1
|
Famiglietti EV. Mammalian Retinal Bipolar Cells: Morphological Identification and Systematic Classification in Rabbit Retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613998. [PMID: 39345639 PMCID: PMC11429971 DOI: 10.1101/2024.09.19.613998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Retinal bipolar cells (BCs) convey visual signals from photoreceptors to more than 50 types of rabbit retinal ganglion cells (Famiglietti, 2020). More than 40 years ago, 10-11 types of bipolar cell were recognized in rabbit and cat retinas (Famiglietti, 1981). Twenty years later 10 were identified in mouse, rat, and monkey (Gosh et al., 2004), while recent molecular genetic studies indicate that there are 15 types of bipolar cell in mouse retina (Shekhar et al., 2016). The present detailed study of more than 800 bipolar cells in ten Golgi-impregnated rabbit retinas indicates that there are 14-16 types of cone bipolar cell and one type of rod bipolar cell in rabbit retina. These have been carefully analyzed in terms of dendritic and axonal morphology, and axon terminal stratification with respect to fiducial starburst amacrine cells. In fortuitous proximity, several types of bipolar cell can be related to identified ganglion cells by stratification and by contacts suggestive of synaptic connection. These results are compared with other studies of rabbit bipolar cells. Homologies with bipolar cells of mouse and monkey are considered in functional terms.
Collapse
|
2
|
Kim YJ, Packer O, Pollreisz A, Martin PR, Grünert U, Dacey DM. Comparative connectomics reveals noncanonical wiring for color vision in human foveal retina. Proc Natl Acad Sci U S A 2023; 120:e2300545120. [PMID: 37098066 PMCID: PMC10160961 DOI: 10.1073/pnas.2300545120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/31/2023] [Indexed: 04/26/2023] Open
Abstract
The Old World macaque monkey and New World common marmoset provide fundamental models for human visual processing, yet the human ancestral lineage diverged from these monkey lineages over 25 Mya. We therefore asked whether fine-scale synaptic wiring in the nervous system is preserved across these three primate families, despite long periods of independent evolution. We applied connectomic electron microscopy to the specialized foveal retina where circuits for highest acuity and color vision reside. Synaptic motifs arising from the cone photoreceptor type sensitive to short (S) wavelengths and associated with "blue-yellow" (S-ON and S-OFF) color-coding circuitry were reconstructed. We found that distinctive circuitry arises from S cones for each of the three species. The S cones contacted neighboring L and M (long- and middle-wavelength sensitive) cones in humans, but such contacts were rare or absent in macaques and marmosets. We discovered a major S-OFF pathway in the human retina and established its absence in marmosets. Further, the S-ON and S-OFF chromatic pathways make excitatory-type synaptic contacts with L and M cone types in humans, but not in macaques or marmosets. Our results predict that early-stage chromatic signals are distinct in the human retina and imply that solving the human connectome at the nanoscale level of synaptic wiring will be critical for fully understanding the neural basis of human color vision.
Collapse
Affiliation(s)
- Yeon Jin Kim
- Department of Biological Structure, University of Washington, Seattle, WA98195
| | - Orin Packer
- Department of Biological Structure, University of Washington, Seattle, WA98195
| | - Andreas Pollreisz
- Department of Ophthalmology, Medical University of Vienna, Vienna1090, Austria
| | - Paul R. Martin
- Save Sight Institute and Department of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW2000, Australia
| | - Ulrike Grünert
- Save Sight Institute and Department of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW2000, Australia
| | - Dennis M. Dacey
- Department of Biological Structure, University of Washington, Seattle, WA98195
- Washington National Primate Research Center, University of Washington, Seattle, WA98195
| |
Collapse
|
3
|
Sankaridurg P, Berntsen DA, Bullimore MA, Cho P, Flitcroft I, Gawne TJ, Gifford KL, Jong M, Kang P, Ostrin LA, Santodomingo-Rubido J, Wildsoet C, Wolffsohn JS. IMI 2023 Digest. Invest Ophthalmol Vis Sci 2023; 64:7. [PMID: 37126356 PMCID: PMC10155872 DOI: 10.1167/iovs.64.6.7] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Myopia is a dynamic and rapidly moving field, with ongoing research providing a better understanding of the etiology leading to novel myopia control strategies. In 2019, the International Myopia Institute (IMI) assembled and published a series of white papers across relevant topics and updated the evidence with a digest in 2021. Here, we summarize findings across key topics from the previous 2 years. Studies in animal models have continued to explore how wavelength and intensity of light influence eye growth and have examined new pharmacologic agents and scleral cross-linking as potential strategies for slowing myopia. In children, the term premyopia is gaining interest with increased attention to early implementation of myopia control. Most studies use the IMI definitions of ≤-0.5 diopters (D) for myopia and ≤-6.0 D for high myopia, although categorization and definitions for structural consequences of high myopia remain an issue. Clinical trials have demonstrated that newer spectacle lens designs incorporating multiple segments, lenslets, or diffusion optics exhibit good efficacy. Clinical considerations and factors influencing efficacy for soft multifocal contact lenses and orthokeratology are discussed. Topical atropine remains the only widely accessible pharmacologic treatment. Rebound observed with higher concentration of atropine is not evident with lower concentrations or optical interventions. Overall, myopia control treatments show little adverse effect on visual function and appear generally safe, with longer wear times and combination therapies maximizing outcomes. An emerging category of light-based therapies for children requires comprehensive safety data to enable risk versus benefit analysis. Given the success of myopia control strategies, the ethics of including a control arm in clinical trials is heavily debated. IMI recommendations for clinical trial protocols are discussed.
Collapse
Affiliation(s)
- Padmaja Sankaridurg
- Brien Holden Vision Institute, Sydney, Australia
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - David A Berntsen
- University of Houston, College of Optometry, Houston, Texas, United States
| | - Mark A Bullimore
- University of Houston, College of Optometry, Houston, Texas, United States
| | - Pauline Cho
- West China Hospital, Sichuan University, Sichuan, China
- Eye & ENT Hospital of Fudan University, Shanghai, China
- Affiliated Eye Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ian Flitcroft
- Centre for Eye Research Ireland, School of Physics and Clinical and Optometric Sciences, Technological University Dublin, Dublin, Ireland
- Department of Ophthalmology, Children's Health Ireland at Temple Street Hospital, Dublin, Ireland
| | - Timothy J Gawne
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kate L Gifford
- Queensland University of Technology, Brisbane, Australia
| | - Monica Jong
- Johnson & Johnson Vision, Jacksonville, Florida, United States
| | - Pauline Kang
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Lisa A Ostrin
- University of Houston, College of Optometry, Houston, Texas, United States
| | | | - Christine Wildsoet
- UC Berkeley Wertheim School Optometry & Vision Science, Berkeley, California, United States
| | - James S Wolffsohn
- College of Health & Life Sciences, Aston University, Birmingham, United Kingdom
| |
Collapse
|
4
|
Shickel B, Silva B, Ozrazgat-Baslanti T, Ren Y, Khezeli K, Guan Z, Tighe PJ, Bihorac A, Rashidi P. Multi-dimensional patient acuity estimation with longitudinal EHR tokenization and flexible transformer networks. Front Digit Health 2022; 4:1029191. [PMID: 36440460 PMCID: PMC9682245 DOI: 10.3389/fdgth.2022.1029191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022] Open
Abstract
Transformer model architectures have revolutionized the natural language processing (NLP) domain and continue to produce state-of-the-art results in text-based applications. Prior to the emergence of transformers, traditional NLP models such as recurrent and convolutional neural networks demonstrated promising utility for patient-level predictions and health forecasting from longitudinal datasets. However, to our knowledge only few studies have explored transformers for predicting clinical outcomes from electronic health record (EHR) data, and in our estimation, none have adequately derived a health-specific tokenization scheme to fully capture the heterogeneity of EHR systems. In this study, we propose a dynamic method for tokenizing both discrete and continuous patient data, and present a transformer-based classifier utilizing a joint embedding space for integrating disparate temporal patient measurements. We demonstrate the feasibility of our clinical AI framework through multi-task ICU patient acuity estimation, where we simultaneously predict six mortality and readmission outcomes. Our longitudinal EHR tokenization and transformer modeling approaches resulted in more accurate predictions compared with baseline machine learning models, which suggest opportunities for future multimodal data integrations and algorithmic support tools using clinical transformer networks.
Collapse
Affiliation(s)
- Benjamin Shickel
- Department of Medicine, University of Florida, Gainesville, FL, United States
- Intelligent Critical Care Center (IC3), University of Florida, Gainesville, FL, United States
| | - Brandon Silva
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- Intelligent Critical Care Center (IC3), University of Florida, Gainesville, FL, United States
| | - Tezcan Ozrazgat-Baslanti
- Department of Medicine, University of Florida, Gainesville, FL, United States
- Intelligent Critical Care Center (IC3), University of Florida, Gainesville, FL, United States
| | - Yuanfang Ren
- Department of Medicine, University of Florida, Gainesville, FL, United States
- Intelligent Critical Care Center (IC3), University of Florida, Gainesville, FL, United States
| | - Kia Khezeli
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- Intelligent Critical Care Center (IC3), University of Florida, Gainesville, FL, United States
| | - Ziyuan Guan
- Department of Medicine, University of Florida, Gainesville, FL, United States
- Intelligent Critical Care Center (IC3), University of Florida, Gainesville, FL, United States
| | - Patrick J. Tighe
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States
- Intelligent Critical Care Center (IC3), University of Florida, Gainesville, FL, United States
| | - Azra Bihorac
- Department of Medicine, University of Florida, Gainesville, FL, United States
- Intelligent Critical Care Center (IC3), University of Florida, Gainesville, FL, United States
| | - Parisa Rashidi
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- Intelligent Critical Care Center (IC3), University of Florida, Gainesville, FL, United States
| |
Collapse
|
5
|
Li Z, Ungerer M, Faßbender J, Wenhart C, Holthoff HP, Muench G. Tissue block staining and domestic adhesive tape yield qualified integral sections of adult mouse orbits and eyeballs. PLoS One 2021; 16:e0255363. [PMID: 34347814 PMCID: PMC8336840 DOI: 10.1371/journal.pone.0255363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/14/2021] [Indexed: 11/27/2022] Open
Abstract
The standard histological processing procedure, which produces excellent staining of sections for most tissues, fails to yield satisfactory results in adult mouse orbits or eyeballs. Here, we show that a protocol using tissue block staining and domestic adhesive tapes resulted in qualified integral serial cryo-sections of whole orbits or eyeballs, and the fine structures were well preserved. The histological processing protocol comprises paraformaldehyde fixation, ethylenediaminetetraacetic acid decalcification, tissue block staining with hematoxylin and eosin, embedding, adhesive tape aided sectioning, and water-soluble mounting. This protocol was proved to be the best in comparison with seven other related existing histological traditional or non-traditional processing methods, according to the staining slice quality. We observed a hundred percent success rate in sectioning, collection, and mounting with this method. The reproducibility tested on qualified section success rates and slice quality scores confirmed that the technique is reliable. The feasibility of the method to detect target molecules in orbits was verified by successful trial tests on block immunostaining and adhesive tape-aided sectioning. Application of this protocol in joints, brains, and so on,—the challenging integral sectioning tissues, also generated high-quality histological staining sections.
Collapse
Affiliation(s)
- Zhongmin Li
- Advancecor GmbH, Martinsried, Germany
- * E-mail:
| | | | | | | | | | | |
Collapse
|
6
|
Li W. Ground squirrel - A cool model for a bright vision. Semin Cell Dev Biol 2020; 106:127-134. [PMID: 32593518 DOI: 10.1016/j.semcdb.2020.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 01/04/2023]
Abstract
The great evolutionary biologist, Theodosius Dobzhansky, once said, "Nothing in biology makes sense except in the light of evolution." Vision, no doubt, is a poster child for the work of evolution. If it has not already been said, I would humbly add that "Nothing in biology makes sense except in the context of metabolism." Marrying these two thoughts together, when one chooses an animal model for vision research, the ground squirrel jumps out immediately for its unique cone dominant retina, which has evolved for its diurnal lifestyle, and for hibernation-an adaptation to unique metabolic challenges encountered during its winter sojourn.
Collapse
Affiliation(s)
- Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, USA.
| |
Collapse
|
7
|
Patterson SS, Kuchenbecker JA, Anderson JR, Neitz M, Neitz J. A Color Vision Circuit for Non-Image-Forming Vision in the Primate Retina. Curr Biol 2020; 30:1269-1274.e2. [PMID: 32084404 PMCID: PMC7141953 DOI: 10.1016/j.cub.2020.01.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/15/2022]
Abstract
Melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs) synchronize our biological clocks with the external light/dark cycle [1]. In addition to photoentrainment, they mediate the effects of light experience as a central modulator of mood, learning, and health [2]. This makes a complete account of the circuity responsible for ipRGCs' light responses essential to understanding their diverse roles in our well-being. Considerable progress has been made in understanding ipRGCs' melanopsin-mediated responses in rodents [3-5]. However, in primates, ipRGCs also have a rare blue-OFF response mediated by an unknown short-wavelength-sensitive (S)-cone circuit [6]. Identifying this S-cone circuit is particularly important because ipRGCs mediate many of the wide-ranging effects of short-wavelength light on human biology. These effects are often attributed to melanopsin, but there is evidence for an S-cone contribution as well [7, 8]. Here, we tested the hypothesis that the S-OFF response is mediated by the S-ON pathway through inhibitory input from an undiscovered S-cone amacrine cell. Using serial electron microscopy in the macaque retina, we reconstructed the neurons and synapses of the S-cone connectome, revealing a novel inhibitory interneuron, an amacrine cell, receiving excitatory glutamatergic input exclusively from S-ON bipolar cells. This S-cone amacrine cell makes highly selective inhibitory synapses onto ipRGCs, resulting in a blue-OFF response. Identification of the S-cone amacrine cell provides the missing component of an evolutionarily ancient circuit using spectral information for non-image forming visual functions.
Collapse
Affiliation(s)
- Sara S Patterson
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA; Department of Ophthalmology, University of Washington, Seattle WA 98109, USA
| | | | - James R Anderson
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Maureen Neitz
- Department of Ophthalmology, University of Washington, Seattle WA 98109, USA
| | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle WA 98109, USA.
| |
Collapse
|
8
|
Guan H, Devarakonda M. Leveraging Contextual Information in Extracting Long Distance Relations from Clinical Notes. AMIA ... ANNUAL SYMPOSIUM PROCEEDINGS. AMIA SYMPOSIUM 2020; 2019:1051-1060. [PMID: 32308902 PMCID: PMC7153124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Relation extraction from biomedical text is important for clinical decision support applications. In post-marketing pharmacovigilance, for example, Adverse Drug Events (ADE) relate medical problems to the drugs that caused them and were the focus of two recent shared challenges. While good results were reported, there was a room for improvement. Here, we studied two new improved methods for relation extraction: (1) State-of-the-art deep learning contextual representation model called BERT, Bidirectional Encoder Representations from Transformers; (2) Selection of negative training samples based on the "near-miss" hypothesis (the Edge sampling). We used the datasets from MADE and N2C2 Task-2 for performance evaluation. BERT and Edge together improved performance of ADE and Reason (indication) relations extraction by 6.4-6.7 absolute percentage (and error rate reduction of 24%-28%). ADE and Reason relations contained longer text between the entities, which BERT and Edge were able to leverage to achieve the performance improvement. While the performance improvement for medication attribute relations was smaller in absolute percentages, error rate reduction was still considerable.
Collapse
Affiliation(s)
- Hong Guan
- Biomedical Informatics, College of Health Solutions Arizona State University, Tempe, AZ
| | - Murthy Devarakonda
- Biomedical Informatics, College of Health Solutions Arizona State University, Tempe, AZ
| |
Collapse
|
9
|
Grünert U, Martin PR. Cell types and cell circuits in human and non-human primate retina. Prog Retin Eye Res 2020; 78:100844. [PMID: 32032773 DOI: 10.1016/j.preteyeres.2020.100844] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022]
Abstract
This review summarizes our current knowledge of primate including human retina focusing on bipolar, amacrine and ganglion cells and their connectivity. We have two main motivations in writing. Firstly, recent progress in non-invasive imaging methods to study retinal diseases mean that better understanding of the primate retina is becoming an important goal both for basic and for clinical sciences. Secondly, genetically modified mice are increasingly used as animal models for human retinal diseases. Thus, it is important to understand to which extent the retinas of primates and rodents are comparable. We first compare cell populations in primate and rodent retinas, with emphasis on how the fovea (despite its small size) dominates the neural landscape of primate retina. We next summarise what is known, and what is not known, about the postreceptoral neurone populations in primate retina. The inventories of bipolar and ganglion cells in primates are now nearing completion, comprising ~12 types of bipolar cell and at least 17 types of ganglion cell. Primate ganglion cells show clear differences in dendritic field size across the retina, and their morphology differs clearly from that of mouse retinal ganglion cells. Compared to bipolar and ganglion cells, amacrine cells show even higher morphological diversity: they could comprise over 40 types. Many amacrine types appear conserved between primates and mice, but functions of only a few types are understood in any primate or non-primate retina. Amacrine cells appear as the final frontier for retinal research in monkeys and mice alike.
Collapse
Affiliation(s)
- Ulrike Grünert
- The University of Sydney, Save Sight Institute, Faculty of Medicine and Health, Sydney, NSW, 2000, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, NSW, 2000, Australia.
| | - Paul R Martin
- The University of Sydney, Save Sight Institute, Faculty of Medicine and Health, Sydney, NSW, 2000, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, NSW, 2000, Australia
| |
Collapse
|
10
|
Thoreson WB, Dacey DM. Diverse Cell Types, Circuits, and Mechanisms for Color Vision in the Vertebrate Retina. Physiol Rev 2019; 99:1527-1573. [PMID: 31140374 PMCID: PMC6689740 DOI: 10.1152/physrev.00027.2018] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 01/13/2023] Open
Abstract
Synaptic interactions to extract information about wavelength, and thus color, begin in the vertebrate retina with three classes of light-sensitive cells: rod photoreceptors at low light levels, multiple types of cone photoreceptors that vary in spectral sensitivity, and intrinsically photosensitive ganglion cells that contain the photopigment melanopsin. When isolated from its neighbors, a photoreceptor confounds photon flux with wavelength and so by itself provides no information about color. The retina has evolved elaborate color opponent circuitry for extracting wavelength information by comparing the activities of different photoreceptor types broadly tuned to different parts of the visible spectrum. We review studies concerning the circuit mechanisms mediating opponent interactions in a range of species, from tetrachromatic fish with diverse color opponent cell types to common dichromatic mammals where cone opponency is restricted to a subset of specialized circuits. Distinct among mammals, primates have reinvented trichromatic color vision using novel strategies to incorporate evolution of an additional photopigment gene into the foveal structure and circuitry that supports high-resolution vision. Color vision is absent at scotopic light levels when only rods are active, but rods interact with cone signals to influence color perception at mesopic light levels. Recent evidence suggests melanopsin-mediated signals, which have been identified as a substrate for setting circadian rhythms, may also influence color perception. We consider circuits that may mediate these interactions. While cone opponency is a relatively simple neural computation, it has been implemented in vertebrates by diverse neural mechanisms that are not yet fully understood.
Collapse
Affiliation(s)
- Wallace B Thoreson
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center , Omaha, Nebraska ; and Department of Biological Structure, Washington National Primate Research Center, University of Washington , Seattle, Washington
| | - Dennis M Dacey
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center , Omaha, Nebraska ; and Department of Biological Structure, Washington National Primate Research Center, University of Washington , Seattle, Washington
| |
Collapse
|
11
|
Mowat FM, Wise E, Oh A, Foster ML, Kremers J. In vivo electroretinographic differentiation of rod, short-wavelength and long/medium-wavelength cone responses in dogs using silent substitution stimuli. Exp Eye Res 2019; 185:107673. [PMID: 31128103 DOI: 10.1016/j.exer.2019.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 02/05/2023]
Abstract
The canine species has dichromatic color vision comprising short-wavelength (S-) and long/medium (L/M-) wavelength-sensitive cones with peak spectral sensitivity of 429-435 nm and 555 nm respectively. Although differentiation of rod- and cone-mediated responses by electroretinogram (ERG) in dogs is commonly performed, and standards have been developed based on standards for human observers, methods to differentiate S- and L/M-cone responses in dogs have not been described. We developed flicker protocols derived from previously published rod and cone spectral sensitivities. We used a double silent substitution paradigm to isolate responses from each of the 3 photoreceptor subclasses. ERG responses were measured to sine-wave modulation of photoreceptor excitation at different temporal frequencies (between 4 and 56 Hz) and mean luminance (between 3.25 and 130 cd/m2) on 6 different normal dogs (3 adult female, and 3 adult male beagles) and one female beagle dog with suspected hereditary congenital stationary night blindness (CSNB). Peak rod driven response amplitudes were achieved with low frequency (4 Hz, maximal range 4-12 Hz) and low mean luminance (3.25 cd/m2). In contrast, peak L/M-cone driven response amplitudes were achieved with high frequency (32 Hz, maximal range 28-44 Hz) and high mean luminance (32.5-130 cd/m2). Maximal S-cone driven responses were obtained with low frequency stimuli (4 Hz, maximal range 4-12 Hz) and 32.5-130 cd/m2 mean luminance. The dog with CSNB had reduced rod- and S-cone-driven responses, but normal/supernormal L/M cone-driven responses. We have developed methods to differentiate rod, S- and L/M-cone function in dogs using silent substitution methods. The influence of temporal frequency and mean luminance on the ERGs originating in each photoreceptor type can now be studied independently. Dogs and humans have similar L/M cone responses, whereas mice have significantly different L/M responses. This work will facilitate a greater understanding of canine retinal electrophysiology and will complement the study of canine models of human hereditary photoreceptor disorders.
Collapse
Affiliation(s)
- Freya M Mowat
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| | - Elisabeth Wise
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Annie Oh
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Melanie L Foster
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jan Kremers
- University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
12
|
Maguire J, Parry NRA, Kremers J, Murray IJ, McKeefry D. Human S-cone electroretinograms obtained by silent substitution stimulation. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2018; 35:B11-B18. [PMID: 29603933 DOI: 10.1364/josaa.35.000b11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/27/2017] [Indexed: 06/08/2023]
Abstract
We used triple silent substitution stimuli to characterize human S-cone electroretinograms (ERGs) in normal trichromats. Short-wavelength-cone (S-cone) ERGs were found to have different morphological features and temporal frequency response characteristics compared to ERGs derived from L-cones, M-cones, and rod photoreceptors in normal participants. Furthermore, in two cases of retinal pathology, blue cone monochromatism (BCM) and enhanced S-cone syndrome (ESCS), S-cone ERGs elicited by our stimuli were preserved and enhanced, respectively. The results from both normal and pathological retinae demonstrate that triple silent substitution stimuli can be used to generate ERGs that provide an assay of human S-cone function.
Collapse
|
13
|
Majander A, João C, Rider AT, Henning GB, Votruba M, Moore AT, Yu-Wai-Man P, Stockman A. The Pattern of Retinal Ganglion Cell Loss in OPA1-Related Autosomal Dominant Optic Atrophy Inferred From Temporal, Spatial, and Chromatic Sensitivity Losses. Invest Ophthalmol Vis Sci 2017; 58:502-516. [PMID: 28125838 PMCID: PMC5283089 DOI: 10.1167/iovs.16-20309] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Progressive retinal ganglion cell (RGC) loss is the pathological hallmark of autosomal dominant optic atrophy (DOA) caused by pathogenic OPA1 mutations. The aim of this study was to conduct an in-depth psychophysical study of the visual losses in DOA and to infer any selective vulnerability of visual pathways subserved by different RGC subtypes. Methods We recruited 25 patients carrying pathogenic OPA1 mutations and age-matched healthy individuals. Spatial contrast sensitivity functions (SCSFs) and chromatic contrast sensitivity were quantified, the latter using the Cambridge Colour Test. In 11 patients, long (L) and short (S) wavelength-sensitive cone temporal acuities were measured as a function of target illuminance, and L-cone temporal contrast sensitivity (TCSF) as a function of temporal frequency. Results Spatial contrast sensitivity functions were abnormal, with the loss of sensitivity increasing with spatial frequency. Further, the highest L-cone temporal acuity fell on average by 10 Hz and the TCSFs by 0.66 log10 unit. Chromatic thresholds along the protan, deutan, and tritan axes were 8, 9, and 14 times higher than normal, respectively, with losses increasing with age and S-cone temporal acuity showing the most significant age-related decline. Conclusions Losses of midget parvocellular, parasol magnocellular, and bistratified koniocellular RGCs could account for the losses of high spatial frequency sensitivity and protan and deutan sensitivities, high temporal frequency sensitivity, and S-cone temporal and tritan sensitivities, respectively. The S-cone-related losses showed a significant deterioration with increasing patient age and could therefore prove useful biomarkers of disease progression in DOA.
Collapse
Affiliation(s)
- Anna Majander
- University College London, Institute of Ophthalmology, London, United Kingdom 2Moorfields Eye Hospital, London, United Kingdom 3Department of Ophthalmology, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
| | - Catarina João
- University College London, Institute of Ophthalmology, London, United Kingdom
| | - Andrew T Rider
- University College London, Institute of Ophthalmology, London, United Kingdom
| | - G Bruce Henning
- University College London, Institute of Ophthalmology, London, United Kingdom
| | - Marcela Votruba
- School of Optometry and Vision Sciences, Cardiff University Cardiff, and Cardiff Eye Unit, University Hospital Wales, Cardiff, United Kingdom
| | - Anthony T Moore
- University College London, Institute of Ophthalmology, London, United Kingdom 2Moorfields Eye Hospital, London, United Kingdom 5Ophthalmology Department, University of California-San Francisco School of Medicine, San Francisco, California, United States
| | - Patrick Yu-Wai-Man
- University College London, Institute of Ophthalmology, London, United Kingdom 2Moorfields Eye Hospital, London, United Kingdom 6Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University and Newcastle Eye Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Andrew Stockman
- University College London, Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
14
|
Kelber A. Colour in the eye of the beholder: receptor sensitivities and neural circuits underlying colour opponency and colour perception. Curr Opin Neurobiol 2016; 41:106-112. [PMID: 27649467 DOI: 10.1016/j.conb.2016.09.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/16/2016] [Accepted: 09/05/2016] [Indexed: 12/11/2022]
Abstract
Colour vision-the ability to discriminate spectral differences irrespective of variations in intensity-has two basic requirements: (1) photoreceptors with different spectral sensitivities, and (2) neural comparison of signals from these photoreceptors. Major progress has been made understanding the evolution of the basic stages of colour vision-opsin pigments, screening pigments, and the first neurons coding chromatic opponency, and similarities between mammals and insects point to general mechanisms. However, much work is still needed to unravel full colour pathways in various animals. While primates may have brain regions entirely dedicated to colour coding, animals with small brains, such as insects, likely combine colour information directly in parallel multisensory pathways controlling various behaviours.
Collapse
Affiliation(s)
- Almut Kelber
- Lund Vision Group, Department of Biology, Lund University, Sweden.
| |
Collapse
|
15
|
Ouyang H, Goldberg JL, Chen S, Li W, Xu GT, Li W, Zhang K, Nussenblatt RB, Liu Y, Xie T, Chan CC, Zack DJ. Ocular Stem Cell Research from Basic Science to Clinical Application: A Report from Zhongshan Ophthalmic Center Ocular Stem Cell Symposium. Int J Mol Sci 2016; 17:415. [PMID: 27102165 PMCID: PMC4813266 DOI: 10.3390/ijms17030415] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 03/17/2016] [Accepted: 03/17/2016] [Indexed: 12/16/2022] Open
Abstract
Stem cells hold promise for treating a wide variety of diseases, including degenerative disorders of the eye. The eye is an ideal organ for stem cell therapy because of its relative immunological privilege, surgical accessibility, and its being a self-contained system. The eye also has many potential target diseases amenable to stem cell-based treatment, such as corneal limbal stem cell deficiency, glaucoma, age-related macular degeneration (AMD), and retinitis pigmentosa (RP). Among them, AMD and glaucoma are the two most common diseases, affecting over 200 million people worldwide. Recent results on the clinical trial of retinal pigment epithelial (RPE) cells from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) in treating dry AMD and Stargardt’s disease in the US, Japan, England, and China have generated great excitement and hope. This marks the beginning of the ocular stem cell therapy era. The recent Zhongshan Ophthalmic Center Ocular Stem Cell Symposium discussed the potential applications of various stem cell types in stem cell-based therapies, drug discoveries and tissue engineering for treating ocular diseases.
Collapse
Affiliation(s)
- Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Jeffrey L Goldberg
- Department of Ophthalmology, Stanford University, Palo Alto, CA 94303, USA.
| | - Shuyi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Wei Li
- Unit on Retinal Neurophysiology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Guo-Tong Xu
- Department of Ophthalmology, Tongji University, Shanghai 200092, China.
| | - Wei Li
- Department of Ophthalmology, Xiamen University, Xiamen 361005, China.
| | - Kang Zhang
- Department of Ophthalmology, University of California San Diego, San Diego, CA 92093, USA.
| | - Robert B Nussenblatt
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Ting Xie
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| | - Chi-Chao Chan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Donald J Zack
- Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, MD 21231, USA.
| |
Collapse
|
16
|
Seasonal and post-trauma remodeling in cone-dominant ground squirrel retina. Exp Eye Res 2016; 150:90-105. [PMID: 26808487 DOI: 10.1016/j.exer.2016.01.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/14/2015] [Accepted: 01/14/2016] [Indexed: 02/02/2023]
Abstract
With a photoreceptor mosaic containing ∼85% cones, the ground squirrel is one of the richest known mammalian sources of these important retinal cells. It also has a visual ecology much like the human's. While the ground squirrel retina is understandably prominent in the cone biochemistry, physiology, and circuitry literature, far less is known about the remodeling potential of its retinal pigment epithelium, neurons, macroglia, or microglia. This review aims to summarize the data from ground squirrel retina to this point in time, and to relate them to data from other brain areas where appropriate. We begin with a survey of the ground squirrel visual system, making comparisons with traditional rodent models and with human. Because this animal's status as a hibernator often goes unnoticed in the vision literature, we then present a brief primer on hibernation biology. Next we review what is known about ground squirrel retinal remodeling concurrent with deep torpor and with rapid recovery upon re-warming. Notable here is rapidly-reversible, temperature-dependent structural plasticity of cone ribbon synapses, as well as pre- and post-synaptic plasticity throughout diverse brain regions. It is not yet clear if retinal cell types other than cones engage in torpor-associated synaptic remodeling. We end with the small but intriguing literature on the ground squirrel retina's remodeling responses to insult by retinal detachment. Notable for widespread loss of (cone) photoreceptors, there is surprisingly little remodeling of the RPE or Müller cells. Microglial activation appears minimal, and remodeling of surviving second- and third-order neurons seems absent, but both require further study. In contrast, traumatic brain injury in the ground squirrel elicits typical macroglial and microglial responses. Overall, the data to date strongly suggest a heretofore unrecognized, natural checkpoint between retinal deafferentiation and RPE and Müller cell remodeling events. As we continue to discover them, the unique ways by which ground squirrel retina responds to hibernation or injury may be adaptable to therapeutic use.
Collapse
|
17
|
Butz E, Peichl L, Müller B. Cone bipolar cells in the retina of the microbat Carollia perspicillata. J Comp Neurol 2015; 523:963-81. [PMID: 25521284 DOI: 10.1002/cne.23726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 11/22/2014] [Accepted: 12/03/2014] [Indexed: 11/08/2022]
Abstract
We studied the retinal cone bipolar cells of Carollia perspicillata, a microchiropteran bat of the phyllostomid family. Microchiroptera are strongly nocturnal, with small eyes and rod-dominated retinae. However, they also possess a significant cone population (2-4%) comprising two spectral types, which are hence the basis for daylight and color vision. We used antibodies against the calcium-binding protein recoverin and the carbohydrate epitope 15 (CD15) as reliable markers for certain cone bipolar cells. Dye injections of recoverin- or CD15-prelabeled cone bipolar cells in vertical slices revealed the morphology of the axon terminal system of individual bipolar cells. Seven distinct cone bipolar cell types were identified. They differed in the morphology and stratification level of their axon terminal system in the inner plexiform layer and in immunoreactivity for recoverin and/or CD15. Additional immunocytochemical markers were used to assess the functional ON/OFF subdivision of the inner plexiform layer. In line with the extended thickness of the ON sublayer of the inner plexiform layer in the microbat retina, more ON than OFF cone bipolar cell types were found, namely, four versus three. Most likely, in the bats' predominantly dark environment, ON signals have greater importance for contrast perception. We conclude that the microbat retina conforms to the general mammalian blueprint, in which light signals of intensities above rod sensitivity are detected by cones and transmitted to various types of ON and OFF cone bipolar cells.
Collapse
Affiliation(s)
- Elisabeth Butz
- Max Planck Institute for Brain Research, 60438, Frankfurt am Main, Germany
| | | | | |
Collapse
|
18
|
Abstract
We review the features of the S-cone system that appeal to the psychophysicist and summarize the celebrated characteristics of S-cone mediated vision. Two factors are emphasized: First, the fine stimulus control that is required to isolate putative visual mechanisms and second, the relationship between physiological data and psychophysical approaches. We review convergent findings from physiology and psychophysics with respect to asymmetries in the retinal wiring of S-ON and S-OFF visual pathways, and the associated treatment of increments and decrements in the S-cone system. Beyond the retina, we consider the lack of S-cone projections to superior colliculus and the use of S-cone stimuli in experimental psychology, for example to address questions about the mechanisms of visually driven attention. Careful selection of stimulus parameters enables psychophysicists to produce entirely reversible, temporary, "lesions," and to assess behavior in the absence of specific neural subsystems.
Collapse
|
19
|
Horwitz GD. What studies of macaque monkeys have told us about human color vision. Neuroscience 2014; 296:110-5. [PMID: 25445192 DOI: 10.1016/j.neuroscience.2014.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/29/2014] [Accepted: 10/01/2014] [Indexed: 11/29/2022]
Abstract
Animal models are a necessary component of systems neuroscience research. Determining which animal model to use for a given study involves a complicated calculus. Some experimental manipulations are easily made in some animal models but impossible in others. Some animal models are similar to humans with respect to particular scientific questions, and others are less so. In this review, I discuss work done in my laboratory to investigate the neural mechanisms of color vision in the rhesus macaque. The emphasis is on the strengths of the macaque model, but shortcomings are also discussed.
Collapse
Affiliation(s)
- G D Horwitz
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States; Washington National Primate Research Center, Seattle, WA, United States.
| |
Collapse
|
20
|
Weltzien F, Percival KA, Martin PR, Grünert U. Analysis of bipolar and amacrine populations in marmoset retina. J Comp Neurol 2014; 523:313-34. [DOI: 10.1002/cne.23683] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/22/2014] [Accepted: 09/22/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Felix Weltzien
- Department of Ophthalmology and Save Sight Institute; The University of Sydney; Sydney New South Wales 2000 Australia
| | - Kumiko A. Percival
- Department of Ophthalmology and Save Sight Institute; The University of Sydney; Sydney New South Wales 2000 Australia
| | - Paul R. Martin
- Department of Ophthalmology and Save Sight Institute; The University of Sydney; Sydney New South Wales 2000 Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function; The University of Sydney; Sydney New South Wales 2000 Australia
- School of Medical Sciences, The University of Sydney; Sydney New South Wales 2000 Australia
| | - Ulrike Grünert
- Department of Ophthalmology and Save Sight Institute; The University of Sydney; Sydney New South Wales 2000 Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function; The University of Sydney; Sydney New South Wales 2000 Australia
- School of Medical Sciences, The University of Sydney; Sydney New South Wales 2000 Australia
| |
Collapse
|
21
|
Pietersen ANJ, Cheong SK, Solomon SG, Tailby C, Martin PR. Temporal response properties of koniocellular (blue-on and blue-off) cells in marmoset lateral geniculate nucleus. J Neurophysiol 2014; 112:1421-38. [DOI: 10.1152/jn.00077.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Visual perception requires integrating signals arriving at different times from parallel visual streams. For example, signals carried on the phasic-magnocellular (MC) pathway reach the cerebral cortex pathways some tens of milliseconds before signals traveling on the tonic-parvocellular (PC) pathway. Visual latencies of cells in the koniocellular (KC) pathway have not been specifically studied in simian primates. Here we compared MC and PC cells to “blue-on” (BON) and “blue-off” (BOF) KC cells; these cells carry visual signals originating in short-wavelength-sensitive (S) cones. We made extracellular recordings in the lateral geniculate nucleus (LGN) of anesthetized marmosets. We found that BON visual latencies are 10–20 ms longer than those of PC or MC cells. A small number of recorded BOF cells ( n = 7) had latencies 10–20 ms longer than those of BON cells. Within all cell groups, latencies of foveal receptive fields (<10° eccentricity) were longer (by 3–8 ms) than latencies of peripheral receptive fields (>10°). Latencies of yellow-off inputs to BON cells lagged the blue-on inputs by up to 30 ms, but no differences in visual latency were seen on comparing marmosets expressing dichromatic (“red-green color-blind”) or trichromatic color vision phenotype. We conclude that S-cone signals leaving the LGN on KC pathways are delayed with respect to signals traveling on PC and MC pathways. Cortical circuits serving color vision must therefore integrate across delays in (red-green) chromatic signals carried by PC cells and (blue-yellow) signals carried by KC cells.
Collapse
Affiliation(s)
- A. N. J. Pietersen
- Australian Research Council Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, Australia
- Save Sight Institute, University of Sydney, Sydney, Australia
| | - S. K. Cheong
- Australian Research Council Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, Australia
- Save Sight Institute, University of Sydney, Sydney, Australia
| | - S. G. Solomon
- School of Medical Sciences, University of Sydney, Sydney, Australia
- Department of Experimental Psychology, University College London, London, United Kingdom; and
| | - C. Tailby
- School of Medical Sciences, University of Sydney, Sydney, Australia
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Australia
| | - P. R. Martin
- Australian Research Council Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, Australia
- Save Sight Institute, University of Sydney, Sydney, Australia
- School of Medical Sciences, University of Sydney, Sydney, Australia
| |
Collapse
|
22
|
Hoon M, Okawa H, Della Santina L, Wong ROL. Functional architecture of the retina: development and disease. Prog Retin Eye Res 2014; 42:44-84. [PMID: 24984227 DOI: 10.1016/j.preteyeres.2014.06.003] [Citation(s) in RCA: 348] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/08/2014] [Accepted: 06/22/2014] [Indexed: 12/22/2022]
Abstract
Structure and function are highly correlated in the vertebrate retina, a sensory tissue that is organized into cell layers with microcircuits working in parallel and together to encode visual information. All vertebrate retinas share a fundamental plan, comprising five major neuronal cell classes with cell body distributions and connectivity arranged in stereotypic patterns. Conserved features in retinal design have enabled detailed analysis and comparisons of structure, connectivity and function across species. Each species, however, can adopt structural and/or functional retinal specializations, implementing variations to the basic design in order to satisfy unique requirements in visual function. Recent advances in molecular tools, imaging and electrophysiological approaches have greatly facilitated identification of the cellular and molecular mechanisms that establish the fundamental organization of the retina and the specializations of its microcircuits during development. Here, we review advances in our understanding of how these mechanisms act to shape structure and function at the single cell level, to coordinate the assembly of cell populations, and to define their specific circuitry. We also highlight how structure is rearranged and function is disrupted in disease, and discuss current approaches to re-establish the intricate functional architecture of the retina.
Collapse
Affiliation(s)
- Mrinalini Hoon
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Haruhisa Okawa
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Luca Della Santina
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA.
| |
Collapse
|