement of retinal ganglion cells into the vitreous humor. Disruptions in inner limiting membrane integrity developmentally precede the cellular abnormalities. Regions of disrupted inner limiting membrane were also associated with molecular abnormalities of Müller glia that included diminished presence of the integral membrane proteins Kir4.1 (an inwardly rectifying potassium channel) and aquaporin-4. When measured with atomic force microscopy, the POMGnT1 knockout mouse inner limiting membrane (ILM) exhibited significantly reduced Young's modulus and is therefore mechanically weaker than the ILM from controls. CONCLUSIONS Deficiency of POMGnT1-mediated glycosylation of dystroglycan is implicated in reduced stiffness of the ILM. The weakened ILM results in the disruption of the membrane and subsequent reduction in retinal integrity.
Collapse
Affiliation(s)
- Huaiyu Hu
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY
| | - Joseph Candiello
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA
| | - Peng Zhang
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY
| | - Sherry L. Ball
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH
| | - David A. Cameron
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY
| | - Willi Halfter
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
27
|
Wiradjaja F, DiTommaso T, Smyth I. Basement membranes in development and disease. ACTA ACUST UNITED AC 2010; 90:8-31. [PMID: 20301220 DOI: 10.1002/bdrc.20172] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Basement membranes (BMs) are specializations of the extracellular matrix that act as key mediators of development and disease. Their sheet like protein matrices typically serve to separate epithelial or endothelial cell layers from underlying mesenchymal tissues, providing both a biophysical support to overlying tissue as well as a hub to promote and regulate cell-cell and cell-protein interactions. In the latter context, the BM is increasingly being recognized as a mediator of growth factor interactions during development. In this review, we discuss recent findings regarding the structure of the BM and its roles in mediating the normal development of the embryo, and we examine congenital diseases affecting the BM which impact embryonic development and health in later life.
Collapse
Affiliation(s)
- Fenny Wiradjaja
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, Australia
| | | | | |
Collapse
|
28
|
Edwards MM, Mammadova-Bach E, Alpy F, Klein A, Hicks WL, Roux M, Simon-Assmann P, Smith RS, Orend G, Wu J, Peachey NS, Naggert JK, Lefebvre O, Nishina PM. Mutations in Lama1 disrupt retinal vascular development and inner limiting membrane formation. J Biol Chem 2010; 285:7697-711. [PMID: 20048158 DOI: 10.1074/jbc.m109.069575] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Neuromutagenesis Facility at the Jackson Laboratory generated a mouse model of retinal vasculopathy, nmf223, which is characterized clinically by vitreal fibroplasia and vessel tortuosity. nmf223 homozygotes also have reduced electroretinogram responses, which are coupled histologically with a thinning of the inner nuclear layer. The nmf223 locus was mapped to chromosome 17, and a missense mutation was identified in Lama1 that leads to the substitution of cysteine for a tyrosine at amino acid 265 of laminin alpha1, a basement membrane protein. Despite normal localization of laminin alpha1 and other components of the inner limiting membrane, a reduced integrity of this structure was suggested by ectopic cells and blood vessels within the vitreous. Immunohistochemical characterization of nmf223 homozygous retinas demonstrated the abnormal migration of retinal astrocytes into the vitreous along with the persistence of hyaloid vasculature. The Y265C mutation significantly reduced laminin N-terminal domain (LN) interactions in a bacterial two-hybrid system. Therefore, this mutation could affect interactions between laminin alpha1 and other laminin chains. To expand upon these findings, a Lama1 null mutant, Lama1(tm1.1Olf), was generated that exhibits a similar but more severe retinal phenotype than that seen in nmf223 homozygotes. The increased severity of the Lama1 null mutant phenotype is probably due to the complete loss of the inner limiting membrane in these mice. This first report of viable Lama1 mouse mutants emphasizes the importance of this gene in retinal development. The data presented herein suggest that hypomorphic mutations in human LAMA1 could lead to retinal disease.
Collapse
|
29
|
Pinzón-Duarte G, Daly G, Li YN, Koch M, Brunken WJ. Defective formation of the inner limiting membrane in laminin beta2- and gamma3-null mice produces retinal dysplasia. Invest Ophthalmol Vis Sci 2009; 51:1773-82. [PMID: 19907020 DOI: 10.1167/iovs.09-4645] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Retinal basement membranes (BMs) serve as attachment sites for retinal pigment epithelial cells on Bruch's membrane and Müller cells (MCs) on the inner limiting membrane (ILM), providing polarity cues to adherent cells. The beta2 and gamma3 chains of laminin are key components of retinal BMs throughout development, suggesting that they play key roles in retinal histogenesis. This study was conducted to analyze how the absence of both beta2- and gamma3-containing laminins affects retinal development. Methods. The function of the beta2- and gamma3-containing laminins was tested by producing a compound deletion of both the beta2 and the gamma3 laminin genes in the mouse and assaying the effect on postnatal retinal development by using anatomic and electrophysiological techniques. Results. Despite the widespread expression of beta2 and gamma3 laminin chains in wild-type (WT) retinal BMs, the development of only one, the ILM, was disrupted. The postnatal consequence of the ILM disruption was an alteration of MC attachment and a resultant disruption in MC apical-basal polarity, which culminated in retinal dysplasia. Of importance, although their density was altered, retinal cell fates were unaffected. The laminin mutants have a markedly decreased visual function, resulting in part from photoreceptor dysgenesis. Conclusions. These data suggest that beta2 and gamma3 laminin isoforms are critical for the formation and stability of the ILM. These data also suggest that attachment of the MC to the ILM provides important polarity cues to the MC and for postnatal retinal histogenesis.
Collapse
Affiliation(s)
- Germán Pinzón-Duarte
- Department of Cell Biology, 4Ophthalmology, StateUniversity of New York, Downstate Medical Center, Brooklyn, NewYork 11203, USA
| | | | | | | | | |
Collapse
|
30
|
Abstract
Laminins are cell adhesion molecules that comprise a family of glycoproteins found predominantly in basement membranes, which are the thin sheets of extracellular matrix that underlie epithelial and endothelial cells and surround muscle cells, Schwann cells, and fat cells. Many laminins self-assemble to form networks that remain in close association with cells through interactions with cell surface receptors. Laminins are vital for many physiological functions. They are essential for early embryonic development and organogenesis and have crucial functions in several tissues including muscle, nerve, skin, kidney, lung, and the vasculature. A great wealth of data on laminins is available, and an in-depth description is not attempted here. In this review, I will instead provide a snapshot of laminin structure, tissue distribution, and interactions with other matrix molecules and receptors and briefly describe laminin mutations in mice and humans. Several illuminating and timely reviews are cited that can be consulted for references to original articles and more detailed information concerning laminins.
Collapse
|
31
|
Ido H, Ito S, Taniguchi Y, Hayashi M, Sato-Nishiuchi R, Sanzen N, Hayashi Y, Futaki S, Sekiguchi K. Laminin isoforms containing the gamma3 chain are unable to bind to integrins due to the absence of the glutamic acid residue conserved in the C-terminal regions of the gamma1 and gamma2 chains. J Biol Chem 2008; 283:28149-57. [PMID: 18697739 DOI: 10.1074/jbc.m803553200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Laminins are the major cell adhesive proteins in basement membranes, and consist of three subunits termed alpha, beta, and gamma. Recently, we found that the Glu residue at the third position from the C termini of the gamma1 and gamma2 chains is critically involved in integrin binding by laminins. However, the gamma3 chain lacks this Glu residue, suggesting that laminin isoforms containing the gamma3 chain may be unable to bind to integrins. To address this possibility, we expressed the E8 fragment of laminin-213 and found that it was incapable of binding to integrins. Similarly, the E8 fragment of laminin-113 was expressed and also found to be inactive in binding to integrins, confirming the distinction between the integrin binding activities of gamma3 chain-containing isoforms and those containing the gamma1 or gamma2 chain. To further address the importance of the Glu residue, we swapped the C-terminal four amino acids of the gamma3 chain with the C-terminal nine amino acids of the gamma1 chain, which contain the Glu residue. The resulting chimeric E8 fragment of laminin-213 became fully active in integrin binding, whereas replacement with the nine amino acids of the gamma1 chain after substitution of Gln for the conserved Glu residue failed to restore the integrin binding activity. These results provide both loss-of-function and gain-of-function evidence that laminin isoforms containing the gamma3 chain are unable to bind to integrins due to the absence of the conserved Glu residue, which should play a critical role in integrin binding by laminins.
Collapse
Affiliation(s)
- Hiroyuki Ido
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|