1
|
Van Hook MJ. Influences of Glaucoma on the Structure and Function of Synapses in the Visual System. Antioxid Redox Signal 2022; 37:842-861. [PMID: 35044228 PMCID: PMC9587776 DOI: 10.1089/ars.2021.0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/31/2021] [Indexed: 11/12/2022]
Abstract
Significance: Glaucoma is an age-related neurodegenerative disorder of the visual system associated with sensitivity to intraocular pressure (IOP). It is the leading irreversible cause of vision loss worldwide, and vision loss results from damage and dysfunction of the retinal output neurons known as retinal ganglion cells (RGCs). Recent Advances: Elevated IOP and optic nerve injury triggers pruning of RGC dendrites, altered morphology of excitatory inputs from presynaptic bipolar cells, and disrupted RGC synaptic function. Less is known about RGC outputs, although evidence to date indicates that glaucoma is associated with altered mitochondrial and synaptic structure and function in RGC-projection targets in the brain. These early functional changes likely contribute to vision loss and might be a window into early diagnosis and treatment. Critical Issues: Glaucoma affects different RGC populations to varying extents and along distinct time courses. The influence of glaucoma on RGC synaptic function as well as the mechanisms underlying these effects remain to be determined. Since RGCs are an especially energetically demanding population of neurons, altered intracellular axon transport of mitochondria and mitochondrial function might contribute to RGC synaptic dysfunction in the retina and brain as well as RGC vulnerability in glaucoma. Future Directions: The mechanisms underlying differential RGC vulnerability remain to be determined. Moreover, the timing and mechanisms of RGCs synaptic dysfunction and degeneration will provide valuable insight into the disease process in glaucoma. Future work will be able to capitalize on these findings to better design diagnostic and therapeutic approaches to detect disease and prevent vision loss. Antioxid. Redox Signal. 37, 842-861.
Collapse
Affiliation(s)
- Matthew J. Van Hook
- Department of Ophthalmology & Visual Science and Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Cellular & Integrative Physiology, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
2
|
Cwerman-Thibault H, Lechauve C, Augustin S, Roussel D, Reboussin É, Mohammad A, Degardin-Chicaud J, Simonutti M, Liang H, Brignole-Baudouin F, Maron A, Debeir T, Corral-Debrinski M. Neuroglobin Can Prevent or Reverse Glaucomatous Progression in DBA/2J Mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 5:200-220. [PMID: 28540323 PMCID: PMC5430497 DOI: 10.1016/j.omtm.2017.04.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/21/2017] [Indexed: 01/12/2023]
Abstract
Mitochondrial dysfunction is responsible for hereditary optic neuropathies. We wished to determine whether preserving mitochondrial bioenergetics could prevent optic neuropathy in a reliable model of glaucoma. DBA/2J mice exhibit elevated intraocular pressure, progressive degeneration of their retinal ganglion cells, and optic neuropathy that resembles glaucoma. We established that glaucoma in these mice is directly associated with mitochondrial dysfunction: respiratory chain activity was compromised in optic nerves 5 months before neuronal loss began, and the amounts of some mitochondrial proteins were reduced in retinas of glaucomatous mice. One of these proteins is neuroglobin, which has a neuroprotective function. Therefore, we investigated whether gene therapy aimed at restoring neuroglobin levels in the retina via ocular administration of an adeno-associated viral vector could reduce neuronal degeneration. The approach of treating 2-month-old mice impeded glaucoma development: few neurons died and respiratory chain activity and visual cortex activity were comparable to those in young, asymptomatic mice. When the treatment was performed in 8-month-old mice, the surviving neurons acquired new morphologic and functional properties, leading to the preservation of visual cortex activity and respiratory chain activity. The beneficial effects of neuroglobin in DBA/2J retinas confirm this protein to be a promising candidate for treating glaucoma.
Collapse
Affiliation(s)
- Hélène Cwerman-Thibault
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, 75019 Paris, France
| | - Christophe Lechauve
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Sébastien Augustin
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Delphine Roussel
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
- Institut du Cerveau et de la Moelle Épinière, Hôpital Pitié Salpêtrière, 75013 Paris, France
| | - Élodie Reboussin
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Ammara Mohammad
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
- Genomic Paris Centre, Institut de Biologie de l’Ecole normale supérieure, 46 rue d’Ulm, 75230 Paris, France
| | - Julie Degardin-Chicaud
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Manuel Simonutti
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Hong Liang
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC, 28 rue de Charenton, 75012 Paris, France
| | - Françoise Brignole-Baudouin
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Anne Maron
- Sanofi-Aventis, 94400 Vitry-sur-Seine, France
| | - Thomas Debeir
- Departments of Evaluation and Expertise Strategy, Science Policy and External Innovation, Sanofi, 75008 Paris, France
| | - Marisol Corral-Debrinski
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, 75019 Paris, France
- Corresponding author: Marisol Corral-Debrinski, PROTECT, INSERM (UMR1141), Université Paris Diderot, Sorbonne Paris Cité, 48 Boulevard Sérurier, 75019 Paris, France.
| |
Collapse
|
3
|
Dekeyster E, Aerts J, Valiente-Soriano FJ, De Groef L, Vreysen S, Salinas-Navarro M, Vidal-Sanz M, Arckens L, Moons L. Ocular hypertension results in retinotopic alterations in the visual cortex of adult mice. Curr Eye Res 2015; 40:1269-83. [PMID: 25615273 DOI: 10.3109/02713683.2014.990983] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE Glaucoma is a group of optic neuropathies characterized by the loss of retinal ganglion cells (RGCs). Since ocular hypertension (OHT) is a main risk factor, current therapies are predominantly based on lowering eye pressure. However, a subset of treated patients continues to lose vision. More research into pathological mechanisms underlying glaucoma is therefore warranted in order to develop novel therapeutic strategies. In this study we investigated the impact of OHT from eye to brain in mice. METHODS Monocular hypertension (mOHT) was induced in CD-1 mice by laser photocoagulation (LP) of the perilimbal and episcleral veins. The impact on the retina and its main direct target area, the superficial superior colliculus (sSC), was examined via immunostainings for Brn3a, VGluT2 and GFAP. Alterations in neuronal activity in V1 and extrastriate areas V2L and V2M were assessed using in situ hybridization for the activity reporter gene zif268. RESULTS Transient mOHT resulted in diffuse and sectorial RGC degeneration. In the sSC contralateral to the OHT eye, a decrease in VGluT2 immunopositive synaptic connections was detected one week post LP, which appeared to be retinotopically linked to the sectorial RGC degeneration patterns. In parallel, hypoactivity was discerned in contralateral retinotopic projection zones in V1 and V2. Despite complete cortical reactivation 4 weeks post LP, in the sSC no evidence for recovery of RGC synapse density was found and also the concomitant inflammation was not completely resolved. Nevertheless, sSC neurons appeared healthy upon histological inspection and subsequent analysis of cell density revealed no differences between the ipsi- and contralateral sSC. CONCLUSION In addition to RGC death, OHT induces loss of synaptic connections and neuronal activity in the visual pathway and is accompanied by an extensive immune response. Our findings stress the importance of looking beyond the eye and including the whole visual system in glaucoma research.
Collapse
Affiliation(s)
- Eline Dekeyster
- a Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven , Leuven , Belgium
| | - Jeroen Aerts
- b Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology , KU Leuven , Leuven , Belgium and
| | | | - Lies De Groef
- a Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven , Leuven , Belgium
| | - Samme Vreysen
- b Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology , KU Leuven , Leuven , Belgium and
| | - Manuel Salinas-Navarro
- a Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven , Leuven , Belgium
| | - Manuel Vidal-Sanz
- c Department of Ophthalmology , University of Murcia and IMIB-Arrixaca , Murcia , Spain
| | - Lutgarde Arckens
- b Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology , KU Leuven , Leuven , Belgium and
| | - Lieve Moons
- a Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven , Leuven , Belgium
| |
Collapse
|
4
|
Jin J, Xu GX, Yuan ZL. Influence of the hypothalamic arcuate nucleus on intraocular pressure and the role of opioid peptides. PLoS One 2014; 9:e82315. [PMID: 24691128 PMCID: PMC3972173 DOI: 10.1371/journal.pone.0082315] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 10/22/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND An opioid peptide neuron/humoral feedback regulation might be involved in changes of intraocular pressure (IOP). The aims of this study are to investigate the effects of arcuate nucleus (ARC) and opioid peptides on intraocular pressure (IOP). METHODS Fifty-four healthy purebred New Zealand white rabbits (108 eyes) were randomly divided into 4 groups, including control group, electrical stimulation group, [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO) group, and [D-Pen 2, D-Pen5]- enkephalin (DPDPE) group. Bilateral IOP was measured after unilateral electrical stimulation of the ARC or unilateral microinjection into the ARC of the selective μ-opioid receptor agonist DAMGO or the selective δ opioid receptor agonist DPDPE, both alone and after pre-administration of either the non-selective opioid receptor antagonist naloxone or saline. RESULTS Both electrical stimulation in ARC and micro-injection either or opioid receptor agonists, DAMGO or DPDPE, respectively, caused a significant bilateral reduction in IOP (P<0.05) which was more pronounced in the ipsilateral than in the contralateral eye. Pretreatment with naloxone prevented some, but not all IOP reductions. CONCLUSION The ARC takes part in the negative regulation of IOP, an action that may involve opioid neurons.
Collapse
Affiliation(s)
- Ji Jin
- Department of Ophthalmology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Guo-xu Xu
- Department of Ophthalmology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhi-lan Yuan
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
5
|
Georgiou AL, Guo L, Francesca Cordeiro M, Salt TE. Electroretinogram and visual-evoked potential assessment of retinal and central visual function in a rat ocular hypertension model of glaucoma. Curr Eye Res 2013; 39:472-86. [PMID: 24215221 DOI: 10.3109/02713683.2013.848902] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE/AIM The aim of the study was to investigate the long-term functional changes that may occur in the retina and visual cortex in a rat ocular hypertension (OHT) model of glaucoma, used in our lab for treatment studies, using electroretinogram (ERG) and visual-evoked potential (VEP) cortical recordings in order to test the hypothesis that experimental glaucoma has differential retinal and central effects. MATERIALS AND METHODS Experimental glaucoma was induced unilaterally in Dark Agouti rats using hypertonic saline injection into the episcleral veins. After 3, 8, 16 and 26 weeks, ERGs and VEPs were recorded under scotopic conditions using brief full-field white flashes (10 μcd s m(-2) to 10.4 cd s m(-2)) and under photopic conditions using a rod-adapting background and white light flashes (0.13-10.4 cd s m(-2)). RESULTS At 16 and 26 weeks after OHT induction, there was a significant reduction in the amplitudes of the a- (50% and 30% of unoperated eye values, respectively) and b-waves (55% and 40%, respectively) of the scotopic ERG and the b-waves of the photopic ERG (55% and 45%, respectively) in the glaucomatous eyes. However, no significant changes in the VEPs simultaneously recorded over the visual cortex were seen at any of the time points. CONCLUSIONS The reductions in ERG amplitudes suggest that this model of glaucoma not only causes retinal ganglion cell (RGC) degeneration but also degeneration of the outer retinal cells, and this was confirmed by histology showing a reduction in the outer retinal layers in the glaucomatous eyes. Cortical VEPs did not show detrimental effects suggesting that the retinal damage in this model was not extensive enough to be detected with the VEP methods used or that there could be central compensation in this model of glaucoma.
Collapse
Affiliation(s)
- Anne L Georgiou
- Department of Visual Neuroscience, UCL Institute of Ophthalmology , London , UK
| | | | | | | |
Collapse
|