1
|
Nagel-Wolfrum K, Fadl BR, Becker MM, Wunderlich KA, Schäfer J, Sturm D, Fritze J, Gür B, Kaplan L, Andreani T, Goldmann T, Brooks M, Starostik MR, Lokhande A, Apel M, Fath KR, Stingl K, Kohl S, DeAngelis MM, Schlötzer-Schrehardt U, Kim IK, Owen LA, Vetter JM, Pfeiffer N, Andrade-Navarro MA, Grosche A, Swaroop A, Wolfrum U. Expression and subcellular localization of USH1C/harmonin in human retina provides insights into pathomechanisms and therapy. Hum Mol Genet 2023; 32:431-449. [PMID: 35997788 PMCID: PMC9851744 DOI: 10.1093/hmg/ddac211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 01/24/2023] Open
Abstract
Usher syndrome (USH) is the most common form of hereditary deaf-blindness in humans. USH is a complex genetic disorder, assigned to three clinical subtypes differing in onset, course and severity, with USH1 being the most severe. Rodent USH1 models do not reflect the ocular phenotype observed in human patients to date; hence, little is known about the pathophysiology of USH1 in the human eye. One of the USH1 genes, USH1C, exhibits extensive alternative splicing and encodes numerous harmonin protein isoforms that function as scaffolds for organizing the USH interactome. RNA-seq analysis of human retinae uncovered harmonin_a1 as the most abundant transcript of USH1C. Bulk RNA-seq analysis and immunoblotting showed abundant expression of harmonin in Müller glia cells (MGCs) and retinal neurons. Furthermore, harmonin was localized in the terminal endfeet and apical microvilli of MGCs, presynaptic region (pedicle) of cones and outer segments (OS) of rods as well as at adhesive junctions between MGCs and photoreceptor cells (PRCs) in the outer limiting membrane (OLM). Our data provide evidence for the interaction of harmonin with OLM molecules in PRCs and MGCs and rhodopsin in PRCs. Subcellular expression and colocalization of harmonin correlate with the clinical phenotype observed in USH1C patients. We also demonstrate that primary cilia defects in USH1C patient-derived fibroblasts could be reverted by the delivery of harmonin_a1 transcript isoform. Our studies thus provide novel insights into PRC cell biology, USH1C pathophysiology and development of gene therapy treatment(s).
Collapse
Affiliation(s)
- Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Benjamin R Fadl
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mirjana M Becker
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Kirsten A Wunderlich
- Department of Physiological Genomics, BioMedical Center, Ludwig-Maximilian University Munich, 82152 Planegg-Martinsried, Germany
| | - Jessica Schäfer
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Daniel Sturm
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Jacques Fritze
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Burcu Gür
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Lew Kaplan
- Department of Physiological Genomics, BioMedical Center, Ludwig-Maximilian University Munich, 82152 Planegg-Martinsried, Germany
| | - Tommaso Andreani
- Computational Biology and Data Mining, Institute of Organismic & Molecular Evolution Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Tobias Goldmann
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Matthew Brooks
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Margaret R Starostik
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anagha Lokhande
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Melissa Apel
- Department of Ophthalmology, University Medical Centre Mainz, 55131 Mainz, Germany
| | - Karl R Fath
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Department of Biology, Queens College of CUNY, Kissena Blvd, Flushing, NY 11367, USA
| | - Katarina Stingl
- University Eye Hospital, Centre for Ophthalmology, University of Tubingen, 72076 Tubingen, Germany
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tubingen, 72076 Tubingen, Germany
| | - Margaret M DeAngelis
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, NY 14209, USA
| | | | - Ivana K Kim
- Retina Service, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Leah A Owen
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Jan M Vetter
- Department of Ophthalmology, University Medical Centre Mainz, 55131 Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Centre Mainz, 55131 Mainz, Germany
| | - Miguel A Andrade-Navarro
- Computational Biology and Data Mining, Institute of Organismic & Molecular Evolution Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Antje Grosche
- Department of Physiological Genomics, BioMedical Center, Ludwig-Maximilian University Munich, 82152 Planegg-Martinsried, Germany
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| |
Collapse
|
2
|
Retinal Structure and Function in a Knock-In Mouse Model for the FAM161A-p.Arg523* Human Nonsense Pathogenic Variant. OPHTHALMOLOGY SCIENCE 2022; 3:100229. [DOI: 10.1016/j.xops.2022.100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/28/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
|
3
|
Gene-independent therapeutic interventions to maintain and restore light sensitivity in degenerating photoreceptors. Prog Retin Eye Res 2022; 90:101065. [PMID: 35562270 DOI: 10.1016/j.preteyeres.2022.101065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 12/14/2022]
Abstract
Neurodegenerative retinal diseases are a prime cause of blindness in industrialized countries. In many cases, there are no therapeutic treatments, although they are essential to improve patients' quality of life. A set of disease-causing genes, which primarily affect photoreceptors, has already been identified and is of major interest for developing gene therapies. Nevertheless, depending on the nature and the state of the disease, gene-independent strategies are needed. Various strategies to halt disease progression or maintain function of the retina are under research. These therapeutic interventions include neuroprotection, direct reprogramming of affected photoreceptors, the application of non-coding RNAs, the generation of artificial photoreceptors by optogenetics and cell replacement strategies. During recent years, major breakthroughs have been made such as the first optogenetic application to a blind patient whose visual function partially recovered by targeting retinal ganglion cells. Also, RPE cell transplantation therapies are under clinical investigation and show great promise to improve visual function in blind patients. These cells are generated from human stem cells. Similar therapies for replacing photoreceptors are extensively tested in pre-clinical models. This marks just the start of promising new cures taking advantage of developments in the areas of genetic engineering, optogenetics, and stem-cell research. In this review, we present the recent therapeutic advances of gene-independent approaches that are currently under clinical evaluation. Our main focus is on photoreceptors as these sensory cells are highly vulnerable to degenerative diseases, and are crucial for light detection.
Collapse
|
4
|
Beryozkin A, Samanta A, Gopalakrishnan P, Khateb S, Banin E, Sharon D, Nagel-Wolfrum K. Translational Read-Through Drugs (TRIDs) Are Able to Restore Protein Expression and Ciliogenesis in Fibroblasts of Patients with Retinitis Pigmentosa Caused by a Premature Termination Codon in FAM161A. Int J Mol Sci 2022; 23:ijms23073541. [PMID: 35408898 PMCID: PMC8998412 DOI: 10.3390/ijms23073541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
Ataluren and Gentamicin are translational readthrough drugs (TRIDs) that induce premature termination codon (PTC) readthrough, resulting in the production of full-length proteins that usually harbor a single missense substitution. FAM161A is a ciliary protein which is expressed in photoreceptors, and pathogenic variants in this gene cause retinitis pigmentosa (RP). Applying TRIDs on fibroblasts from RP patients due to PTC in the FAM161A (p.Arg523*) gene may uncover whether TRIDs can restore expression, localization and function of this protein. Fibroblasts from six patients and five age-matched controls were starved prior to treatment with ataluren or gentamicin, and later FAM161A expression, ciliogenesis and cilia length were analyzed. In contrast to control cells, fibroblasts of patients did not express the FAM161A protein, showed a lower percentage of ciliated cells and grew shorter cilia after starvation. Ataluren and Gentamicin treatment were able to restore FAM161A expression, localization and co-localization with α-tubulin. Ciliogenesis and cilia length were restored following Ataluren treatment almost up to a level which was observed in control cells. Gentamicin was less efficient in ciliogenesis compared to Ataluren. Our results provide a proof-of-concept that PTCs in FAM161A can be effectively suppressed by Ataluren or Gentamicin, resulting in a full-length functional protein.
Collapse
Affiliation(s)
- Avigail Beryozkin
- Hadassah Medical Center, Department of Ophthalmology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (A.B.); (P.G.); (S.K.); (E.B.); (D.S.)
| | - Ananya Samanta
- Institute of Molecular Physiology, Johannes Gutenberg University of Mainz, 55122 Mainz, Germany;
- Institute of Development Biology and Neurobiology, Johannes Gutenberg University of Mainz, 55122 Mainz, Germany
| | - Prakadeeswari Gopalakrishnan
- Hadassah Medical Center, Department of Ophthalmology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (A.B.); (P.G.); (S.K.); (E.B.); (D.S.)
| | - Samer Khateb
- Hadassah Medical Center, Department of Ophthalmology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (A.B.); (P.G.); (S.K.); (E.B.); (D.S.)
| | - Eyal Banin
- Hadassah Medical Center, Department of Ophthalmology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (A.B.); (P.G.); (S.K.); (E.B.); (D.S.)
| | - Dror Sharon
- Hadassah Medical Center, Department of Ophthalmology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (A.B.); (P.G.); (S.K.); (E.B.); (D.S.)
| | - Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Johannes Gutenberg University of Mainz, 55122 Mainz, Germany;
- Institute of Development Biology and Neurobiology, Johannes Gutenberg University of Mainz, 55122 Mainz, Germany
- Correspondence:
| |
Collapse
|
5
|
Schneider N, Sundaresan Y, Gopalakrishnan P, Beryozkin A, Hanany M, Levanon EY, Banin E, Ben-Aroya S, Sharon D. Inherited retinal diseases: Linking genes, disease-causing variants, and relevant therapeutic modalities. Prog Retin Eye Res 2021; 89:101029. [PMID: 34839010 DOI: 10.1016/j.preteyeres.2021.101029] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Inherited retinal diseases (IRDs) are a clinically complex and heterogenous group of visual impairment phenotypes caused by pathogenic variants in at least 277 nuclear and mitochondrial genes, affecting different retinal regions, and depleting the vision of affected individuals. Genes that cause IRDs when mutated are unique by possessing differing genotype-phenotype correlations, varying inheritance patterns, hypomorphic alleles, and modifier genes thus complicating genetic interpretation. Next-generation sequencing has greatly advanced the identification of novel IRD-related genes and pathogenic variants in the last decade. For this review, we performed an in-depth literature search which allowed for compilation of the Global Retinal Inherited Disease (GRID) dataset containing 4,798 discrete variants and 17,299 alleles published in 31 papers, showing a wide range of frequencies and complexities among the 194 genes reported in GRID, with 65% of pathogenic variants being unique to a single individual. A better understanding of IRD-related gene distribution, gene complexity, and variant types allow for improved genetic testing and therapies. Current genetic therapeutic methods are also quite diverse and rely on variant identification, and range from whole gene replacement to single nucleotide editing at the DNA or RNA levels. IRDs and their suitable therapies thus require a range of effective disease modelling in human cells, granting insight into disease mechanisms and testing of possible treatments. This review summarizes genetic and therapeutic modalities of IRDs, provides new analyses of IRD-related genes (GRID and complexity scores), and provides information to match genetic-based therapies such as gene-specific and variant-specific therapies to the appropriate individuals.
Collapse
Affiliation(s)
- Nina Schneider
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Yogapriya Sundaresan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Prakadeeswari Gopalakrishnan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Avigail Beryozkin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Mor Hanany
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Shay Ben-Aroya
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel.
| |
Collapse
|
6
|
Delivery of Genetic Information: Viral Vector and Nonviral Vector Gene Therapies. Int Ophthalmol Clin 2021; 61:35-57. [PMID: 34196317 DOI: 10.1097/iio.0000000000000360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Fry LE, McClements ME, MacLaren RE. Analysis of Pathogenic Variants Correctable With CRISPR Base Editing Among Patients With Recessive Inherited Retinal Degeneration. JAMA Ophthalmol 2021; 139:319-328. [PMID: 33507217 DOI: 10.1001/jamaophthalmol.2020.6418] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Importance Many common inherited retinal diseases are not easily treated with gene therapy. Gene editing with base editors may allow the targeted repair of single-nucleotide transition variants in DNA and RNA. It is unknown how many patients have pathogenic variants that are correctable with a base editing strategy. Objective To assess the prevalence and spectrum of pathogenic single-nucleotide variants amenable to base editing in common large recessively inherited genes that are associated with inherited retinal degeneration. Design, Setting, and Participants In this retrospective cross-sectional study, nonidentifiable records of patients with biallelic pathogenic variants of genes associated with inherited retinal degeneration between July 2013 and December 2019 were analyzed using data from the Oxford University Hospitals Medical Genetics Laboratories, the Leiden Open Variation Database, and previously published studies. Six candidate genes (ABCA4, CDH23, CEP290, EYS, MYO7A, and USH2A), which were determined to be the most common recessive genes with coding sequences not deliverable in a single adeno-associated viral vector, were examined. Data were analyzed from April 16 to May 11, 2020. Main Outcomes and Measures Proportion of alleles with a pathogenic transition variant that is potentially correctable with a base editing strategy and proportion of patients with a base-editable allele. Results A total of 12 369 alleles from the Leiden Open Variation Database and 179 patients who received diagnoses through the genetic service of the Oxford University Hospitals Medical Genetics Laboratories were analyzed. Editable variants accounted for 53% of all pathogenic variants in the candidate genes contained in the Leiden Open Variation Database. The proportion of pathogenic alleles that were editable varied by gene; 63.1% of alleles in ABCA4, 62.7% of alleles in CDH23, 53.8% of alleles in MYO7A, 41.6% of alleles in CEP290, 37.3% of alleles in USH2A, and 22.2% of alleles in EYS were editable. The 5 most common editable pathogenic variants of each gene accounted for a mean (SD) of 19.1% (9.5%) of all pathogenic alleles within each gene. In the Oxford cohort, 136 of 179 patients (76.0%) had at least 1 editable allele. A total of 53 of 107 patients (49.5%) with biallelic pathogenic variants in the gene ABCA4 and 16 of 56 patients (28.6%) with biallelic pathogenic variants in the gene USH2A had 1 of the 5 most common editable alleles. Conclusions and Relevance This study found that pathogenic variants amenable to base editing commonly occur in inherited retinal degeneration. These findings, if generalized to other cohorts, provide an approach for developing base editing therapies to treat retinal degeneration not amenable to gene therapy.
Collapse
Affiliation(s)
- Lewis E Fry
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford, United Kingdom
| | - Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford, United Kingdom
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
8
|
Abstract
INTRODUCTION In the retina, noncoding RNA (ncRNA) plays an integral role in regulating apoptosis, inflammatory responses, visual perception, and photo-transduction, with altered levels reported in diseased states. AREAS COVERED MicroRNA (miRNA), a class of ncRNA, regulates post-transcription gene expression through the binding of complementary sites of target messenger RNA (mRNA) with resulting translational repression. Small-interfering RNA (siRNA) is a double-stranded RNA (dsRNA) that regulates gene expression, leading to selective silencing of genes through a process called RNA interference (RNAi). Another form of RNAi involves short hairpin RNA (shRNA). In age-related macular degeneration (AMD) and diabetic retinopathy (DR), miRNA has been implicated in the regulation of angiogenesis, oxidative stress, immune response, and inflammation. EXPERT OPINION Many RNA-based therapies in development are conveniently administered intravitreally, with the potential for pan-retinal effect. The majority of these RNA therapeutics are synthetic ncRNA's and hold promise for the treatment of AMD, DR, and inherited retinal diseases (IRDs). These RNA-based therapies include siRNA therapy with its high specificity, shRNA to 'knock down' autosomal dominant toxic gain of function-mutated genes, antisense oligonucleotides (ASOs), which can restore splicing defects, and translational read-through inducing drugs (TRIDs) to increase expression of full-length protein from genes with premature stop codons.
Collapse
Affiliation(s)
- Michael C Gemayel
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, IN, USA
| | - Ashay D Bhatwadekar
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, IN, USA
| | - Thomas Ciulla
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, IN, USA.,Preclinical and Clinical Development, Clearside Biomedical, Inc, Alpharetta, GA, USA.,Midwest Eye Institute, Indianapolis, IN, USA
| |
Collapse
|
9
|
Crawford DK, Vanlandingham P, Schneider S, Goddeeris MM. Intravitreal administration of small molecule read-through agents demonstrate functional activity in a nonsense mutation mouse model. Exp Eye Res 2020; 201:108274. [PMID: 33017612 DOI: 10.1016/j.exer.2020.108274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/04/2020] [Accepted: 09/25/2020] [Indexed: 11/30/2022]
Abstract
The prevalence of nonsense mutations as a class within genetic diseases such as inherited retinal disorders (IRDs) presents an opportunity to develop a singular, common therapeutic agent for patients whose treatment options are otherwise limited. We propose a novel approach to addressing IRDs utilizing Eukaryotic Ribosome Selective Glycosides, ELX-01 and ELX-06, delivered to the eye by intravitreal (IVT) injection. We assessed read-through activity in vitro using a plasmid-based dual luciferase assay and in vivo in a mouse model of oculocutaneous albinism type 2. These models interrogate a naturally occurring R262X nonsense mutation in the OCA2 gene. ELX-01 and ELX-06 both produced a concentration-dependent increase in read-through of the OCA2 R262X mutation in the dual luciferase assay, with an effect at the top concentration which is superior to both gentamicin and G418. When testing both compounds in vivo, a single IVT injection produced a dose-dependent increase in melanin, consistent with compound read-through activity and functional restoration of the Oca2 protein. These results establish that ELX-01 and ELX-06 produce read-through of a premature stop codon in the OCA2 gene both in vitro and in vivo. The in vivo results suggest that these compounds can be dosed IVT to achieve read-through at the back of the eye. These data also suggest that ELX-01 or ELX-06 could serve as a common therapeutic agent across nonsense mutation-mediated IRDs and help to establish a target exposure range for development of a sustained release IVT formulation.
Collapse
Affiliation(s)
- Daniel K Crawford
- Eloxx Pharmaceuticals, Inc., 950 Winter Street, Waltham, MA, 02451, USA
| | | | - Susan Schneider
- Eloxx Pharmaceuticals, Inc., 950 Winter Street, Waltham, MA, 02451, USA
| | | |
Collapse
|
10
|
Sensing through Non-Sensing Ocular Ion Channels. Int J Mol Sci 2020; 21:ijms21186925. [PMID: 32967234 PMCID: PMC7554890 DOI: 10.3390/ijms21186925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Ion channels are membrane-spanning integral proteins expressed in multiple organs, including the eye. In the eye, ion channels are involved in various physiological processes, like signal transmission and visual processing. A wide range of mutations have been reported in the corresponding genes and their interacting subunit coding genes, which contribute significantly to an array of blindness, termed ocular channelopathies. These mutations result in either a loss- or gain-of channel functions affecting the structure, assembly, trafficking, and localization of channel proteins. A dominant-negative effect is caused in a few channels formed by the assembly of several subunits that exist as homo- or heteromeric proteins. Here, we review the role of different mutations in switching a “sensing” ion channel to “non-sensing,” leading to ocular channelopathies like Leber’s congenital amaurosis 16 (LCA16), cone dystrophy, congenital stationary night blindness (CSNB), achromatopsia, bestrophinopathies, retinitis pigmentosa, etc. We also discuss the various in vitro and in vivo disease models available to investigate the impact of mutations on channel properties, to dissect the disease mechanism, and understand the pathophysiology. Innovating the potential pharmacological and therapeutic approaches and their efficient delivery to the eye for reversing a “non-sensing” channel to “sensing” would be life-changing.
Collapse
|
11
|
The photoreceptor cilium and its diseases. Curr Opin Genet Dev 2019; 56:22-33. [DOI: 10.1016/j.gde.2019.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/21/2019] [Accepted: 05/11/2019] [Indexed: 12/26/2022]
|
12
|
Huang D, Fletcher S, Wilton SD, Palmer N, McLenachan S, Mackey DA, Chen FK. Inherited Retinal Disease Therapies Targeting Precursor Messenger Ribonucleic Acid. Vision (Basel) 2017; 1:vision1030022. [PMID: 31740647 PMCID: PMC6836112 DOI: 10.3390/vision1030022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/24/2017] [Accepted: 08/24/2017] [Indexed: 02/07/2023] Open
Abstract
Inherited retinal diseases are an extremely diverse group of genetically and phenotypically heterogeneous conditions characterized by variable maturation of retinal development, impairment of photoreceptor cell function and gradual loss of photoreceptor cells and vision. Significant progress has been made over the last two decades in identifying the many genes implicated in inherited retinal diseases and developing novel therapies to address the underlying genetic defects. Approximately one-quarter of exonic mutations related to human inherited diseases are likely to induce aberrant splicing products, providing opportunities for the development of novel therapeutics that target splicing processes. The feasibility of antisense oligomer mediated splice intervention to treat inherited diseases has been demonstrated in vitro, in vivo and in clinical trials. In this review, we will discuss therapeutic approaches to treat inherited retinal disease, including strategies to correct splicing and modify exon selection at the level of pre-mRNA. The challenges of clinical translation of this class of emerging therapeutics will also be discussed.
Collapse
Affiliation(s)
- Di Huang
- Molecular Therapy Laboratory, Murdoch University, Murdoch 6150, Australia
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands 6009, Australia
- Perron Institute, 4th Floor A Block, Queen Elizabeth II Medical Centre, Verdun Street, Nedlands 6009, Australia
| | - Sue Fletcher
- Molecular Therapy Laboratory, Murdoch University, Murdoch 6150, Australia
- Perron Institute, 4th Floor A Block, Queen Elizabeth II Medical Centre, Verdun Street, Nedlands 6009, Australia
| | - Steve D. Wilton
- Molecular Therapy Laboratory, Murdoch University, Murdoch 6150, Australia
- Perron Institute, 4th Floor A Block, Queen Elizabeth II Medical Centre, Verdun Street, Nedlands 6009, Australia
| | - Norman Palmer
- Perron Institute, 4th Floor A Block, Queen Elizabeth II Medical Centre, Verdun Street, Nedlands 6009, Australia
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands 6009, Australia
| | - David A. Mackey
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands 6009, Australia
| | - Fred K. Chen
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands 6009, Australia
- Department of Ophthalmology, Royal Perth Hospital, Perth 6000, Australia
- Correspondence: ; Tel.: +61-8-9381-0817
| |
Collapse
|
13
|
Neuhaus C, Eisenberger T, Decker C, Nagl S, Blank C, Pfister M, Kennerknecht I, Müller-Hofstede C, Charbel Issa P, Heller R, Beck B, Rüther K, Mitter D, Rohrschneider K, Steinhauer U, Korbmacher HM, Huhle D, Elsayed SM, Taha HM, Baig SM, Stöhr H, Preising M, Markus S, Moeller F, Lorenz B, Nagel-Wolfrum K, Khan AO, Bolz HJ. Next-generation sequencing reveals the mutational landscape of clinically diagnosed Usher syndrome: copy number variations, phenocopies, a predominant target for translational read-through, and PEX26 mutated in Heimler syndrome. Mol Genet Genomic Med 2017; 5:531-552. [PMID: 28944237 PMCID: PMC5606877 DOI: 10.1002/mgg3.312] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/06/2017] [Accepted: 06/09/2017] [Indexed: 12/23/2022] Open
Abstract
Background Combined retinal degeneration and sensorineural hearing impairment is mostly due to autosomal recessive Usher syndrome (USH1: congenital deafness, early retinitis pigmentosa (RP); USH2: progressive hearing impairment, RP). Methods Sanger sequencing and NGS of 112 genes (Usher syndrome, nonsyndromic deafness, overlapping conditions), MLPA, and array‐CGH were conducted in 138 patients clinically diagnosed with Usher syndrome. Results A molecular diagnosis was achieved in 97% of both USH1 and USH2 patients, with biallelic mutations in 97% (USH1) and 90% (USH2), respectively. Quantitative readout reliably detected CNVs (confirmed by MLPA or array‐CGH), qualifying targeted NGS as one tool for detecting point mutations and CNVs. CNVs accounted for 10% of identified USH2A alleles, often in trans to seemingly monoallelic point mutations. We demonstrate PTC124‐induced read‐through of the common p.Trp3955* nonsense mutation (13% of detected USH2A alleles), a potential therapy target. Usher gene mutations were found in most patients with atypical Usher syndrome, but the diagnosis was adjusted in case of double homozygosity for mutations in OTOA and NR2E3, genes implicated in isolated deafness and RP. Two patients with additional enamel dysplasia had biallelic PEX26 mutations, for the first time linking this gene to Heimler syndrome. Conclusion Targeted NGS not restricted to Usher genes proved beneficial in uncovering conditions mimicking Usher syndrome.
Collapse
Affiliation(s)
| | | | | | - Sandra Nagl
- Bioscientia Center for Human GeneticsIngelheimGermany
| | | | - Markus Pfister
- HNO-Praxis SarnenSarnenSwitzerland.,Molecular Genetics, THRCDepartment of OtolaryngologyUniversity of TübingenTübingenGermany
| | - Ingo Kennerknecht
- Institute of Human GeneticsWestfälische Wilhelms-UniversitätMünsterGermany
| | | | - Peter Charbel Issa
- Department of OphthalmologyUniversity of BonnBonnGermany.,Center for Rare Diseases Bonn (ZSEB)University of BonnBonnGermany.,Oxford Eye HospitalUniversity of OxfordOxfordUK
| | - Raoul Heller
- Institute of Human GeneticsUniversity Hospital of CologneCologneGermany
| | - Bodo Beck
- Institute of Human GeneticsUniversity Hospital of CologneCologneGermany
| | | | - Diana Mitter
- Institute of Human GeneticsUniversity of Leipzig Hospitals and ClinicsLeipzigGermany
| | | | | | - Heike M Korbmacher
- Department of OrthodonticsGiessen and Marburg University Hospital, Marburg CampusMarburgGermany
| | | | - Solaf M Elsayed
- Medical Genetics CenterCairoEgypt.,Children's HospitalAin Shams UniversityCairoEgypt
| | | | - Shahid M Baig
- Human Molecular Genetics LaboratoryHealth Biotechnology DivisionNational Institute for Biotechnology and Genetic Engineering (NIBGE)FaisalabadPakistan
| | - Heidi Stöhr
- Department of Human GeneticsUniversity Medical Center RegensburgRegensburgGermany
| | - Markus Preising
- Department of OphthalmologyJustus-Liebig-University GiessenGiessenGermany
| | | | - Fabian Moeller
- Department of Cell and Matrix BiologyInstitute of Zoology, Johannes GutenbergUniversity of MainzMainzGermany
| | - Birgit Lorenz
- Department of OphthalmologyJustus-Liebig-University GiessenGiessenGermany
| | - Kerstin Nagel-Wolfrum
- Department of Cell and Matrix BiologyInstitute of Zoology, Johannes GutenbergUniversity of MainzMainzGermany
| | - Arif O Khan
- Division of Pediatric OphthalmologyKing Khaled Eye Specialist HospitalRiyadhSaudi Arabia.,Eye InstituteCleveland ClinicAbu DhabiUAE
| | - Hanno J Bolz
- Bioscientia Center for Human GeneticsIngelheimGermany.,Institute of Human GeneticsUniversity Hospital of CologneCologneGermany
| |
Collapse
|
14
|
May-Simera H, Nagel-Wolfrum K, Wolfrum U. Cilia - The sensory antennae in the eye. Prog Retin Eye Res 2017; 60:144-180. [PMID: 28504201 DOI: 10.1016/j.preteyeres.2017.05.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022]
Abstract
Cilia are hair-like projections found on almost all cells in the human body. Originally believed to function merely in motility, the function of solitary non-motile (primary) cilia was long overlooked. Recent research has demonstrated that primary cilia function as signalling hubs that sense environmental cues and are pivotal for organ development and function, tissue hoemoestasis, and maintenance of human health. Cilia share a common anatomy and their diverse functional features are achieved by evolutionarily conserved functional modules, organized into sub-compartments. Defects in these functional modules are responsible for a rapidly growing list of human diseases collectively termed ciliopathies. Ocular pathogenesis is common in virtually all classes of syndromic ciliopathies, and disruptions in cilia genes have been found to be causative in a growing number of non-syndromic retinal dystrophies. This review will address what is currently known about cilia contribution to visual function. We will focus on the molecular and cellular functions of ciliary proteins and their role in the photoreceptor sensory cilia and their visual phenotypes. We also highlight other ciliated cell types in tissues of the eye (e.g. lens, RPE and Müller glia cells) discussing their possible contribution to disease progression. Progress in basic research on the cilia function in the eye is paving the way for therapeutic options for retinal ciliopathies. In the final section we describe the latest advancements in gene therapy, read-through of non-sense mutations and stem cell therapy, all being adopted to treat cilia dysfunction in the retina.
Collapse
Affiliation(s)
- Helen May-Simera
- Institute of Molecular Physiology, Cilia Biology, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany.
| |
Collapse
|
15
|
Richardson R, Smart M, Tracey-White D, Webster AR, Moosajee M. Mechanism and evidence of nonsense suppression therapy for genetic eye disorders. Exp Eye Res 2017; 155:24-37. [PMID: 28065590 DOI: 10.1016/j.exer.2017.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/24/2016] [Accepted: 01/04/2017] [Indexed: 01/09/2023]
Abstract
Between 5 and 70% of genetic disease is caused by in-frame nonsense mutations, which introduce a premature termination codon (PTC) within the disease-causing gene. Consequently, during translation, non-functional or gain-of-function truncated proteins of pathological significance, are formed. Approximately 50% of all inherited retinal disorders have been associated with PTCs, highlighting the importance of novel pharmacological or gene correction therapies in ocular disease. Pharmacological nonsense suppression of PTCs could delineate a therapeutic strategy that treats the mutation in a gene- and disease-independent manner. This approach aims to suppress the fidelity of the ribosome during protein synthesis so that a near-cognate aminoacyl-tRNA, which shares two of the three nucleotides of the PTC, can be inserted into the peptide chain, allowing translation to continue, and a full-length functional protein to be produced. Here we discuss the mechanisms and evidence of nonsense suppression agents, including the small molecule drug ataluren (or PTC124) and next generation 'designer' aminoglycosides, for the treatment of genetic eye disease.
Collapse
Affiliation(s)
- Rose Richardson
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - Matthew Smart
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - Dhani Tracey-White
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - Andrew R Webster
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Mariya Moosajee
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
16
|
Targeting Nonsense Mutations in Diseases with Translational Read-Through-Inducing Drugs (TRIDs). BioDrugs 2016; 30:49-74. [PMID: 26886021 DOI: 10.1007/s40259-016-0157-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In recent years, remarkable advances in the ability to diagnose genetic disorders have been made. The identification of disease-causing genes allows the development of gene-specific therapies with the ultimate goal to develop personalized medicines for each patient according to their own specific genetic defect. In-depth genotyping of many different genes has revealed that ~12% of inherited genetic disorders are caused by in-frame nonsense mutations. Nonsense (non-coding) mutations are caused by point mutations, which generate premature termination codons (PTCs) that cause premature translational termination of the mRNA, and subsequently inhibit normal full-length protein expression. Recently, a gene-based therapeutic approach for genetic diseases caused by nonsense mutations has emerged, namely the so-called translational read-through (TR) therapy. Read-through therapy is based on the discovery that small molecules, known as TR-inducing drugs (TRIDs), allow the translation machinery to suppress a nonsense codon, elongate the nascent peptide chain, and consequently result in the synthesis of full-length protein. Several TRIDs are currently under investigation and research has been performed on several genetic disorders caused by nonsense mutations over the years. These findings have raised hope for the usage of TR therapy as a gene-based pharmacogenetic therapy for nonsense mutations in various genes responsible for a variety of genetic diseases.
Collapse
|
17
|
Caspi M, Firsow A, Rajkumar R, Skalka N, Moshkovitz I, Munitz A, Pasmanik-Chor M, Greif H, Megido D, Kariv R, Rosenberg DW, Rosin-Arbesfeld R. A flow cytometry-based reporter assay identifies macrolide antibiotics as nonsense mutation read-through agents. J Mol Med (Berl) 2015; 94:469-82. [PMID: 26620677 DOI: 10.1007/s00109-015-1364-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/24/2015] [Accepted: 11/03/2015] [Indexed: 01/01/2023]
Abstract
UNLABELLED A large number of human diseases are caused by nonsense mutations. These mutations result in premature protein termination and the expression of truncated, usually nonfunctional products. A promising therapeutic strategy for patients suffering from premature termination codon (PTC)-mediated disorders is to suppress the nonsense mutation and restore the expression of the affected protein. Such a suppression approach using specific antibiotics and other read-through promoting agents has been shown to suppress PTCs and restore the production of several important proteins. Here, we report the establishment of a novel, rapid, and very efficient method for screening stop-codon read-through agents. We also show that, in both mammalian cells and in a transgenic mouse model, distinct members of the macrolide antibiotic family can induce read-through of disease-causing stop codons leading to re-expression of several key proteins and to reduced disease phenotypes. Taken together, our results may help in the identification and characterization of well-needed customized pharmaceutical PTC suppression agents. KEY MESSAGES Establishment of a flow cytometry-based reporter assay to identify nonsense mutation read-through agents. Macrolide antibiotics can induce read-through of disease-causing stop codons. Macrolide-induced protein restoration can alleviate disease-like phenotypes.
Collapse
Affiliation(s)
- Michal Caspi
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Ramat-Aviv, 69978, Tel Aviv, Israel
| | - Anastasia Firsow
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Ramat-Aviv, 69978, Tel Aviv, Israel
| | - Raja Rajkumar
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Ramat-Aviv, 69978, Tel Aviv, Israel
| | - Nir Skalka
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Ramat-Aviv, 69978, Tel Aviv, Israel
| | - Itay Moshkovitz
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Ramat-Aviv, 69978, Tel Aviv, Israel
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Ramat-Aviv, 69978, Tel Aviv, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, G.S.W. Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Revital Kariv
- Department of Gastroenterology, Tel Aviv Sourasky Medical Center, Tel Aviv, 64239, Israel
| | - Daniel W Rosenberg
- Center for Molecular Medicine, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Ramat-Aviv, 69978, Tel Aviv, Israel.
| |
Collapse
|
18
|
Fine I, Cepko CL, Landy MS. Vision research special issue: Sight restoration: Prosthetics, optogenetics and gene therapy. Vision Res 2015; 111:115-23. [PMID: 25937376 DOI: 10.1016/j.visres.2015.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Ione Fine
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Connie L Cepko
- Departments of Genetics and Ophthalmology, Howard Hughes Medical Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Michael S Landy
- Department of Psychology and Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|